/*- * Copyright 2014 Luiz Otavio O Souza * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_evdev.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EVDEV_SUPPORT #include #include #endif #include #include #include #undef DEBUG_TSC #define DEFAULT_CHARGE_DELAY 0x400 #define STEPDLY_OPEN 0x98 #define ORDER_XP 0 #define ORDER_XN 1 #define ORDER_YP 2 #define ORDER_YN 3 /* Define our 8 steps, one for each input channel. */ static struct ti_adc_input ti_adc_inputs[TI_ADC_NPINS] = { { .stepconfig = ADC_STEPCFG(1), .stepdelay = ADC_STEPDLY(1) }, { .stepconfig = ADC_STEPCFG(2), .stepdelay = ADC_STEPDLY(2) }, { .stepconfig = ADC_STEPCFG(3), .stepdelay = ADC_STEPDLY(3) }, { .stepconfig = ADC_STEPCFG(4), .stepdelay = ADC_STEPDLY(4) }, { .stepconfig = ADC_STEPCFG(5), .stepdelay = ADC_STEPDLY(5) }, { .stepconfig = ADC_STEPCFG(6), .stepdelay = ADC_STEPDLY(6) }, { .stepconfig = ADC_STEPCFG(7), .stepdelay = ADC_STEPDLY(7) }, { .stepconfig = ADC_STEPCFG(8), .stepdelay = ADC_STEPDLY(8) }, }; static int ti_adc_samples[5] = { 0, 2, 4, 8, 16 }; static int ti_adc_detach(device_t dev); #ifdef EVDEV_SUPPORT static void ti_adc_ev_report(struct ti_adc_softc *sc) { evdev_push_event(sc->sc_evdev, EV_ABS, ABS_X, sc->sc_x); evdev_push_event(sc->sc_evdev, EV_ABS, ABS_Y, sc->sc_y); evdev_push_event(sc->sc_evdev, EV_KEY, BTN_TOUCH, sc->sc_pen_down); evdev_sync(sc->sc_evdev); } #endif /* EVDEV */ static void ti_adc_enable(struct ti_adc_softc *sc) { uint32_t reg; TI_ADC_LOCK_ASSERT(sc); if (sc->sc_last_state == 1) return; /* Enable the FIFO0 threshold and the end of sequence interrupt. */ ADC_WRITE4(sc, ADC_IRQENABLE_SET, ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ); reg = ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID; if (sc->sc_tsc_wires > 0) { reg |= ADC_CTRL_TSC_ENABLE; switch (sc->sc_tsc_wires) { case 4: reg |= ADC_CTRL_TSC_4WIRE; break; case 5: reg |= ADC_CTRL_TSC_5WIRE; break; case 8: reg |= ADC_CTRL_TSC_8WIRE; break; default: break; } } reg |= ADC_CTRL_ENABLE; /* Enable the ADC. Run thru enabled steps, start the conversions. */ ADC_WRITE4(sc, ADC_CTRL, reg); sc->sc_last_state = 1; } static void ti_adc_disable(struct ti_adc_softc *sc) { int count; TI_ADC_LOCK_ASSERT(sc); if (sc->sc_last_state == 0) return; /* Disable all the enabled steps. */ ADC_WRITE4(sc, ADC_STEPENABLE, 0); /* Disable the ADC. */ ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) & ~ADC_CTRL_ENABLE); /* Disable the FIFO0 threshold and the end of sequence interrupt. */ ADC_WRITE4(sc, ADC_IRQENABLE_CLR, ADC_IRQ_FIFO0_THRES | ADC_IRQ_FIFO1_THRES | ADC_IRQ_END_OF_SEQ); /* ACK any pending interrupt. */ ADC_WRITE4(sc, ADC_IRQSTATUS, ADC_READ4(sc, ADC_IRQSTATUS)); /* Drain the FIFO data. */ count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; while (count > 0) { (void)ADC_READ4(sc, ADC_FIFO0DATA); count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; } count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK; while (count > 0) { (void)ADC_READ4(sc, ADC_FIFO1DATA); count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK; } sc->sc_last_state = 0; } static int ti_adc_setup(struct ti_adc_softc *sc) { int ain, i; uint32_t enabled; TI_ADC_LOCK_ASSERT(sc); /* Check for enabled inputs. */ enabled = sc->sc_tsc_enabled; for (i = 0; i < sc->sc_adc_nchannels; i++) { ain = sc->sc_adc_channels[i]; if (ti_adc_inputs[ain].enable) enabled |= (1U << (ain + 1)); } /* Set the ADC global status. */ if (enabled != 0) { ti_adc_enable(sc); /* Update the enabled steps. */ if (enabled != ADC_READ4(sc, ADC_STEPENABLE)) ADC_WRITE4(sc, ADC_STEPENABLE, enabled); } else ti_adc_disable(sc); return (0); } static void ti_adc_input_setup(struct ti_adc_softc *sc, int32_t ain) { struct ti_adc_input *input; uint32_t reg, val; TI_ADC_LOCK_ASSERT(sc); input = &ti_adc_inputs[ain]; reg = input->stepconfig; val = ADC_READ4(sc, reg); /* Set single ended operation. */ val &= ~ADC_STEP_DIFF_CNTRL; /* Set the negative voltage reference. */ val &= ~ADC_STEP_RFM_MSK; /* Set the positive voltage reference. */ val &= ~ADC_STEP_RFP_MSK; /* Set the samples average. */ val &= ~ADC_STEP_AVG_MSK; val |= input->samples << ADC_STEP_AVG_SHIFT; /* Select the desired input. */ val &= ~ADC_STEP_INP_MSK; val |= ain << ADC_STEP_INP_SHIFT; /* Set the ADC to one-shot mode. */ val &= ~ADC_STEP_MODE_MSK; ADC_WRITE4(sc, reg, val); } static void ti_adc_reset(struct ti_adc_softc *sc) { int ain, i; TI_ADC_LOCK_ASSERT(sc); /* Disable all the inputs. */ for (i = 0; i < sc->sc_adc_nchannels; i++) { ain = sc->sc_adc_channels[i]; ti_adc_inputs[ain].enable = 0; } } static int ti_adc_clockdiv_proc(SYSCTL_HANDLER_ARGS) { int error, reg; struct ti_adc_softc *sc; sc = (struct ti_adc_softc *)arg1; TI_ADC_LOCK(sc); reg = (int)ADC_READ4(sc, ADC_CLKDIV) + 1; TI_ADC_UNLOCK(sc); error = sysctl_handle_int(oidp, ®, sizeof(reg), req); if (error != 0 || req->newptr == NULL) return (error); /* * The actual written value is the prescaler setting - 1. * Enforce a minimum value of 10 (i.e. 9) which limits the maximum * ADC clock to ~2.4Mhz (CLK_M_OSC / 10). */ reg--; if (reg < 9) reg = 9; if (reg > USHRT_MAX) reg = USHRT_MAX; TI_ADC_LOCK(sc); /* Disable the ADC. */ ti_adc_disable(sc); /* Update the ADC prescaler setting. */ ADC_WRITE4(sc, ADC_CLKDIV, reg); /* Enable the ADC again. */ ti_adc_setup(sc); TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_enable_proc(SYSCTL_HANDLER_ARGS) { int error; int32_t enable; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; enable = input->enable; error = sysctl_handle_int(oidp, &enable, sizeof(enable), req); if (error != 0 || req->newptr == NULL) return (error); if (enable) enable = 1; TI_ADC_LOCK(sc); /* Setup the ADC as needed. */ if (input->enable != enable) { input->enable = enable; ti_adc_setup(sc); if (input->enable == 0) input->value = 0; } TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_open_delay_proc(SYSCTL_HANDLER_ARGS) { int error, reg; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; TI_ADC_LOCK(sc); reg = (int)ADC_READ4(sc, input->stepdelay) & ADC_STEP_OPEN_DELAY; TI_ADC_UNLOCK(sc); error = sysctl_handle_int(oidp, ®, sizeof(reg), req); if (error != 0 || req->newptr == NULL) return (error); if (reg < 0) reg = 0; TI_ADC_LOCK(sc); ADC_WRITE4(sc, input->stepdelay, reg & ADC_STEP_OPEN_DELAY); TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_samples_avg_proc(SYSCTL_HANDLER_ARGS) { int error, samples, i; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; if (input->samples > nitems(ti_adc_samples)) input->samples = nitems(ti_adc_samples); samples = ti_adc_samples[input->samples]; error = sysctl_handle_int(oidp, &samples, 0, req); if (error != 0 || req->newptr == NULL) return (error); TI_ADC_LOCK(sc); if (samples != ti_adc_samples[input->samples]) { input->samples = 0; for (i = 0; i < nitems(ti_adc_samples); i++) if (samples >= ti_adc_samples[i]) input->samples = i; ti_adc_input_setup(sc, input->input); } TI_ADC_UNLOCK(sc); return (error); } static void ti_adc_read_data(struct ti_adc_softc *sc) { int count, ain; struct ti_adc_input *input; uint32_t data; TI_ADC_LOCK_ASSERT(sc); /* Read the available data. */ count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; while (count > 0) { data = ADC_READ4(sc, ADC_FIFO0DATA); ain = (data & ADC_FIFO_STEP_ID_MSK) >> ADC_FIFO_STEP_ID_SHIFT; input = &ti_adc_inputs[ain]; if (input->enable == 0) input->value = 0; else input->value = (int32_t)(data & ADC_FIFO_DATA_MSK); count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; } } static int cmp_values(const void *a, const void *b) { const uint32_t *v1, *v2; v1 = a; v2 = b; if (*v1 < *v2) return -1; if (*v1 > *v2) return 1; return (0); } static void ti_adc_tsc_read_data(struct ti_adc_softc *sc) { int count; uint32_t data[16]; uint32_t x, y; int i, start, end; TI_ADC_LOCK_ASSERT(sc); /* Read the available data. */ count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK; if (count == 0) return; i = 0; while (count > 0) { data[i++] = ADC_READ4(sc, ADC_FIFO1DATA) & ADC_FIFO_DATA_MSK; count = ADC_READ4(sc, ADC_FIFO1COUNT) & ADC_FIFO_COUNT_MSK; } if (sc->sc_coord_readouts > 3) { start = 1; end = sc->sc_coord_readouts - 1; qsort(data, sc->sc_coord_readouts, sizeof(data[0]), &cmp_values); qsort(&data[sc->sc_coord_readouts + 2], sc->sc_coord_readouts, sizeof(data[0]), &cmp_values); } else { start = 0; end = sc->sc_coord_readouts; } x = y = 0; for (i = start; i < end; i++) y += data[i]; y /= (end - start); for (i = sc->sc_coord_readouts + 2 + start; i < sc->sc_coord_readouts + 2 + end; i++) x += data[i]; x /= (end - start); #ifdef DEBUG_TSC device_printf(sc->sc_dev, "touchscreen x: %d, y: %d\n", x, y); #endif #ifdef EVDEV_SUPPORT if ((sc->sc_x != x) || (sc->sc_y != y)) { sc->sc_x = x; sc->sc_y = y; ti_adc_ev_report(sc); } #endif } static void ti_adc_intr_locked(struct ti_adc_softc *sc, uint32_t status) { /* Read the available data. */ if (status & ADC_IRQ_FIFO0_THRES) ti_adc_read_data(sc); } static void ti_adc_tsc_intr_locked(struct ti_adc_softc *sc, uint32_t status) { /* Read the available data. */ if (status & ADC_IRQ_FIFO1_THRES) ti_adc_tsc_read_data(sc); } static void ti_adc_intr(void *arg) { struct ti_adc_softc *sc; uint32_t status, rawstatus; sc = (struct ti_adc_softc *)arg; TI_ADC_LOCK(sc); rawstatus = ADC_READ4(sc, ADC_IRQSTATUS_RAW); status = ADC_READ4(sc, ADC_IRQSTATUS); if (rawstatus & ADC_IRQ_HW_PEN_ASYNC) { sc->sc_pen_down = 1; status |= ADC_IRQ_HW_PEN_ASYNC; ADC_WRITE4(sc, ADC_IRQENABLE_CLR, ADC_IRQ_HW_PEN_ASYNC); #ifdef EVDEV_SUPPORT ti_adc_ev_report(sc); #endif } if (rawstatus & ADC_IRQ_PEN_UP) { sc->sc_pen_down = 0; status |= ADC_IRQ_PEN_UP; #ifdef EVDEV_SUPPORT ti_adc_ev_report(sc); #endif } if (status & ADC_IRQ_FIFO0_THRES) ti_adc_intr_locked(sc, status); if (status & ADC_IRQ_FIFO1_THRES) ti_adc_tsc_intr_locked(sc, status); if (status) { /* ACK the interrupt. */ ADC_WRITE4(sc, ADC_IRQSTATUS, status); } /* Start the next conversion ? */ if (status & ADC_IRQ_END_OF_SEQ) ti_adc_setup(sc); TI_ADC_UNLOCK(sc); } static void ti_adc_sysctl_init(struct ti_adc_softc *sc) { char pinbuf[3]; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node, *inp_node, *inpN_node; struct sysctl_oid_list *tree, *inp_tree, *inpN_tree; int ain, i; /* * Add per-pin sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->sc_dev); tree_node = device_get_sysctl_tree(sc->sc_dev); tree = SYSCTL_CHILDREN(tree_node); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, sc, 0, ti_adc_clockdiv_proc, "IU", "ADC clock prescaler"); inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ADC inputs"); inp_tree = SYSCTL_CHILDREN(inp_node); for (i = 0; i < sc->sc_adc_nchannels; i++) { ain = sc->sc_adc_channels[i]; snprintf(pinbuf, sizeof(pinbuf), "%d", ain); inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ADC input"); inpN_tree = SYSCTL_CHILDREN(inpN_node); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, &ti_adc_inputs[ain], 0, ti_adc_enable_proc, "IU", "Enable ADC input"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, &ti_adc_inputs[ain], 0, ti_adc_open_delay_proc, "IU", "ADC open delay"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, &ti_adc_inputs[ain], 0, ti_adc_samples_avg_proc, "IU", "ADC samples average"); SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input", CTLFLAG_RD, &ti_adc_inputs[ain].value, 0, "Converted raw value for the ADC input"); } } static void ti_adc_inputs_init(struct ti_adc_softc *sc) { int ain, i; struct ti_adc_input *input; TI_ADC_LOCK(sc); for (i = 0; i < sc->sc_adc_nchannels; i++) { ain = sc->sc_adc_channels[i]; input = &ti_adc_inputs[ain]; input->sc = sc; input->input = ain; input->value = 0; input->enable = 0; input->samples = 0; ti_adc_input_setup(sc, ain); } TI_ADC_UNLOCK(sc); } static void ti_adc_tsc_init(struct ti_adc_softc *sc) { int i, start_step, end_step; uint32_t stepconfig, val; TI_ADC_LOCK(sc); /* X coordinates */ stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) | ADC_STEP_MODE_HW_ONESHOT | sc->sc_xp_bit; if (sc->sc_tsc_wires == 4) stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit; else if (sc->sc_tsc_wires == 5) stepconfig |= ADC_STEP_INP(4) | sc->sc_xn_bit | sc->sc_yn_bit | sc->sc_yp_bit; else if (sc->sc_tsc_wires == 8) stepconfig |= ADC_STEP_INP(sc->sc_yp_inp) | sc->sc_xn_bit; start_step = ADC_STEPS - sc->sc_coord_readouts + 1; end_step = start_step + sc->sc_coord_readouts - 1; for (i = start_step; i <= end_step; i++) { ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig); ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN); } /* Y coordinates */ stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) | ADC_STEP_MODE_HW_ONESHOT | sc->sc_yn_bit | ADC_STEP_INM(8); if (sc->sc_tsc_wires == 4) stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit; else if (sc->sc_tsc_wires == 5) stepconfig |= ADC_STEP_INP(4) | sc->sc_xp_bit | sc->sc_xn_bit | sc->sc_yp_bit; else if (sc->sc_tsc_wires == 8) stepconfig |= ADC_STEP_INP(sc->sc_xp_inp) | sc->sc_yp_bit; start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1; end_step = start_step + sc->sc_coord_readouts - 1; for (i = start_step; i <= end_step; i++) { ADC_WRITE4(sc, ADC_STEPCFG(i), stepconfig); ADC_WRITE4(sc, ADC_STEPDLY(i), STEPDLY_OPEN); } /* Charge config */ val = ADC_READ4(sc, ADC_IDLECONFIG); ADC_WRITE4(sc, ADC_TC_CHARGE_STEPCONFIG, val); ADC_WRITE4(sc, ADC_TC_CHARGE_DELAY, sc->sc_charge_delay); /* 2 steps for Z */ start_step = ADC_STEPS - (sc->sc_coord_readouts + 2) + 1; stepconfig = ADC_STEP_FIFO1 | (4 << ADC_STEP_AVG_SHIFT) | ADC_STEP_MODE_HW_ONESHOT | sc->sc_yp_bit | sc->sc_xn_bit | ADC_STEP_INP(sc->sc_xp_inp) | ADC_STEP_INM(8); ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig); ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN); start_step++; stepconfig |= ADC_STEP_INP(sc->sc_yn_inp); ADC_WRITE4(sc, ADC_STEPCFG(start_step), stepconfig); ADC_WRITE4(sc, ADC_STEPDLY(start_step), STEPDLY_OPEN); ADC_WRITE4(sc, ADC_FIFO1THRESHOLD, (sc->sc_coord_readouts*2 + 2) - 1); sc->sc_tsc_enabled = 1; start_step = ADC_STEPS - (sc->sc_coord_readouts*2 + 2) + 1; end_step = ADC_STEPS; for (i = start_step; i <= end_step; i++) { sc->sc_tsc_enabled |= (1 << i); } TI_ADC_UNLOCK(sc); } static void ti_adc_idlestep_init(struct ti_adc_softc *sc) { uint32_t val; val = ADC_STEP_YNN_SW | ADC_STEP_INM(8) | ADC_STEP_INP(8) | ADC_STEP_YPN_SW; ADC_WRITE4(sc, ADC_IDLECONFIG, val); } static int ti_adc_config_wires(struct ti_adc_softc *sc, int *wire_configs, int nwire_configs) { int i; int wire, ai; for (i = 0; i < nwire_configs; i++) { wire = wire_configs[i] & 0xf; ai = (wire_configs[i] >> 4) & 0xf; switch (wire) { case ORDER_XP: sc->sc_xp_bit = ADC_STEP_XPP_SW; sc->sc_xp_inp = ai; break; case ORDER_XN: sc->sc_xn_bit = ADC_STEP_XNN_SW; sc->sc_xn_inp = ai; break; case ORDER_YP: sc->sc_yp_bit = ADC_STEP_YPP_SW; sc->sc_yp_inp = ai; break; case ORDER_YN: sc->sc_yn_bit = ADC_STEP_YNN_SW; sc->sc_yn_inp = ai; break; default: device_printf(sc->sc_dev, "Invalid wire config\n"); return (-1); } } return (0); } static int ti_adc_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "ti,am3359-tscadc")) return (ENXIO); device_set_desc(dev, "TI ADC controller"); return (BUS_PROBE_DEFAULT); } static int ti_adc_attach(device_t dev) { int err, rid, i; struct ti_adc_softc *sc; uint32_t rev, reg; phandle_t node, child; pcell_t cell; int *channels; int nwire_configs; int *wire_configs; sc = device_get_softc(dev); sc->sc_dev = dev; node = ofw_bus_get_node(dev); sc->sc_tsc_wires = 0; sc->sc_coord_readouts = 1; sc->sc_x_plate_resistance = 0; sc->sc_charge_delay = DEFAULT_CHARGE_DELAY; /* Read "tsc" node properties */ child = ofw_bus_find_child(node, "tsc"); if (child != 0 && OF_hasprop(child, "ti,wires")) { if ((OF_getencprop(child, "ti,wires", &cell, sizeof(cell))) > 0) sc->sc_tsc_wires = cell; if ((OF_getencprop(child, "ti,coordinate-readouts", &cell, sizeof(cell))) > 0) sc->sc_coord_readouts = cell; if ((OF_getencprop(child, "ti,x-plate-resistance", &cell, sizeof(cell))) > 0) sc->sc_x_plate_resistance = cell; if ((OF_getencprop(child, "ti,charge-delay", &cell, sizeof(cell))) > 0) sc->sc_charge_delay = cell; nwire_configs = OF_getencprop_alloc_multi(child, "ti,wire-config", sizeof(*wire_configs), (void **)&wire_configs); if (nwire_configs != sc->sc_tsc_wires) { device_printf(sc->sc_dev, "invalid number of ti,wire-config: %d (should be %d)\n", nwire_configs, sc->sc_tsc_wires); OF_prop_free(wire_configs); return (EINVAL); } err = ti_adc_config_wires(sc, wire_configs, nwire_configs); OF_prop_free(wire_configs); if (err) return (EINVAL); } /* Read "adc" node properties */ child = ofw_bus_find_child(node, "adc"); if (child != 0) { sc->sc_adc_nchannels = OF_getencprop_alloc_multi(child, "ti,adc-channels", sizeof(*channels), (void **)&channels); if (sc->sc_adc_nchannels > 0) { for (i = 0; i < sc->sc_adc_nchannels; i++) sc->sc_adc_channels[i] = channels[i]; OF_prop_free(channels); } } /* Sanity check FDT data */ if (sc->sc_tsc_wires + sc->sc_adc_nchannels > TI_ADC_NPINS) { device_printf(dev, "total number of channels (%d) is larger than %d\n", sc->sc_tsc_wires + sc->sc_adc_nchannels, TI_ADC_NPINS); return (ENXIO); } rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); return (ENXIO); } /* Activate the ADC_TSC module. */ err = ti_sysc_clock_enable(device_get_parent(dev)); if (err) return (err); rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->sc_irq_res) { bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "cannot allocate interrupt\n"); return (ENXIO); } if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, ti_adc_intr, sc, &sc->sc_intrhand) != 0) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "Unable to setup the irq handler.\n"); return (ENXIO); } /* Check the ADC revision. */ rev = ADC_READ4(sc, ti_sysc_get_rev_address_offset_host(device_get_parent(dev))); device_printf(dev, "scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n", (rev & ADC_REV_SCHEME_MSK) >> ADC_REV_SCHEME_SHIFT, (rev & ADC_REV_FUNC_MSK) >> ADC_REV_FUNC_SHIFT, (rev & ADC_REV_RTL_MSK) >> ADC_REV_RTL_SHIFT, (rev & ADC_REV_MAJOR_MSK) >> ADC_REV_MAJOR_SHIFT, rev & ADC_REV_MINOR_MSK, (rev & ADC_REV_CUSTOM_MSK) >> ADC_REV_CUSTOM_SHIFT); reg = ADC_READ4(sc, ADC_CTRL); ADC_WRITE4(sc, ADC_CTRL, reg | ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID); /* * Set the ADC prescaler to 2400 if touchscreen is not enabled * and to 24 if it is. This sets the ADC clock to ~10Khz and * ~1Mhz respectively (CLK_M_OSC / prescaler). */ if (sc->sc_tsc_wires) ADC_WRITE4(sc, ADC_CLKDIV, 24 - 1); else ADC_WRITE4(sc, ADC_CLKDIV, 2400 - 1); TI_ADC_LOCK_INIT(sc); ti_adc_idlestep_init(sc); ti_adc_inputs_init(sc); ti_adc_sysctl_init(sc); ti_adc_tsc_init(sc); TI_ADC_LOCK(sc); ti_adc_setup(sc); TI_ADC_UNLOCK(sc); #ifdef EVDEV_SUPPORT if (sc->sc_tsc_wires > 0) { sc->sc_evdev = evdev_alloc(); evdev_set_name(sc->sc_evdev, device_get_desc(dev)); evdev_set_phys(sc->sc_evdev, device_get_nameunit(dev)); evdev_set_id(sc->sc_evdev, BUS_VIRTUAL, 0, 0, 0); evdev_support_prop(sc->sc_evdev, INPUT_PROP_DIRECT); evdev_support_event(sc->sc_evdev, EV_SYN); evdev_support_event(sc->sc_evdev, EV_ABS); evdev_support_event(sc->sc_evdev, EV_KEY); evdev_support_abs(sc->sc_evdev, ABS_X, 0, ADC_MAX_VALUE, 0, 0, 0); evdev_support_abs(sc->sc_evdev, ABS_Y, 0, ADC_MAX_VALUE, 0, 0, 0); evdev_support_key(sc->sc_evdev, BTN_TOUCH); err = evdev_register(sc->sc_evdev); if (err) { device_printf(dev, "failed to register evdev: error=%d\n", err); ti_adc_detach(dev); return (err); } sc->sc_pen_down = 0; sc->sc_x = -1; sc->sc_y = -1; } #endif /* EVDEV */ return (0); } static int ti_adc_detach(device_t dev) { struct ti_adc_softc *sc; sc = device_get_softc(dev); /* Turn off the ADC. */ TI_ADC_LOCK(sc); ti_adc_reset(sc); ti_adc_setup(sc); #ifdef EVDEV_SUPPORT evdev_free(sc->sc_evdev); #endif TI_ADC_UNLOCK(sc); TI_ADC_LOCK_DESTROY(sc); if (sc->sc_intrhand) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand); if (sc->sc_irq_res) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); return (bus_generic_detach(dev)); } static device_method_t ti_adc_methods[] = { DEVMETHOD(device_probe, ti_adc_probe), DEVMETHOD(device_attach, ti_adc_attach), DEVMETHOD(device_detach, ti_adc_detach), DEVMETHOD_END }; static driver_t ti_adc_driver = { "ti_adc", ti_adc_methods, sizeof(struct ti_adc_softc), }; DRIVER_MODULE(ti_adc, simplebus, ti_adc_driver, 0, 0); MODULE_VERSION(ti_adc, 1); MODULE_DEPEND(ti_adc, simplebus, 1, 1, 1); MODULE_DEPEND(ti_adc, ti_sysc, 1, 1, 1); #ifdef EVDEV_SUPPORT MODULE_DEPEND(ti_adc, evdev, 1, 1, 1); #endif