/*- * Copyright 2014 Luiz Otavio O Souza * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Define our 7 steps, one for each input channel. */ static struct ti_adc_input ti_adc_inputs[TI_ADC_NPINS] = { { .stepconfig = ADC_STEPCFG1, .stepdelay = ADC_STEPDLY1 }, { .stepconfig = ADC_STEPCFG2, .stepdelay = ADC_STEPDLY2 }, { .stepconfig = ADC_STEPCFG3, .stepdelay = ADC_STEPDLY3 }, { .stepconfig = ADC_STEPCFG4, .stepdelay = ADC_STEPDLY4 }, { .stepconfig = ADC_STEPCFG5, .stepdelay = ADC_STEPDLY5 }, { .stepconfig = ADC_STEPCFG6, .stepdelay = ADC_STEPDLY6 }, { .stepconfig = ADC_STEPCFG7, .stepdelay = ADC_STEPDLY7 }, }; static int ti_adc_samples[5] = { 0, 2, 4, 8, 16 }; static void ti_adc_enable(struct ti_adc_softc *sc) { TI_ADC_LOCK_ASSERT(sc); if (sc->sc_last_state == 1) return; /* Enable the FIFO0 threshold and the end of sequence interrupt. */ ADC_WRITE4(sc, ADC_IRQENABLE_SET, ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ); /* Enable the ADC. Run thru enabled steps, start the conversions. */ ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) | ADC_CTRL_ENABLE); sc->sc_last_state = 1; } static void ti_adc_disable(struct ti_adc_softc *sc) { int count; uint32_t data; TI_ADC_LOCK_ASSERT(sc); if (sc->sc_last_state == 0) return; /* Disable all the enabled steps. */ ADC_WRITE4(sc, ADC_STEPENABLE, 0); /* Disable the ADC. */ ADC_WRITE4(sc, ADC_CTRL, ADC_READ4(sc, ADC_CTRL) & ~ADC_CTRL_ENABLE); /* Disable the FIFO0 threshold and the end of sequence interrupt. */ ADC_WRITE4(sc, ADC_IRQENABLE_CLR, ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ); /* ACK any pending interrupt. */ ADC_WRITE4(sc, ADC_IRQSTATUS, ADC_READ4(sc, ADC_IRQSTATUS)); /* Drain the FIFO data. */ count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; while (count > 0) { data = ADC_READ4(sc, ADC_FIFO0DATA); count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; } sc->sc_last_state = 0; } static int ti_adc_setup(struct ti_adc_softc *sc) { int ain; uint32_t enabled; TI_ADC_LOCK_ASSERT(sc); /* Check for enabled inputs. */ enabled = 0; for (ain = 0; ain < TI_ADC_NPINS; ain++) { if (ti_adc_inputs[ain].enable) enabled |= (1U << (ain + 1)); } /* Set the ADC global status. */ if (enabled != 0) { ti_adc_enable(sc); /* Update the enabled steps. */ if (enabled != ADC_READ4(sc, ADC_STEPENABLE)) ADC_WRITE4(sc, ADC_STEPENABLE, enabled); } else ti_adc_disable(sc); return (0); } static void ti_adc_input_setup(struct ti_adc_softc *sc, int32_t ain) { struct ti_adc_input *input; uint32_t reg, val; TI_ADC_LOCK_ASSERT(sc); input = &ti_adc_inputs[ain]; reg = input->stepconfig; val = ADC_READ4(sc, reg); /* Set single ended operation. */ val &= ~ADC_STEP_DIFF_CNTRL; /* Set the negative voltage reference. */ val &= ~ADC_STEP_RFM_MSK; val |= ADC_STEP_RFM_VREFN << ADC_STEP_RFM_SHIFT; /* Set the positive voltage reference. */ val &= ~ADC_STEP_RFP_MSK; val |= ADC_STEP_RFP_VREFP << ADC_STEP_RFP_SHIFT; /* Set the samples average. */ val &= ~ADC_STEP_AVG_MSK; val |= input->samples << ADC_STEP_AVG_SHIFT; /* Select the desired input. */ val &= ~ADC_STEP_INP_MSK; val |= ain << ADC_STEP_INP_SHIFT; /* Set the ADC to one-shot mode. */ val &= ~ADC_STEP_MODE_MSK; ADC_WRITE4(sc, reg, val); } static void ti_adc_reset(struct ti_adc_softc *sc) { int ain; TI_ADC_LOCK_ASSERT(sc); /* Disable all the inputs. */ for (ain = 0; ain < TI_ADC_NPINS; ain++) ti_adc_inputs[ain].enable = 0; } static int ti_adc_clockdiv_proc(SYSCTL_HANDLER_ARGS) { int error, reg; struct ti_adc_softc *sc; sc = (struct ti_adc_softc *)arg1; TI_ADC_LOCK(sc); reg = (int)ADC_READ4(sc, ADC_CLKDIV) + 1; TI_ADC_UNLOCK(sc); error = sysctl_handle_int(oidp, ®, sizeof(reg), req); if (error != 0 || req->newptr == NULL) return (error); /* * The actual written value is the prescaler setting - 1. * Enforce a minimum value of 10 (i.e. 9) which limits the maximum * ADC clock to ~2.4Mhz (CLK_M_OSC / 10). */ reg--; if (reg < 9) reg = 9; if (reg > USHRT_MAX) reg = USHRT_MAX; TI_ADC_LOCK(sc); /* Disable the ADC. */ ti_adc_disable(sc); /* Update the ADC prescaler setting. */ ADC_WRITE4(sc, ADC_CLKDIV, reg); /* Enable the ADC again. */ ti_adc_setup(sc); TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_enable_proc(SYSCTL_HANDLER_ARGS) { int error; int32_t enable; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; enable = input->enable; error = sysctl_handle_int(oidp, &enable, sizeof(enable), req); if (error != 0 || req->newptr == NULL) return (error); if (enable) enable = 1; TI_ADC_LOCK(sc); /* Setup the ADC as needed. */ if (input->enable != enable) { input->enable = enable; ti_adc_setup(sc); if (input->enable == 0) input->value = 0; } TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_open_delay_proc(SYSCTL_HANDLER_ARGS) { int error, reg; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; TI_ADC_LOCK(sc); reg = (int)ADC_READ4(sc, input->stepdelay) & ADC_STEP_OPEN_DELAY; TI_ADC_UNLOCK(sc); error = sysctl_handle_int(oidp, ®, sizeof(reg), req); if (error != 0 || req->newptr == NULL) return (error); if (reg < 0) reg = 0; TI_ADC_LOCK(sc); ADC_WRITE4(sc, input->stepdelay, reg & ADC_STEP_OPEN_DELAY); TI_ADC_UNLOCK(sc); return (0); } static int ti_adc_samples_avg_proc(SYSCTL_HANDLER_ARGS) { int error, samples, i; struct ti_adc_softc *sc; struct ti_adc_input *input; input = (struct ti_adc_input *)arg1; sc = input->sc; if (input->samples > nitems(ti_adc_samples)) input->samples = nitems(ti_adc_samples); samples = ti_adc_samples[input->samples]; error = sysctl_handle_int(oidp, &samples, 0, req); if (error != 0 || req->newptr == NULL) return (error); TI_ADC_LOCK(sc); if (samples != ti_adc_samples[input->samples]) { input->samples = 0; for (i = 0; i < nitems(ti_adc_samples); i++) if (samples >= ti_adc_samples[i]) input->samples = i; ti_adc_input_setup(sc, input->input); } TI_ADC_UNLOCK(sc); return (error); } static void ti_adc_read_data(struct ti_adc_softc *sc) { int count, ain; struct ti_adc_input *input; uint32_t data; TI_ADC_LOCK_ASSERT(sc); /* Read the available data. */ count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; while (count > 0) { data = ADC_READ4(sc, ADC_FIFO0DATA); ain = (data & ADC_FIFO_STEP_ID_MSK) >> ADC_FIFO_STEP_ID_SHIFT; input = &ti_adc_inputs[ain]; if (input->enable == 0) input->value = 0; else input->value = (int32_t)(data & ADC_FIFO_DATA_MSK); count = ADC_READ4(sc, ADC_FIFO0COUNT) & ADC_FIFO_COUNT_MSK; } } static void ti_adc_intr(void *arg) { struct ti_adc_softc *sc; uint32_t status; sc = (struct ti_adc_softc *)arg; status = ADC_READ4(sc, ADC_IRQSTATUS); if (status == 0) return; if (status & ~(ADC_IRQ_FIFO0_THRES | ADC_IRQ_END_OF_SEQ)) device_printf(sc->sc_dev, "stray interrupt: %#x\n", status); TI_ADC_LOCK(sc); /* ACK the interrupt. */ ADC_WRITE4(sc, ADC_IRQSTATUS, status); /* Read the available data. */ if (status & ADC_IRQ_FIFO0_THRES) ti_adc_read_data(sc); /* Start the next conversion ? */ if (status & ADC_IRQ_END_OF_SEQ) ti_adc_setup(sc); TI_ADC_UNLOCK(sc); } static void ti_adc_sysctl_init(struct ti_adc_softc *sc) { char pinbuf[3]; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree_node, *inp_node, *inpN_node; struct sysctl_oid_list *tree, *inp_tree, *inpN_tree; int ain; /* * Add per-pin sysctl tree/handlers. */ ctx = device_get_sysctl_ctx(sc->sc_dev); tree_node = device_get_sysctl_tree(sc->sc_dev); tree = SYSCTL_CHILDREN(tree_node); SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv", CTLFLAG_RW | CTLTYPE_UINT, sc, 0, ti_adc_clockdiv_proc, "IU", "ADC clock prescaler"); inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain", CTLFLAG_RD, NULL, "ADC inputs"); inp_tree = SYSCTL_CHILDREN(inp_node); for (ain = 0; ain < TI_ADC_NPINS; ain++) { snprintf(pinbuf, sizeof(pinbuf), "%d", ain); inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf, CTLFLAG_RD, NULL, "ADC input"); inpN_tree = SYSCTL_CHILDREN(inpN_node); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_enable_proc, "IU", "Enable ADC input"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_open_delay_proc, "IU", "ADC open delay"); SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg", CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0, ti_adc_samples_avg_proc, "IU", "ADC samples average"); SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input", CTLFLAG_RD, &ti_adc_inputs[ain].value, 0, "Converted raw value for the ADC input"); } } static void ti_adc_inputs_init(struct ti_adc_softc *sc) { int ain; struct ti_adc_input *input; TI_ADC_LOCK(sc); for (ain = 0; ain < TI_ADC_NPINS; ain++) { input = &ti_adc_inputs[ain]; input->sc = sc; input->input = ain; input->value = 0; input->enable = 0; input->samples = 0; ti_adc_input_setup(sc, ain); } TI_ADC_UNLOCK(sc); } static void ti_adc_idlestep_init(struct ti_adc_softc *sc) { uint32_t val; val = ADC_READ4(sc, ADC_IDLECONFIG); /* Set single ended operation. */ val &= ~ADC_STEP_DIFF_CNTRL; /* Set the negative voltage reference. */ val &= ~ADC_STEP_RFM_MSK; val |= ADC_STEP_RFM_VREFN << ADC_STEP_RFM_SHIFT; /* Set the positive voltage reference. */ val &= ~ADC_STEP_RFP_MSK; val |= ADC_STEP_RFP_VREFP << ADC_STEP_RFP_SHIFT; /* Connect the input to VREFN. */ val &= ~ADC_STEP_INP_MSK; val |= ADC_STEP_IN_VREFN << ADC_STEP_INP_SHIFT; ADC_WRITE4(sc, ADC_IDLECONFIG, val); } static int ti_adc_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "ti,adc")) return (ENXIO); device_set_desc(dev, "TI ADC controller"); return (BUS_PROBE_DEFAULT); } static int ti_adc_attach(device_t dev) { int err, rid; struct ti_adc_softc *sc; uint32_t reg, rev; sc = device_get_softc(dev); sc->sc_dev = dev; rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); return (ENXIO); } rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->sc_irq_res) { bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "cannot allocate interrupt\n"); return (ENXIO); } if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, ti_adc_intr, sc, &sc->sc_intrhand) != 0) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); device_printf(dev, "Unable to setup the irq handler.\n"); return (ENXIO); } /* Activate the ADC_TSC module. */ err = ti_prcm_clk_enable(TSC_ADC_CLK); if (err) return (err); /* Check the ADC revision. */ rev = ADC_READ4(sc, ADC_REVISION); device_printf(dev, "scheme: %#x func: %#x rtl: %d rev: %d.%d custom rev: %d\n", (rev & ADC_REV_SCHEME_MSK) >> ADC_REV_SCHEME_SHIFT, (rev & ADC_REV_FUNC_MSK) >> ADC_REV_FUNC_SHIFT, (rev & ADC_REV_RTL_MSK) >> ADC_REV_RTL_SHIFT, (rev & ADC_REV_MAJOR_MSK) >> ADC_REV_MAJOR_SHIFT, rev & ADC_REV_MINOR_MSK, (rev & ADC_REV_CUSTOM_MSK) >> ADC_REV_CUSTOM_SHIFT); /* * Disable the step write protect and make it store the step ID for * the captured data on FIFO. */ reg = ADC_READ4(sc, ADC_CTRL); ADC_WRITE4(sc, ADC_CTRL, reg | ADC_CTRL_STEP_WP | ADC_CTRL_STEP_ID); /* * Set the ADC prescaler to 2400 (yes, the actual value written here * is 2400 - 1). * This sets the ADC clock to ~10Khz (CLK_M_OSC / 2400). */ ADC_WRITE4(sc, ADC_CLKDIV, 2399); TI_ADC_LOCK_INIT(sc); ti_adc_idlestep_init(sc); ti_adc_inputs_init(sc); ti_adc_sysctl_init(sc); return (0); } static int ti_adc_detach(device_t dev) { struct ti_adc_softc *sc; sc = device_get_softc(dev); /* Turn off the ADC. */ TI_ADC_LOCK(sc); ti_adc_reset(sc); ti_adc_setup(sc); TI_ADC_UNLOCK(sc); TI_ADC_LOCK_DESTROY(sc); if (sc->sc_intrhand) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand); if (sc->sc_irq_res) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); return (bus_generic_detach(dev)); } static device_method_t ti_adc_methods[] = { DEVMETHOD(device_probe, ti_adc_probe), DEVMETHOD(device_attach, ti_adc_attach), DEVMETHOD(device_detach, ti_adc_detach), DEVMETHOD_END }; static driver_t ti_adc_driver = { "ti_adc", ti_adc_methods, sizeof(struct ti_adc_softc), }; static devclass_t ti_adc_devclass; DRIVER_MODULE(ti_adc, simplebus, ti_adc_driver, ti_adc_devclass, 0, 0); MODULE_VERSION(ti_adc, 1); MODULE_DEPEND(ti_adc, simplebus, 1, 1, 1);