/*- * Copyright (c) 2016 Michal Meloun * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Nvidia Integrated PCI/PCI-Express controller driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ofw_bus_if.h" #include "msi_if.h" #include "pcib_if.h" #include "pic_if.h" #define AFI_AXI_BAR0_SZ 0x000 #define AFI_AXI_BAR1_SZ 0x004 #define AFI_AXI_BAR2_SZ 0x008 #define AFI_AXI_BAR3_SZ 0x00c #define AFI_AXI_BAR4_SZ 0x010 #define AFI_AXI_BAR5_SZ 0x014 #define AFI_AXI_BAR0_START 0x018 #define AFI_AXI_BAR1_START 0x01c #define AFI_AXI_BAR2_START 0x020 #define AFI_AXI_BAR3_START 0x024 #define AFI_AXI_BAR4_START 0x028 #define AFI_AXI_BAR5_START 0x02c #define AFI_FPCI_BAR0 0x030 #define AFI_FPCI_BAR1 0x034 #define AFI_FPCI_BAR2 0x038 #define AFI_FPCI_BAR3 0x03c #define AFI_FPCI_BAR4 0x040 #define AFI_FPCI_BAR5 0x044 #define AFI_MSI_BAR_SZ 0x060 #define AFI_MSI_FPCI_BAR_ST 0x064 #define AFI_MSI_AXI_BAR_ST 0x068 #define AFI_MSI_VEC(x) (0x06c + 4 * (x)) #define AFI_MSI_EN_VEC(x) (0x08c + 4 * (x)) #define AFI_MSI_INTR_IN_REG 32 #define AFI_MSI_REGS 8 #define AFI_CONFIGURATION 0x0ac #define AFI_CONFIGURATION_EN_FPCI (1 << 0) #define AFI_FPCI_ERROR_MASKS 0x0b0 #define AFI_INTR_MASK 0x0b4 #define AFI_INTR_MASK_MSI_MASK (1 << 8) #define AFI_INTR_MASK_INT_MASK (1 << 0) #define AFI_INTR_CODE 0x0b8 #define AFI_INTR_CODE_MASK 0xf #define AFI_INTR_CODE_INT_CODE_INI_SLVERR 1 #define AFI_INTR_CODE_INT_CODE_INI_DECERR 2 #define AFI_INTR_CODE_INT_CODE_TGT_SLVERR 3 #define AFI_INTR_CODE_INT_CODE_TGT_DECERR 4 #define AFI_INTR_CODE_INT_CODE_TGT_WRERR 5 #define AFI_INTR_CODE_INT_CODE_SM_MSG 6 #define AFI_INTR_CODE_INT_CODE_DFPCI_DECERR 7 #define AFI_INTR_CODE_INT_CODE_AXI_DECERR 8 #define AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT 9 #define AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE 10 #define AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE 11 #define AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE 12 #define AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE 13 #define AFI_INTR_CODE_INT_CODE_P2P_ERROR 14 #define AFI_INTR_SIGNATURE 0x0bc #define AFI_UPPER_FPCI_ADDRESS 0x0c0 #define AFI_SM_INTR_ENABLE 0x0c4 #define AFI_SM_INTR_RP_DEASSERT (1 << 14) #define AFI_SM_INTR_RP_ASSERT (1 << 13) #define AFI_SM_INTR_HOTPLUG (1 << 12) #define AFI_SM_INTR_PME (1 << 11) #define AFI_SM_INTR_FATAL_ERROR (1 << 10) #define AFI_SM_INTR_UNCORR_ERROR (1 << 9) #define AFI_SM_INTR_CORR_ERROR (1 << 8) #define AFI_SM_INTR_INTD_DEASSERT (1 << 7) #define AFI_SM_INTR_INTC_DEASSERT (1 << 6) #define AFI_SM_INTR_INTB_DEASSERT (1 << 5) #define AFI_SM_INTR_INTA_DEASSERT (1 << 4) #define AFI_SM_INTR_INTD_ASSERT (1 << 3) #define AFI_SM_INTR_INTC_ASSERT (1 << 2) #define AFI_SM_INTR_INTB_ASSERT (1 << 1) #define AFI_SM_INTR_INTA_ASSERT (1 << 0) #define AFI_AFI_INTR_ENABLE 0x0c8 #define AFI_AFI_INTR_ENABLE_CODE(code) (1 << (code)) #define AFI_PCIE_CONFIG 0x0f8 #define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1)) #define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0x6 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20) #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1 (0x0 << 20) #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1 (0x1 << 20) #define AFI_FUSE 0x104 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2) #define AFI_PEX0_CTRL 0x110 #define AFI_PEX1_CTRL 0x118 #define AFI_PEX2_CTRL 0x128 #define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4) #define AFI_PEX_CTRL_REFCLK_EN (1 << 3) #define AFI_PEX_CTRL_CLKREQ_EN (1 << 1) #define AFI_PEX_CTRL_RST_L (1 << 0) #define AFI_AXI_BAR6_SZ 0x134 #define AFI_AXI_BAR7_SZ 0x138 #define AFI_AXI_BAR8_SZ 0x13c #define AFI_AXI_BAR6_START 0x140 #define AFI_AXI_BAR7_START 0x144 #define AFI_AXI_BAR8_START 0x148 #define AFI_FPCI_BAR6 0x14c #define AFI_FPCI_BAR7 0x150 #define AFI_FPCI_BAR8 0x154 #define AFI_PLLE_CONTROL 0x160 #define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9) #define AFI_PLLE_CONTROL_BYPASS_PCIE2PLLE_CONTROL (1 << 8) #define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1) #define AFI_PLLE_CONTROL_PCIE2PLLE_CONTROL_EN (1 << 0) #define AFI_PEXBIAS_CTRL 0x168 /* Configuration space */ #define RP_VEND_XP 0x0F00 #define RP_VEND_XP_DL_UP (1 << 30) #define RP_VEND_CTL2 0x0fa8 #define RP_VEND_CTL2_PCA_ENABLE (1 << 7) #define RP_PRIV_MISC 0x0FE0 #define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0) #define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0) #define RP_LINK_CONTROL_STATUS 0x0090 #define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000 /* PADS space */ #define PADS_REFCLK_CFG0 0x000c8 #define PADS_REFCLK_CFG1 0x000cc /* Wait 50 ms (per port) for link. */ #define TEGRA_PCIE_LINKUP_TIMEOUT 50000 /* FPCI Address space */ #define FPCI_MAP_IO 0xFDFC000000ULL #define FPCI_MAP_TYPE0_CONFIG 0xFDFC000000ULL #define FPCI_MAP_TYPE1_CONFIG 0xFDFF000000ULL #define FPCI_MAP_EXT_TYPE0_CONFIG 0xFE00000000ULL #define FPCI_MAP_EXT_TYPE1_CONFIG 0xFE10000000ULL #define TEGRA_PCIB_MSI_ENABLE #define DEBUG #ifdef DEBUG #define debugf(fmt, args...) do { printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif /* * Configuration space format: * [27:24] extended register * [23:16] bus * [15:11] slot (device) * [10: 8] function * [ 7: 0] register */ #define PCI_CFG_EXT_REG(reg) ((((reg) >> 8) & 0x0f) << 24) #define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16) #define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11) #define PCI_CFG_FUN(fun) (((fun) & 0x07) << 8) #define PCI_CFG_BASE_REG(reg) ((reg) & 0xff) #define PADS_WR4(_sc, _r, _v) bus_write_4((_sc)->pads_mem_res, (_r), (_v)) #define PADS_RD4(_sc, _r) bus_read_4((_sc)->pads_mem_res, (_r)) #define AFI_WR4(_sc, _r, _v) bus_write_4((_sc)->afi_mem_res, (_r), (_v)) #define AFI_RD4(_sc, _r) bus_read_4((_sc)->afi_mem_res, (_r)) static struct { bus_size_t axi_start; bus_size_t fpci_start; bus_size_t size; } bars[] = { {AFI_AXI_BAR0_START, AFI_FPCI_BAR0, AFI_AXI_BAR0_SZ}, /* BAR 0 */ {AFI_AXI_BAR1_START, AFI_FPCI_BAR1, AFI_AXI_BAR1_SZ}, /* BAR 1 */ {AFI_AXI_BAR2_START, AFI_FPCI_BAR2, AFI_AXI_BAR2_SZ}, /* BAR 2 */ {AFI_AXI_BAR3_START, AFI_FPCI_BAR3, AFI_AXI_BAR3_SZ}, /* BAR 3 */ {AFI_AXI_BAR4_START, AFI_FPCI_BAR4, AFI_AXI_BAR4_SZ}, /* BAR 4 */ {AFI_AXI_BAR5_START, AFI_FPCI_BAR5, AFI_AXI_BAR5_SZ}, /* BAR 5 */ {AFI_AXI_BAR6_START, AFI_FPCI_BAR6, AFI_AXI_BAR6_SZ}, /* BAR 6 */ {AFI_AXI_BAR7_START, AFI_FPCI_BAR7, AFI_AXI_BAR7_SZ}, /* BAR 7 */ {AFI_AXI_BAR8_START, AFI_FPCI_BAR8, AFI_AXI_BAR8_SZ}, /* BAR 8 */ {AFI_MSI_AXI_BAR_ST, AFI_MSI_FPCI_BAR_ST, AFI_MSI_BAR_SZ}, /* MSI 9 */ }; struct pcie_soc { char **regulator_names; bool cml_clk; bool pca_enable; uint32_t pads_refclk_cfg0; uint32_t pads_refclk_cfg1; }; /* Tegra 124 config. */ static char *tegra124_reg_names[] = { "avddio-pex-supply", "dvddio-pex-supply", "avdd-pex-pll-supply", "hvdd-pex-supply", "hvdd-pex-pll-e-supply", "vddio-pex-ctl-supply", "avdd-pll-erefe-supply", NULL }; static struct pcie_soc tegra124_soc = { .regulator_names = tegra124_reg_names, .cml_clk = true, .pca_enable = false, .pads_refclk_cfg0 = 0x44ac44ac, }; /* Tegra 210 config. */ static char *tegra210_reg_names[] = { "avdd-pll-uerefe-supply", "hvddio-pex-supply", "dvddio-pex-supply", "dvdd-pex-pll-supply", "hvdd-pex-pll-e-supply", "vddio-pex-ctl-supply", NULL }; static struct pcie_soc tegra210_soc = { .regulator_names = tegra210_reg_names, .cml_clk = true, .pca_enable = true, .pads_refclk_cfg0 = 0x90b890b8, }; /* Compatible devices. */ static struct ofw_compat_data compat_data[] = { {"nvidia,tegra124-pcie", (uintptr_t)&tegra124_soc}, {"nvidia,tegra210-pcie", (uintptr_t)&tegra210_soc}, {NULL, 0}, }; #define TEGRA_FLAG_MSI_USED 0x0001 struct tegra_pcib_irqsrc { struct intr_irqsrc isrc; u_int irq; u_int flags; }; struct tegra_pcib_port { int enabled; int port_idx; /* chip port index */ int num_lanes; /* number of lanes */ bus_size_t afi_pex_ctrl; /* offset of afi_pex_ctrl */ phy_t phy; /* port phy */ /* Config space properties. */ bus_addr_t rp_base_addr; /* PA of config window */ bus_size_t rp_size; /* size of config window */ bus_space_handle_t cfg_handle; /* handle of config window */ }; #define TEGRA_PCIB_MAX_PORTS 3 #define TEGRA_PCIB_MAX_MSI AFI_MSI_INTR_IN_REG * AFI_MSI_REGS struct tegra_pcib_softc { struct ofw_pci_softc ofw_pci; device_t dev; struct pcie_soc *soc; struct mtx mtx; struct resource *pads_mem_res; struct resource *afi_mem_res; struct resource *cfg_mem_res; struct resource *irq_res; struct resource *msi_irq_res; void *intr_cookie; void *msi_intr_cookie; struct ofw_pci_range mem_range; struct ofw_pci_range pref_mem_range; struct ofw_pci_range io_range; clk_t clk_pex; clk_t clk_afi; clk_t clk_pll_e; clk_t clk_cml; hwreset_t hwreset_pex; hwreset_t hwreset_afi; hwreset_t hwreset_pcie_x; regulator_t regulators[16]; /* Safe maximum */ vm_offset_t msi_page; /* VA of MSI page */ bus_addr_t cfg_base_addr; /* base address of config */ bus_size_t cfg_cur_offs; /* currently mapped window */ bus_space_handle_t cfg_handle; /* handle of config window */ bus_space_tag_t bus_tag; /* tag of config window */ int lanes_cfg; int num_ports; struct tegra_pcib_port *ports[TEGRA_PCIB_MAX_PORTS]; struct tegra_pcib_irqsrc *isrcs; }; static int tegra_pcib_maxslots(device_t dev) { return (16); } static int tegra_pcib_route_interrupt(device_t bus, device_t dev, int pin) { struct tegra_pcib_softc *sc; u_int irq; sc = device_get_softc(bus); irq = intr_map_clone_irq(rman_get_start(sc->irq_res)); device_printf(bus, "route pin %d for device %d.%d to %u\n", pin, pci_get_slot(dev), pci_get_function(dev), irq); return (irq); } static int tegra_pcbib_map_cfg(struct tegra_pcib_softc *sc, u_int bus, u_int slot, u_int func, u_int reg) { bus_size_t offs; int rv; offs = sc->cfg_base_addr; offs |= PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) | PCI_CFG_FUN(func) | PCI_CFG_EXT_REG(reg); if ((sc->cfg_handle != 0) && (sc->cfg_cur_offs == offs)) return (0); if (sc->cfg_handle != 0) bus_space_unmap(sc->bus_tag, sc->cfg_handle, 0x800); rv = bus_space_map(sc->bus_tag, offs, 0x800, 0, &sc->cfg_handle); if (rv != 0) device_printf(sc->dev, "Cannot map config space\n"); else sc->cfg_cur_offs = offs; return (rv); } static uint32_t tegra_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { struct tegra_pcib_softc *sc; bus_space_handle_t hndl; uint32_t off; uint32_t val; int rv, i; sc = device_get_softc(dev); if (bus == 0) { if (func != 0) return (0xFFFFFFFF); for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if ((sc->ports[i] != NULL) && (sc->ports[i]->port_idx == slot)) { hndl = sc->ports[i]->cfg_handle; off = reg & 0xFFF; break; } } if (i >= TEGRA_PCIB_MAX_PORTS) return (0xFFFFFFFF); } else { rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg); if (rv != 0) return (0xFFFFFFFF); hndl = sc->cfg_handle; off = PCI_CFG_BASE_REG(reg); } val = bus_space_read_4(sc->bus_tag, hndl, off & ~3); switch (bytes) { case 4: break; case 2: if (off & 3) val >>= 16; val &= 0xffff; break; case 1: val >>= ((off & 3) << 3); val &= 0xff; break; } return val; } static void tegra_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes) { struct tegra_pcib_softc *sc; bus_space_handle_t hndl; uint32_t off; uint32_t val2; int rv, i; sc = device_get_softc(dev); if (bus == 0) { if (func != 0) return; for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if ((sc->ports[i] != NULL) && (sc->ports[i]->port_idx == slot)) { hndl = sc->ports[i]->cfg_handle; off = reg & 0xFFF; break; } } if (i >= TEGRA_PCIB_MAX_PORTS) return; } else { rv = tegra_pcbib_map_cfg(sc, bus, slot, func, reg); if (rv != 0) return; hndl = sc->cfg_handle; off = PCI_CFG_BASE_REG(reg); } switch (bytes) { case 4: bus_space_write_4(sc->bus_tag, hndl, off, val); break; case 2: val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3); val2 &= ~(0xffff << ((off & 3) << 3)); val2 |= ((val & 0xffff) << ((off & 3) << 3)); bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2); break; case 1: val2 = bus_space_read_4(sc->bus_tag, hndl, off & ~3); val2 &= ~(0xff << ((off & 3) << 3)); val2 |= ((val & 0xff) << ((off & 3) << 3)); bus_space_write_4(sc->bus_tag, hndl, off & ~3, val2); break; } } static int tegra_pci_intr(void *arg) { struct tegra_pcib_softc *sc = arg; uint32_t code, signature; code = bus_read_4(sc->afi_mem_res, AFI_INTR_CODE) & AFI_INTR_CODE_MASK; signature = bus_read_4(sc->afi_mem_res, AFI_INTR_SIGNATURE); bus_write_4(sc->afi_mem_res, AFI_INTR_CODE, 0); if (code == AFI_INTR_CODE_INT_CODE_SM_MSG) return(FILTER_STRAY); printf("tegra_pci_intr: code %x sig %x\n", code, signature); return (FILTER_HANDLED); } /* ----------------------------------------------------------------------- * * PCI MSI interface */ static int tegra_pcib_alloc_msi(device_t pci, device_t child, int count, int maxcount, int *irqs) { phandle_t msi_parent; /* XXXX ofw_bus_msimap() don't works for Tegra DT. ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); */ msi_parent = OF_xref_from_node(ofw_bus_get_node(pci)); return (intr_alloc_msi(pci, child, msi_parent, count, maxcount, irqs)); } static int tegra_pcib_release_msi(device_t pci, device_t child, int count, int *irqs) { phandle_t msi_parent; /* XXXX ofw_bus_msimap() don't works for Tegra DT. ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); */ msi_parent = OF_xref_from_node(ofw_bus_get_node(pci)); return (intr_release_msi(pci, child, msi_parent, count, irqs)); } static int tegra_pcib_map_msi(device_t pci, device_t child, int irq, uint64_t *addr, uint32_t *data) { phandle_t msi_parent; /* XXXX ofw_bus_msimap() don't works for Tegra DT. ofw_bus_msimap(ofw_bus_get_node(pci), pci_get_rid(child), &msi_parent, NULL); */ msi_parent = OF_xref_from_node(ofw_bus_get_node(pci)); return (intr_map_msi(pci, child, msi_parent, irq, addr, data)); } #ifdef TEGRA_PCIB_MSI_ENABLE /* -------------------------------------------------------------------------- * * Interrupts * */ static inline void tegra_pcib_isrc_mask(struct tegra_pcib_softc *sc, struct tegra_pcib_irqsrc *tgi, uint32_t val) { uint32_t reg; int offs, bit; offs = tgi->irq / AFI_MSI_INTR_IN_REG; bit = 1 << (tgi->irq % AFI_MSI_INTR_IN_REG); if (val != 0) AFI_WR4(sc, AFI_MSI_VEC(offs), bit); reg = AFI_RD4(sc, AFI_MSI_EN_VEC(offs)); if (val != 0) reg |= bit; else reg &= ~bit; AFI_WR4(sc, AFI_MSI_EN_VEC(offs), reg); } static int tegra_pcib_msi_intr(void *arg) { u_int irq, i, bit, reg; struct tegra_pcib_softc *sc; struct trapframe *tf; struct tegra_pcib_irqsrc *tgi; sc = (struct tegra_pcib_softc *)arg; tf = curthread->td_intr_frame; for (i = 0; i < AFI_MSI_REGS; i++) { reg = AFI_RD4(sc, AFI_MSI_VEC(i)); /* Handle one vector. */ while (reg != 0) { bit = ffs(reg) - 1; /* Send EOI */ AFI_WR4(sc, AFI_MSI_VEC(i), 1 << bit); irq = i * AFI_MSI_INTR_IN_REG + bit; tgi = &sc->isrcs[irq]; if (intr_isrc_dispatch(&tgi->isrc, tf) != 0) { /* Disable stray. */ tegra_pcib_isrc_mask(sc, tgi, 0); device_printf(sc->dev, "Stray irq %u disabled\n", irq); } reg = AFI_RD4(sc, AFI_MSI_VEC(i)); } } return (FILTER_HANDLED); } static int tegra_pcib_msi_attach(struct tegra_pcib_softc *sc) { int error; uint32_t irq; const char *name; sc->isrcs = malloc(sizeof(*sc->isrcs) * TEGRA_PCIB_MAX_MSI, M_DEVBUF, M_WAITOK | M_ZERO); name = device_get_nameunit(sc->dev); for (irq = 0; irq < TEGRA_PCIB_MAX_MSI; irq++) { sc->isrcs[irq].irq = irq; error = intr_isrc_register(&sc->isrcs[irq].isrc, sc->dev, 0, "%s,%u", name, irq); if (error != 0) return (error); /* XXX deregister ISRCs */ } if (intr_msi_register(sc->dev, OF_xref_from_node(ofw_bus_get_node(sc->dev))) != 0) return (ENXIO); return (0); } static int tegra_pcib_msi_detach(struct tegra_pcib_softc *sc) { /* * There has not been established any procedure yet * how to detach PIC from living system correctly. */ device_printf(sc->dev, "%s: not implemented yet\n", __func__); return (EBUSY); } static void tegra_pcib_msi_disable_intr(device_t dev, struct intr_irqsrc *isrc) { struct tegra_pcib_softc *sc; struct tegra_pcib_irqsrc *tgi; sc = device_get_softc(dev); tgi = (struct tegra_pcib_irqsrc *)isrc; tegra_pcib_isrc_mask(sc, tgi, 0); } static void tegra_pcib_msi_enable_intr(device_t dev, struct intr_irqsrc *isrc) { struct tegra_pcib_softc *sc; struct tegra_pcib_irqsrc *tgi; sc = device_get_softc(dev); tgi = (struct tegra_pcib_irqsrc *)isrc; tegra_pcib_isrc_mask(sc, tgi, 1); } /* MSI interrupts are edge trigered -> do nothing */ static void tegra_pcib_msi_post_filter(device_t dev, struct intr_irqsrc *isrc) { } static void tegra_pcib_msi_post_ithread(device_t dev, struct intr_irqsrc *isrc) { } static void tegra_pcib_msi_pre_ithread(device_t dev, struct intr_irqsrc *isrc) { } static int tegra_pcib_msi_setup_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { if (data == NULL || data->type != INTR_MAP_DATA_MSI) return (ENOTSUP); if (isrc->isrc_handlers == 0) tegra_pcib_msi_enable_intr(dev, isrc); return (0); } static int tegra_pcib_msi_teardown_intr(device_t dev, struct intr_irqsrc *isrc, struct resource *res, struct intr_map_data *data) { struct tegra_pcib_softc *sc; struct tegra_pcib_irqsrc *tgi; sc = device_get_softc(dev); tgi = (struct tegra_pcib_irqsrc *)isrc; if (isrc->isrc_handlers == 0) tegra_pcib_isrc_mask(sc, tgi, 0); return (0); } static int tegra_pcib_msi_alloc_msi(device_t dev, device_t child, int count, int maxcount, device_t *pic, struct intr_irqsrc **srcs) { struct tegra_pcib_softc *sc; int i, irq, end_irq; bool found; KASSERT(powerof2(count), ("%s: bad count", __func__)); KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__)); sc = device_get_softc(dev); mtx_lock(&sc->mtx); found = false; for (irq = 0; (irq + count - 1) < TEGRA_PCIB_MAX_MSI; irq++) { /* Start on an aligned interrupt */ if ((irq & (maxcount - 1)) != 0) continue; /* Assume we found a valid range until shown otherwise */ found = true; /* Check this range is valid */ for (end_irq = irq; end_irq < irq + count; end_irq++) { /* This is already used */ if ((sc->isrcs[end_irq].flags & TEGRA_FLAG_MSI_USED) == TEGRA_FLAG_MSI_USED) { found = false; break; } } if (found) break; } /* Not enough interrupts were found */ if (!found || irq == (TEGRA_PCIB_MAX_MSI - 1)) { mtx_unlock(&sc->mtx); return (ENXIO); } for (i = 0; i < count; i++) { /* Mark the interrupt as used */ sc->isrcs[irq + i].flags |= TEGRA_FLAG_MSI_USED; } mtx_unlock(&sc->mtx); for (i = 0; i < count; i++) srcs[i] = (struct intr_irqsrc *)&sc->isrcs[irq + i]; *pic = device_get_parent(dev); return (0); } static int tegra_pcib_msi_release_msi(device_t dev, device_t child, int count, struct intr_irqsrc **isrc) { struct tegra_pcib_softc *sc; struct tegra_pcib_irqsrc *ti; int i; sc = device_get_softc(dev); mtx_lock(&sc->mtx); for (i = 0; i < count; i++) { ti = (struct tegra_pcib_irqsrc *)isrc[i]; KASSERT((ti->flags & TEGRA_FLAG_MSI_USED) == TEGRA_FLAG_MSI_USED, ("%s: Trying to release an unused MSI-X interrupt", __func__)); ti->flags &= ~TEGRA_FLAG_MSI_USED; } mtx_unlock(&sc->mtx); return (0); } static int tegra_pcib_msi_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc, uint64_t *addr, uint32_t *data) { struct tegra_pcib_softc *sc = device_get_softc(dev); struct tegra_pcib_irqsrc *ti = (struct tegra_pcib_irqsrc *)isrc; *addr = vtophys(sc->msi_page); *data = ti->irq; return (0); } #endif /* ------------------------------------------------------------------- */ static bus_size_t tegra_pcib_pex_ctrl(struct tegra_pcib_softc *sc, int port) { switch (port) { case 0: return (AFI_PEX0_CTRL); case 1: return (AFI_PEX1_CTRL); case 2: return (AFI_PEX2_CTRL); default: panic("invalid port number: %d\n", port); } } static int tegra_pcib_enable_fdt_resources(struct tegra_pcib_softc *sc) { int i, rv; rv = hwreset_assert(sc->hwreset_pcie_x); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'pcie_x' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_afi); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'afi' reset\n"); return (rv); } rv = hwreset_assert(sc->hwreset_pex); if (rv != 0) { device_printf(sc->dev, "Cannot assert 'pex' reset\n"); return (rv); } tegra_powergate_power_off(TEGRA_POWERGATE_PCX); /* Regulators. */ for (i = 0; i < nitems(sc->regulators); i++) { if (sc->regulators[i] == NULL) continue; rv = regulator_enable(sc->regulators[i]); if (rv != 0) { device_printf(sc->dev, "Cannot enable '%s' regulator\n", sc->soc->regulator_names[i]); return (rv); } } rv = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCX, sc->clk_pex, sc->hwreset_pex); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'PCX' powergate\n"); return (rv); } rv = hwreset_deassert(sc->hwreset_afi); if (rv != 0) { device_printf(sc->dev, "Cannot unreset 'afi' reset\n"); return (rv); } rv = clk_enable(sc->clk_afi); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'afi' clock\n"); return (rv); } if (sc->soc->cml_clk) { rv = clk_enable(sc->clk_cml); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'cml' clock\n"); return (rv); } } rv = clk_enable(sc->clk_pll_e); if (rv != 0) { device_printf(sc->dev, "Cannot enable 'pll_e' clock\n"); return (rv); } return (0); } static struct tegra_pcib_port * tegra_pcib_parse_port(struct tegra_pcib_softc *sc, phandle_t node) { struct tegra_pcib_port *port; uint32_t tmp[5]; char tmpstr[6]; int rv; port = malloc(sizeof(struct tegra_pcib_port), M_DEVBUF, M_WAITOK); rv = OF_getprop(node, "status", tmpstr, sizeof(tmpstr)); if (rv <= 0 || strcmp(tmpstr, "okay") == 0 || strcmp(tmpstr, "ok") == 0) port->enabled = 1; else port->enabled = 0; rv = OF_getencprop(node, "assigned-addresses", tmp, sizeof(tmp)); if (rv != sizeof(tmp)) { device_printf(sc->dev, "Cannot parse assigned-address: %d\n", rv); goto fail; } port->rp_base_addr = tmp[2]; port->rp_size = tmp[4]; port->port_idx = OFW_PCI_PHYS_HI_DEVICE(tmp[0]) - 1; if (port->port_idx >= TEGRA_PCIB_MAX_PORTS) { device_printf(sc->dev, "Invalid port index: %d\n", port->port_idx); goto fail; } /* XXX - TODO: * Implement proper function for parsing pci "reg" property: * - it have PCI bus format * - its relative to matching "assigned-addresses" */ rv = OF_getencprop(node, "reg", tmp, sizeof(tmp)); if (rv != sizeof(tmp)) { device_printf(sc->dev, "Cannot parse reg: %d\n", rv); goto fail; } port->rp_base_addr += tmp[2]; rv = OF_getencprop(node, "nvidia,num-lanes", &port->num_lanes, sizeof(port->num_lanes)); if (rv != sizeof(port->num_lanes)) { device_printf(sc->dev, "Cannot parse nvidia,num-lanes: %d\n", rv); goto fail; } if (port->num_lanes > 4) { device_printf(sc->dev, "Invalid nvidia,num-lanes: %d\n", port->num_lanes); goto fail; } port->afi_pex_ctrl = tegra_pcib_pex_ctrl(sc, port->port_idx); sc->lanes_cfg |= port->num_lanes << (4 * port->port_idx); /* Phy. */ rv = phy_get_by_ofw_name(sc->dev, node, "pcie-0", &port->phy); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pcie-0' phy for port %d\n", port->port_idx); goto fail; } return (port); fail: free(port, M_DEVBUF); return (NULL); } static int tegra_pcib_parse_fdt_resources(struct tegra_pcib_softc *sc, phandle_t node) { phandle_t child; struct tegra_pcib_port *port; int i, rv; /* Regulators. */ for (i = 0; sc->soc->regulator_names[i] != NULL; i++) { if (i >= nitems(sc->regulators)) { device_printf(sc->dev, "Too many regulators present in DT.\n"); return (EOVERFLOW); } rv = regulator_get_by_ofw_property(sc->dev, 0, sc->soc->regulator_names[i], sc->regulators + i); if (rv != 0) { device_printf(sc->dev, "Cannot get '%s' regulator\n", sc->soc->regulator_names[i]); return (ENXIO); } } /* Resets. */ rv = hwreset_get_by_ofw_name(sc->dev, 0, "pex", &sc->hwreset_pex); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pex' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "afi", &sc->hwreset_afi); if (rv != 0) { device_printf(sc->dev, "Cannot get 'afi' reset\n"); return (ENXIO); } rv = hwreset_get_by_ofw_name(sc->dev, 0, "pcie_x", &sc->hwreset_pcie_x); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pcie_x' reset\n"); return (ENXIO); } /* Clocks. */ rv = clk_get_by_ofw_name(sc->dev, 0, "pex", &sc->clk_pex); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pex' clock\n"); return (ENXIO); } rv = clk_get_by_ofw_name(sc->dev, 0, "afi", &sc->clk_afi); if (rv != 0) { device_printf(sc->dev, "Cannot get 'afi' clock\n"); return (ENXIO); } rv = clk_get_by_ofw_name(sc->dev, 0, "pll_e", &sc->clk_pll_e); if (rv != 0) { device_printf(sc->dev, "Cannot get 'pll_e' clock\n"); return (ENXIO); } if (sc->soc->cml_clk) { rv = clk_get_by_ofw_name(sc->dev, 0, "cml", &sc->clk_cml); if (rv != 0) { device_printf(sc->dev, "Cannot get 'cml' clock\n"); return (ENXIO); } } /* Ports */ sc->num_ports = 0; for (child = OF_child(node); child != 0; child = OF_peer(child)) { port = tegra_pcib_parse_port(sc, child); if (port == NULL) { device_printf(sc->dev, "Cannot parse PCIe port node\n"); return (ENXIO); } sc->ports[sc->num_ports++] = port; } return (0); } static int tegra_pcib_decode_ranges(struct tegra_pcib_softc *sc, struct ofw_pci_range *ranges, int nranges) { int i; for (i = 2; i < nranges; i++) { if ((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) == OFW_PCI_PHYS_HI_SPACE_IO) { if (sc->io_range.size != 0) { device_printf(sc->dev, "Duplicated IO range found in DT\n"); return (ENXIO); } sc->io_range = ranges[i]; } if (((ranges[i].pci_hi & OFW_PCI_PHYS_HI_SPACEMASK) == OFW_PCI_PHYS_HI_SPACE_MEM32)) { if (ranges[i].pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) { if (sc->pref_mem_range.size != 0) { device_printf(sc->dev, "Duplicated memory range found " "in DT\n"); return (ENXIO); } sc->pref_mem_range = ranges[i]; } else { if (sc->mem_range.size != 0) { device_printf(sc->dev, "Duplicated memory range found " "in DT\n"); return (ENXIO); } sc->mem_range = ranges[i]; } } } if ((sc->io_range.size == 0) || (sc->mem_range.size == 0) || (sc->pref_mem_range.size == 0)) { device_printf(sc->dev, " Not all required ranges are found in DT\n"); return (ENXIO); } return (0); } /* * Hardware config. */ static int tegra_pcib_wait_for_link(struct tegra_pcib_softc *sc, struct tegra_pcib_port *port) { uint32_t reg; int i; /* Setup link detection. */ reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0, RP_PRIV_MISC, 4); reg &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT; reg |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT; tegra_pcib_write_config(sc->dev, 0, port->port_idx, 0, RP_PRIV_MISC, reg, 4); for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) { reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0, RP_VEND_XP, 4); if (reg & RP_VEND_XP_DL_UP) break; DELAY(1); } if (i <= 0) return (ETIMEDOUT); for (i = TEGRA_PCIE_LINKUP_TIMEOUT; i > 0; i--) { reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0, RP_LINK_CONTROL_STATUS, 4); if (reg & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE) break; DELAY(1); } if (i <= 0) return (ETIMEDOUT); return (0); } static void tegra_pcib_port_enable(struct tegra_pcib_softc *sc, int port_num) { struct tegra_pcib_port *port; uint32_t reg; int rv; port = sc->ports[port_num]; /* Put port to reset. */ reg = AFI_RD4(sc, port->afi_pex_ctrl); reg &= ~AFI_PEX_CTRL_RST_L; AFI_WR4(sc, port->afi_pex_ctrl, reg); AFI_RD4(sc, port->afi_pex_ctrl); DELAY(10); /* Enable clocks. */ reg |= AFI_PEX_CTRL_REFCLK_EN; reg |= AFI_PEX_CTRL_CLKREQ_EN; reg |= AFI_PEX_CTRL_OVERRIDE_EN; AFI_WR4(sc, port->afi_pex_ctrl, reg); AFI_RD4(sc, port->afi_pex_ctrl); DELAY(100); /* Release reset. */ reg |= AFI_PEX_CTRL_RST_L; AFI_WR4(sc, port->afi_pex_ctrl, reg); if (sc->soc->pca_enable) { reg = tegra_pcib_read_config(sc->dev, 0, port->port_idx, 0, RP_VEND_CTL2, 4); reg |= RP_VEND_CTL2_PCA_ENABLE; tegra_pcib_write_config(sc->dev, 0, port->port_idx, 0, RP_VEND_CTL2, reg, 4); } rv = tegra_pcib_wait_for_link(sc, port); if (bootverbose) device_printf(sc->dev, " port %d (%d lane%s): Link is %s\n", port->port_idx, port->num_lanes, port->num_lanes > 1 ? "s": "", rv == 0 ? "up": "down"); } static void tegra_pcib_port_disable(struct tegra_pcib_softc *sc, uint32_t port_num) { struct tegra_pcib_port *port; uint32_t reg; port = sc->ports[port_num]; /* Put port to reset. */ reg = AFI_RD4(sc, port->afi_pex_ctrl); reg &= ~AFI_PEX_CTRL_RST_L; AFI_WR4(sc, port->afi_pex_ctrl, reg); AFI_RD4(sc, port->afi_pex_ctrl); DELAY(10); /* Disable clocks. */ reg &= ~AFI_PEX_CTRL_CLKREQ_EN; reg &= ~AFI_PEX_CTRL_REFCLK_EN; AFI_WR4(sc, port->afi_pex_ctrl, reg); if (bootverbose) device_printf(sc->dev, " port %d (%d lane%s): Disabled\n", port->port_idx, port->num_lanes, port->num_lanes > 1 ? "s": ""); } static void tegra_pcib_set_bar(struct tegra_pcib_softc *sc, int bar, uint32_t axi, uint64_t fpci, uint32_t size, int is_memory) { uint32_t fpci_reg; uint32_t axi_reg; uint32_t size_reg; axi_reg = axi & ~0xFFF; size_reg = size >> 12; fpci_reg = (uint32_t)(fpci >> 8) & ~0xF; fpci_reg |= is_memory ? 0x1 : 0x0; AFI_WR4(sc, bars[bar].axi_start, axi_reg); AFI_WR4(sc, bars[bar].size, size_reg); AFI_WR4(sc, bars[bar].fpci_start, fpci_reg); } static int tegra_pcib_enable(struct tegra_pcib_softc *sc) { int rv; int i; uint32_t reg; rv = tegra_pcib_enable_fdt_resources(sc); if (rv != 0) { device_printf(sc->dev, "Cannot enable FDT resources\n"); return (rv); } /* Enable PLLE control. */ reg = AFI_RD4(sc, AFI_PLLE_CONTROL); reg &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL; reg |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN; AFI_WR4(sc, AFI_PLLE_CONTROL, reg); /* Set bias pad. */ AFI_WR4(sc, AFI_PEXBIAS_CTRL, 0); /* Configure mode and ports. */ reg = AFI_RD4(sc, AFI_PCIE_CONFIG); reg &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK; if (sc->lanes_cfg == 0x14) { if (bootverbose) device_printf(sc->dev, "Using x1,x4 configuration\n"); reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR4_1; } else if (sc->lanes_cfg == 0x12) { if (bootverbose) device_printf(sc->dev, "Using x1,x2 configuration\n"); reg |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_XBAR2_1; } else { device_printf(sc->dev, "Unsupported lanes configuration: 0x%X\n", sc->lanes_cfg); } reg |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL; for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if ((sc->ports[i] != NULL)) reg &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(sc->ports[i]->port_idx); } AFI_WR4(sc, AFI_PCIE_CONFIG, reg); /* Enable Gen2 support. */ reg = AFI_RD4(sc, AFI_FUSE); reg &= ~AFI_FUSE_PCIE_T0_GEN2_DIS; AFI_WR4(sc, AFI_FUSE, reg); for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if (sc->ports[i] != NULL) { rv = phy_enable(sc->ports[i]->phy); if (rv != 0) { device_printf(sc->dev, "Cannot enable phy for port %d\n", sc->ports[i]->port_idx); return (rv); } } } /* Configure PCIe reference clock */ PADS_WR4(sc, PADS_REFCLK_CFG0, sc->soc->pads_refclk_cfg0); if (sc->num_ports > 2) PADS_WR4(sc, PADS_REFCLK_CFG1, sc->soc->pads_refclk_cfg1); rv = hwreset_deassert(sc->hwreset_pcie_x); if (rv != 0) { device_printf(sc->dev, "Cannot unreset 'pci_x' reset\n"); return (rv); } /* Enable config space. */ reg = AFI_RD4(sc, AFI_CONFIGURATION); reg |= AFI_CONFIGURATION_EN_FPCI; AFI_WR4(sc, AFI_CONFIGURATION, reg); /* Enable AFI errors. */ reg = 0; reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_SLVERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_INI_DECERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_SLVERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_DECERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_TGT_WRERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_SM_MSG); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_DFPCI_DECERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_AXI_DECERR); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_FPCI_TIMEOUT); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_PRSNT_SENSE); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_PE_CLKREQ_SENSE); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_CLKCLAMP_SENSE); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_RDY4PD_SENSE); reg |= AFI_AFI_INTR_ENABLE_CODE(AFI_INTR_CODE_INT_CODE_P2P_ERROR); AFI_WR4(sc, AFI_AFI_INTR_ENABLE, reg); AFI_WR4(sc, AFI_SM_INTR_ENABLE, 0xffffffff); /* Enable INT, disable MSI. */ AFI_WR4(sc, AFI_INTR_MASK, AFI_INTR_MASK_INT_MASK); /* Mask all FPCI errors. */ AFI_WR4(sc, AFI_FPCI_ERROR_MASKS, 0); /* Setup AFI translation windows. */ /* BAR 0 - type 1 extended configuration. */ tegra_pcib_set_bar(sc, 0, rman_get_start(sc->cfg_mem_res), FPCI_MAP_EXT_TYPE1_CONFIG, rman_get_size(sc->cfg_mem_res), 0); /* BAR 1 - downstream I/O. */ tegra_pcib_set_bar(sc, 1, sc->io_range.host, FPCI_MAP_IO, sc->io_range.size, 0); /* BAR 2 - downstream prefetchable memory 1:1. */ tegra_pcib_set_bar(sc, 2, sc->pref_mem_range.host, sc->pref_mem_range.host, sc->pref_mem_range.size, 1); /* BAR 3 - downstream not prefetchable memory 1:1 .*/ tegra_pcib_set_bar(sc, 3, sc->mem_range.host, sc->mem_range.host, sc->mem_range.size, 1); /* BAR 3-8 clear. */ tegra_pcib_set_bar(sc, 4, 0, 0, 0, 0); tegra_pcib_set_bar(sc, 5, 0, 0, 0, 0); tegra_pcib_set_bar(sc, 6, 0, 0, 0, 0); tegra_pcib_set_bar(sc, 7, 0, 0, 0, 0); tegra_pcib_set_bar(sc, 8, 0, 0, 0, 0); /* MSI BAR - clear. */ tegra_pcib_set_bar(sc, 9, 0, 0, 0, 0); return(0); } #ifdef TEGRA_PCIB_MSI_ENABLE static int tegra_pcib_attach_msi(device_t dev) { struct tegra_pcib_softc *sc; uint32_t reg; int i, rv; sc = device_get_softc(dev); sc->msi_page = (uintptr_t)kmem_alloc_contig(PAGE_SIZE, M_WAITOK, 0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); /* MSI BAR */ tegra_pcib_set_bar(sc, 9, vtophys(sc->msi_page), vtophys(sc->msi_page), PAGE_SIZE, 0); /* Disable and clear all interrupts. */ for (i = 0; i < AFI_MSI_REGS; i++) { AFI_WR4(sc, AFI_MSI_EN_VEC(i), 0); AFI_WR4(sc, AFI_MSI_VEC(i), 0xFFFFFFFF); } rv = bus_setup_intr(dev, sc->msi_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, tegra_pcib_msi_intr, NULL, sc, &sc->msi_intr_cookie); if (rv != 0) { device_printf(dev, "cannot setup MSI interrupt handler\n"); rv = ENXIO; goto out; } if (tegra_pcib_msi_attach(sc) != 0) { device_printf(dev, "WARNING: unable to attach PIC\n"); tegra_pcib_msi_detach(sc); goto out; } /* Unmask MSI interrupt. */ reg = AFI_RD4(sc, AFI_INTR_MASK); reg |= AFI_INTR_MASK_MSI_MASK; AFI_WR4(sc, AFI_INTR_MASK, reg); out: return (rv); } #endif static int tegra_pcib_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) { device_set_desc(dev, "Nvidia Integrated PCI/PCI-E Controller"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int tegra_pcib_attach(device_t dev) { struct tegra_pcib_softc *sc; phandle_t node; int rv; int rid; struct tegra_pcib_port *port; int i; sc = device_get_softc(dev); sc->dev = dev; mtx_init(&sc->mtx, "msi_mtx", NULL, MTX_DEF); node = ofw_bus_get_node(dev); sc->soc = (struct pcie_soc *)ofw_bus_search_compatible(dev, compat_data)->ocd_data; rv = tegra_pcib_parse_fdt_resources(sc, node); if (rv != 0) { device_printf(dev, "Cannot get FDT resources\n"); return (rv); } /* Allocate bus_space resources. */ rid = 0; sc->pads_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->pads_mem_res == NULL) { device_printf(dev, "Cannot allocate PADS register\n"); rv = ENXIO; goto out; } /* * XXX - FIXME * tag for config space is not filled when RF_ALLOCATED flag is used. */ sc->bus_tag = rman_get_bustag(sc->pads_mem_res); rid = 1; sc->afi_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->afi_mem_res == NULL) { device_printf(dev, "Cannot allocate AFI register\n"); rv = ENXIO; goto out; } rid = 2; sc->cfg_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ALLOCATED); if (sc->cfg_mem_res == NULL) { device_printf(dev, "Cannot allocate config space memory\n"); rv = ENXIO; goto out; } sc->cfg_base_addr = rman_get_start(sc->cfg_mem_res); /* Map RP slots */ for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if (sc->ports[i] == NULL) continue; port = sc->ports[i]; rv = bus_space_map(sc->bus_tag, port->rp_base_addr, port->rp_size, 0, &port->cfg_handle); if (rv != 0) { device_printf(sc->dev, "Cannot allocate memory for " "port: %d\n", i); rv = ENXIO; goto out; } } /* * Get PCI interrupt */ rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | RF_SHAREABLE); if (sc->irq_res == NULL) { device_printf(dev, "Cannot allocate IRQ resources\n"); rv = ENXIO; goto out; } rid = 1; sc->msi_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->irq_res == NULL) { device_printf(dev, "Cannot allocate MSI IRQ resources\n"); rv = ENXIO; goto out; } sc->ofw_pci.sc_range_mask = 0x3; rv = ofw_pcib_init(dev); if (rv != 0) goto out; rv = tegra_pcib_decode_ranges(sc, sc->ofw_pci.sc_range, sc->ofw_pci.sc_nrange); if (rv != 0) goto out; if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE, tegra_pci_intr, NULL, sc, &sc->intr_cookie)) { device_printf(dev, "cannot setup interrupt handler\n"); rv = ENXIO; goto out; } /* * Enable PCIE device. */ rv = tegra_pcib_enable(sc); if (rv != 0) goto out; for (i = 0; i < TEGRA_PCIB_MAX_PORTS; i++) { if (sc->ports[i] == NULL) continue; if (sc->ports[i]->enabled) tegra_pcib_port_enable(sc, i); else tegra_pcib_port_disable(sc, i); } #ifdef TEGRA_PCIB_MSI_ENABLE rv = tegra_pcib_attach_msi(dev); if (rv != 0) goto out; #endif device_add_child(dev, "pci", -1); return (bus_generic_attach(dev)); out: return (rv); } static device_method_t tegra_pcib_methods[] = { /* Device interface */ DEVMETHOD(device_probe, tegra_pcib_probe), DEVMETHOD(device_attach, tegra_pcib_attach), /* Bus interface */ DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, tegra_pcib_maxslots), DEVMETHOD(pcib_read_config, tegra_pcib_read_config), DEVMETHOD(pcib_write_config, tegra_pcib_write_config), DEVMETHOD(pcib_route_interrupt, tegra_pcib_route_interrupt), DEVMETHOD(pcib_alloc_msi, tegra_pcib_alloc_msi), DEVMETHOD(pcib_release_msi, tegra_pcib_release_msi), DEVMETHOD(pcib_map_msi, tegra_pcib_map_msi), DEVMETHOD(pcib_request_feature, pcib_request_feature_allow), #ifdef TEGRA_PCIB_MSI_ENABLE /* MSI/MSI-X */ DEVMETHOD(msi_alloc_msi, tegra_pcib_msi_alloc_msi), DEVMETHOD(msi_release_msi, tegra_pcib_msi_release_msi), DEVMETHOD(msi_map_msi, tegra_pcib_msi_map_msi), /* Interrupt controller interface */ DEVMETHOD(pic_disable_intr, tegra_pcib_msi_disable_intr), DEVMETHOD(pic_enable_intr, tegra_pcib_msi_enable_intr), DEVMETHOD(pic_setup_intr, tegra_pcib_msi_setup_intr), DEVMETHOD(pic_teardown_intr, tegra_pcib_msi_teardown_intr), DEVMETHOD(pic_post_filter, tegra_pcib_msi_post_filter), DEVMETHOD(pic_post_ithread, tegra_pcib_msi_post_ithread), DEVMETHOD(pic_pre_ithread, tegra_pcib_msi_pre_ithread), #endif /* OFW bus interface */ DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), DEVMETHOD_END }; DEFINE_CLASS_1(pcib, tegra_pcib_driver, tegra_pcib_methods, sizeof(struct tegra_pcib_softc), ofw_pcib_driver); DRIVER_MODULE(tegra_pcib, simplebus, tegra_pcib_driver, NULL, NULL);