/*- * Copyright (c) 2008 MARVELL INTERNATIONAL LTD. * Copyright (c) 2010 The FreeBSD Foundation * Copyright (c) 2010-2015 Semihalf * All rights reserved. * * Developed by Semihalf. * * Portions of this software were developed by Semihalf * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of MARVELL nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Marvell integrated PCI/PCI-Express controller driver. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ofw_bus_if.h" #include "pcib_if.h" #include #include #include #include #include #include #ifdef DEBUG #define debugf(fmt, args...) do { printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif /* * Code and data related to fdt-based PCI configuration. * * This stuff used to be in dev/fdt/fdt_pci.c and fdt_common.h, but it was * always Marvell-specific so that was deleted and the code now lives here. */ struct mv_pci_range { u_long base_pci; u_long base_parent; u_long len; }; #define FDT_RANGES_CELLS ((3 + 3 + 2) * 2) static void mv_pci_range_dump(struct mv_pci_range *range) { #ifdef DEBUG printf("\n"); printf(" base_pci = 0x%08lx\n", range->base_pci); printf(" base_par = 0x%08lx\n", range->base_parent); printf(" len = 0x%08lx\n", range->len); #endif } static int mv_pci_ranges_decode(phandle_t node, struct mv_pci_range *io_space, struct mv_pci_range *mem_space) { pcell_t ranges[FDT_RANGES_CELLS]; struct mv_pci_range *pci_space; pcell_t addr_cells, size_cells, par_addr_cells; pcell_t *rangesptr; pcell_t cell0, cell1, cell2; int tuple_size, tuples, i, rv, offset_cells, len; /* * Retrieve 'ranges' property. */ if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0) return (EINVAL); if (addr_cells != 3 || size_cells != 2) return (ERANGE); par_addr_cells = fdt_parent_addr_cells(node); if (par_addr_cells > 3) return (ERANGE); len = OF_getproplen(node, "ranges"); if (len > sizeof(ranges)) return (ENOMEM); if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0) return (EINVAL); tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells + size_cells); tuples = len / tuple_size; /* * Initialize the ranges so that we don't have to worry about * having them all defined in the FDT. In particular, it is * perfectly fine not to want I/O space on PCI busses. */ bzero(io_space, sizeof(*io_space)); bzero(mem_space, sizeof(*mem_space)); rangesptr = &ranges[0]; offset_cells = 0; for (i = 0; i < tuples; i++) { cell0 = fdt_data_get((void *)rangesptr, 1); rangesptr++; cell1 = fdt_data_get((void *)rangesptr, 1); rangesptr++; cell2 = fdt_data_get((void *)rangesptr, 1); rangesptr++; if (cell0 & 0x02000000) { pci_space = mem_space; } else if (cell0 & 0x01000000) { pci_space = io_space; } else { rv = ERANGE; goto out; } if (par_addr_cells == 3) { /* * This is a PCI subnode 'ranges'. Skip cell0 and * cell1 of this entry and only use cell2. */ offset_cells = 2; rangesptr += offset_cells; } if ((par_addr_cells - offset_cells) > 2) { rv = ERANGE; goto out; } pci_space->base_parent = fdt_data_get((void *)rangesptr, par_addr_cells - offset_cells); rangesptr += par_addr_cells - offset_cells; if (size_cells > 2) { rv = ERANGE; goto out; } pci_space->len = fdt_data_get((void *)rangesptr, size_cells); rangesptr += size_cells; pci_space->base_pci = cell2; } rv = 0; out: return (rv); } static int mv_pci_ranges(phandle_t node, struct mv_pci_range *io_space, struct mv_pci_range *mem_space) { int err; debugf("Processing PCI node: %x\n", node); if ((err = mv_pci_ranges_decode(node, io_space, mem_space)) != 0) { debugf("could not decode parent PCI node 'ranges'\n"); return (err); } debugf("Post fixup dump:\n"); mv_pci_range_dump(io_space); mv_pci_range_dump(mem_space); return (0); } int mv_pci_devmap(phandle_t node, struct arm_devmap_entry *devmap, vm_offset_t io_va, vm_offset_t mem_va) { struct mv_pci_range io_space, mem_space; int error; if ((error = mv_pci_ranges_decode(node, &io_space, &mem_space)) != 0) return (error); devmap->pd_va = (io_va ? io_va : io_space.base_parent); devmap->pd_pa = io_space.base_parent; devmap->pd_size = io_space.len; devmap++; devmap->pd_va = (mem_va ? mem_va : mem_space.base_parent); devmap->pd_pa = mem_space.base_parent; devmap->pd_size = mem_space.len; return (0); } /* * Code and data related to the Marvell pcib driver. */ #define PCI_CFG_ENA (1U << 31) #define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16) #define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11) #define PCI_CFG_FUN(fun) (((fun) & 0x7) << 8) #define PCI_CFG_PCIE_REG(reg) ((reg) & 0xfc) #define PCI_REG_CFG_ADDR 0x0C78 #define PCI_REG_CFG_DATA 0x0C7C #define PCIE_REG_CFG_ADDR 0x18F8 #define PCIE_REG_CFG_DATA 0x18FC #define PCIE_REG_CONTROL 0x1A00 #define PCIE_CTRL_LINK1X 0x00000001 #define PCIE_REG_STATUS 0x1A04 #define PCIE_REG_IRQ_MASK 0x1910 #define PCIE_CONTROL_ROOT_CMPLX (1 << 1) #define PCIE_CONTROL_HOT_RESET (1 << 24) #define PCIE_LINK_TIMEOUT 1000000 #define PCIE_STATUS_LINK_DOWN 1 #define PCIE_STATUS_DEV_OFFS 16 /* Minimum PCI Memory and I/O allocations taken from PCI spec (in bytes) */ #define PCI_MIN_IO_ALLOC 4 #define PCI_MIN_MEM_ALLOC 16 #define BITS_PER_UINT32 (NBBY * sizeof(uint32_t)) struct mv_pcib_softc { device_t sc_dev; struct rman sc_mem_rman; bus_addr_t sc_mem_base; bus_addr_t sc_mem_size; uint32_t sc_mem_map[MV_PCI_MEM_SLICE_SIZE / (PCI_MIN_MEM_ALLOC * BITS_PER_UINT32)]; int sc_win_target; int sc_mem_win_attr; struct rman sc_io_rman; bus_addr_t sc_io_base; bus_addr_t sc_io_size; uint32_t sc_io_map[MV_PCI_IO_SLICE_SIZE / (PCI_MIN_IO_ALLOC * BITS_PER_UINT32)]; int sc_io_win_attr; struct resource *sc_res; bus_space_handle_t sc_bsh; bus_space_tag_t sc_bst; int sc_rid; struct mtx sc_msi_mtx; uint32_t sc_msi_bitmap; int sc_busnr; /* Host bridge bus number */ int sc_devnr; /* Host bridge device number */ int sc_type; int sc_mode; /* Endpoint / Root Complex */ struct ofw_bus_iinfo sc_pci_iinfo; }; /* Local forward prototypes */ static int mv_pcib_decode_win(phandle_t, struct mv_pcib_softc *); static void mv_pcib_hw_cfginit(void); static uint32_t mv_pcib_hw_cfgread(struct mv_pcib_softc *, u_int, u_int, u_int, u_int, int); static void mv_pcib_hw_cfgwrite(struct mv_pcib_softc *, u_int, u_int, u_int, u_int, uint32_t, int); static int mv_pcib_init(struct mv_pcib_softc *, int, int); static int mv_pcib_init_all_bars(struct mv_pcib_softc *, int, int, int, int); static void mv_pcib_init_bridge(struct mv_pcib_softc *, int, int, int); static inline void pcib_write_irq_mask(struct mv_pcib_softc *, uint32_t); static void mv_pcib_enable(struct mv_pcib_softc *, uint32_t); static int mv_pcib_mem_init(struct mv_pcib_softc *); /* Forward prototypes */ static int mv_pcib_probe(device_t); static int mv_pcib_attach(device_t); static struct resource *mv_pcib_alloc_resource(device_t, device_t, int, int *, rman_res_t, rman_res_t, rman_res_t, u_int); static int mv_pcib_release_resource(device_t, device_t, int, int, struct resource *); static int mv_pcib_read_ivar(device_t, device_t, int, uintptr_t *); static int mv_pcib_write_ivar(device_t, device_t, int, uintptr_t); static int mv_pcib_maxslots(device_t); static uint32_t mv_pcib_read_config(device_t, u_int, u_int, u_int, u_int, int); static void mv_pcib_write_config(device_t, u_int, u_int, u_int, u_int, uint32_t, int); static int mv_pcib_route_interrupt(device_t, device_t, int); #if defined(SOC_MV_ARMADAXP) static int mv_pcib_alloc_msi(device_t, device_t, int, int, int *); static int mv_pcib_map_msi(device_t, device_t, int, uint64_t *, uint32_t *); static int mv_pcib_release_msi(device_t, device_t, int, int *); #endif /* * Bus interface definitions. */ static device_method_t mv_pcib_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mv_pcib_probe), DEVMETHOD(device_attach, mv_pcib_attach), /* Bus interface */ DEVMETHOD(bus_read_ivar, mv_pcib_read_ivar), DEVMETHOD(bus_write_ivar, mv_pcib_write_ivar), DEVMETHOD(bus_alloc_resource, mv_pcib_alloc_resource), DEVMETHOD(bus_release_resource, mv_pcib_release_resource), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, mv_pcib_maxslots), DEVMETHOD(pcib_read_config, mv_pcib_read_config), DEVMETHOD(pcib_write_config, mv_pcib_write_config), DEVMETHOD(pcib_route_interrupt, mv_pcib_route_interrupt), #if defined(SOC_MV_ARMADAXP) DEVMETHOD(pcib_alloc_msi, mv_pcib_alloc_msi), DEVMETHOD(pcib_release_msi, mv_pcib_release_msi), DEVMETHOD(pcib_map_msi, mv_pcib_map_msi), #endif /* OFW bus interface */ DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat), DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model), DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name), DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node), DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type), DEVMETHOD_END }; static driver_t mv_pcib_driver = { "pcib", mv_pcib_methods, sizeof(struct mv_pcib_softc), }; devclass_t pcib_devclass; DRIVER_MODULE(pcib, ofwbus, mv_pcib_driver, pcib_devclass, 0, 0); static struct mtx pcicfg_mtx; static int mv_pcib_probe(device_t self) { phandle_t node; node = ofw_bus_get_node(self); if (!fdt_is_type(node, "pci")) return (ENXIO); if (!(ofw_bus_is_compatible(self, "mrvl,pcie") || ofw_bus_is_compatible(self, "mrvl,pci"))) return (ENXIO); device_set_desc(self, "Marvell Integrated PCI/PCI-E Controller"); return (BUS_PROBE_DEFAULT); } static int mv_pcib_attach(device_t self) { struct mv_pcib_softc *sc; phandle_t node, parnode; uint32_t val, unit; int err; sc = device_get_softc(self); sc->sc_dev = self; unit = fdt_get_unit(self); node = ofw_bus_get_node(self); parnode = OF_parent(node); if (fdt_is_compatible(node, "mrvl,pcie")) { sc->sc_type = MV_TYPE_PCIE; sc->sc_win_target = MV_WIN_PCIE_TARGET(unit); sc->sc_mem_win_attr = MV_WIN_PCIE_MEM_ATTR(unit); sc->sc_io_win_attr = MV_WIN_PCIE_IO_ATTR(unit); } else if (fdt_is_compatible(node, "mrvl,pci")) { sc->sc_type = MV_TYPE_PCI; sc->sc_win_target = MV_WIN_PCI_TARGET; sc->sc_mem_win_attr = MV_WIN_PCI_MEM_ATTR; sc->sc_io_win_attr = MV_WIN_PCI_IO_ATTR; } else return (ENXIO); /* * Retrieve our mem-mapped registers range. */ sc->sc_rid = 0; sc->sc_res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &sc->sc_rid, RF_ACTIVE); if (sc->sc_res == NULL) { device_printf(self, "could not map memory\n"); return (ENXIO); } sc->sc_bst = rman_get_bustag(sc->sc_res); sc->sc_bsh = rman_get_bushandle(sc->sc_res); val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_CONTROL); sc->sc_mode = (val & PCIE_CONTROL_ROOT_CMPLX ? MV_MODE_ROOT : MV_MODE_ENDPOINT); /* * Get PCI interrupt info. */ if (sc->sc_mode == MV_MODE_ROOT) ofw_bus_setup_iinfo(node, &sc->sc_pci_iinfo, sizeof(pcell_t)); /* * Configure decode windows for PCI(E) access. */ if (mv_pcib_decode_win(node, sc) != 0) return (ENXIO); mv_pcib_hw_cfginit(); /* * Enable PCIE device. */ mv_pcib_enable(sc, unit); /* * Memory management. */ err = mv_pcib_mem_init(sc); if (err) return (err); if (sc->sc_mode == MV_MODE_ROOT) { err = mv_pcib_init(sc, sc->sc_busnr, mv_pcib_maxslots(sc->sc_dev)); if (err) goto error; device_add_child(self, "pci", -1); } else { sc->sc_devnr = 1; bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS, 1 << PCIE_STATUS_DEV_OFFS); device_add_child(self, "pci_ep", -1); } mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF); return (bus_generic_attach(self)); error: /* XXX SYS_RES_ should be released here */ rman_fini(&sc->sc_mem_rman); rman_fini(&sc->sc_io_rman); return (err); } static void mv_pcib_enable(struct mv_pcib_softc *sc, uint32_t unit) { uint32_t val; #if !defined(SOC_MV_ARMADAXP) int timeout; /* * Check if PCIE device is enabled. */ if (read_cpu_ctrl(CPU_CONTROL) & CPU_CONTROL_PCIE_DISABLE(unit)) { write_cpu_ctrl(CPU_CONTROL, read_cpu_ctrl(CPU_CONTROL) & ~(CPU_CONTROL_PCIE_DISABLE(unit))); timeout = PCIE_LINK_TIMEOUT; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS); while (((val & PCIE_STATUS_LINK_DOWN) == 1) && (timeout > 0)) { DELAY(1000); timeout -= 1000; val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS); } } #endif if (sc->sc_mode == MV_MODE_ROOT) { /* * Enable PCI bridge. */ val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND); val |= PCIM_CMD_SERRESPEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN | PCIM_CMD_PORTEN; bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND, val); } } static int mv_pcib_mem_init(struct mv_pcib_softc *sc) { int err; /* * Memory management. */ sc->sc_mem_rman.rm_type = RMAN_ARRAY; err = rman_init(&sc->sc_mem_rman); if (err) return (err); sc->sc_io_rman.rm_type = RMAN_ARRAY; err = rman_init(&sc->sc_io_rman); if (err) { rman_fini(&sc->sc_mem_rman); return (err); } err = rman_manage_region(&sc->sc_mem_rman, sc->sc_mem_base, sc->sc_mem_base + sc->sc_mem_size - 1); if (err) goto error; err = rman_manage_region(&sc->sc_io_rman, sc->sc_io_base, sc->sc_io_base + sc->sc_io_size - 1); if (err) goto error; return (0); error: rman_fini(&sc->sc_mem_rman); rman_fini(&sc->sc_io_rman); return (err); } static inline uint32_t pcib_bit_get(uint32_t *map, uint32_t bit) { uint32_t n = bit / BITS_PER_UINT32; bit = bit % BITS_PER_UINT32; return (map[n] & (1 << bit)); } static inline void pcib_bit_set(uint32_t *map, uint32_t bit) { uint32_t n = bit / BITS_PER_UINT32; bit = bit % BITS_PER_UINT32; map[n] |= (1 << bit); } static inline uint32_t pcib_map_check(uint32_t *map, uint32_t start, uint32_t bits) { uint32_t i; for (i = start; i < start + bits; i++) if (pcib_bit_get(map, i)) return (0); return (1); } static inline void pcib_map_set(uint32_t *map, uint32_t start, uint32_t bits) { uint32_t i; for (i = start; i < start + bits; i++) pcib_bit_set(map, i); } /* * The idea of this allocator is taken from ARM No-Cache memory * management code (sys/arm/arm/vm_machdep.c). */ static bus_addr_t pcib_alloc(struct mv_pcib_softc *sc, uint32_t smask) { uint32_t bits, bits_limit, i, *map, min_alloc, size; bus_addr_t addr = 0; bus_addr_t base; if (smask & 1) { base = sc->sc_io_base; min_alloc = PCI_MIN_IO_ALLOC; bits_limit = sc->sc_io_size / min_alloc; map = sc->sc_io_map; smask &= ~0x3; } else { base = sc->sc_mem_base; min_alloc = PCI_MIN_MEM_ALLOC; bits_limit = sc->sc_mem_size / min_alloc; map = sc->sc_mem_map; smask &= ~0xF; } size = ~smask + 1; bits = size / min_alloc; for (i = 0; i + bits <= bits_limit; i += bits) if (pcib_map_check(map, i, bits)) { pcib_map_set(map, i, bits); addr = base + (i * min_alloc); return (addr); } return (addr); } static int mv_pcib_init_bar(struct mv_pcib_softc *sc, int bus, int slot, int func, int barno) { uint32_t addr, bar; int reg, width; reg = PCIR_BAR(barno); /* * Need to init the BAR register with 0xffffffff before correct * value can be read. */ mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, ~0, 4); bar = mv_pcib_read_config(sc->sc_dev, bus, slot, func, reg, 4); if (bar == 0) return (1); /* Calculate BAR size: 64 or 32 bit (in 32-bit units) */ width = ((bar & 7) == 4) ? 2 : 1; addr = pcib_alloc(sc, bar); if (!addr) return (-1); if (bootverbose) printf("PCI %u:%u:%u: reg %x: smask=%08x: addr=%08x\n", bus, slot, func, reg, bar, addr); mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, addr, 4); if (width == 2) mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg + 4, 0, 4); return (width); } static void mv_pcib_init_bridge(struct mv_pcib_softc *sc, int bus, int slot, int func) { bus_addr_t io_base, mem_base; uint32_t io_limit, mem_limit; int secbus; io_base = sc->sc_io_base; io_limit = io_base + sc->sc_io_size - 1; mem_base = sc->sc_mem_base; mem_limit = mem_base + sc->sc_mem_size - 1; /* Configure I/O decode registers */ mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEL_1, io_base >> 8, 1); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEH_1, io_base >> 16, 2); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITL_1, io_limit >> 8, 1); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITH_1, io_limit >> 16, 2); /* Configure memory decode registers */ mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMBASE_1, mem_base >> 16, 2); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMLIMIT_1, mem_limit >> 16, 2); /* Disable memory prefetch decode */ mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEL_1, 0x10, 2); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEH_1, 0x0, 4); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITL_1, 0xF, 2); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITH_1, 0x0, 4); secbus = mv_pcib_read_config(sc->sc_dev, bus, slot, func, PCIR_SECBUS_1, 1); /* Configure buses behind the bridge */ mv_pcib_init(sc, secbus, PCI_SLOTMAX); } static int mv_pcib_init(struct mv_pcib_softc *sc, int bus, int maxslot) { int slot, func, maxfunc, error; uint8_t hdrtype, command, class, subclass; for (slot = 0; slot <= maxslot; slot++) { maxfunc = 0; for (func = 0; func <= maxfunc; func++) { hdrtype = mv_pcib_read_config(sc->sc_dev, bus, slot, func, PCIR_HDRTYPE, 1); if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) continue; if (func == 0 && (hdrtype & PCIM_MFDEV)) maxfunc = PCI_FUNCMAX; command = mv_pcib_read_config(sc->sc_dev, bus, slot, func, PCIR_COMMAND, 1); command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN); mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_COMMAND, command, 1); error = mv_pcib_init_all_bars(sc, bus, slot, func, hdrtype); if (error) return (error); command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN | PCIM_CMD_PORTEN; mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_COMMAND, command, 1); /* Handle PCI-PCI bridges */ class = mv_pcib_read_config(sc->sc_dev, bus, slot, func, PCIR_CLASS, 1); subclass = mv_pcib_read_config(sc->sc_dev, bus, slot, func, PCIR_SUBCLASS, 1); if (class != PCIC_BRIDGE || subclass != PCIS_BRIDGE_PCI) continue; mv_pcib_init_bridge(sc, bus, slot, func); } } /* Enable all ABCD interrupts */ pcib_write_irq_mask(sc, (0xF << 24)); return (0); } static int mv_pcib_init_all_bars(struct mv_pcib_softc *sc, int bus, int slot, int func, int hdrtype) { int maxbar, bar, i; maxbar = (hdrtype & PCIM_HDRTYPE) ? 0 : 6; bar = 0; /* Program the base address registers */ while (bar < maxbar) { i = mv_pcib_init_bar(sc, bus, slot, func, bar); bar += i; if (i < 0) { device_printf(sc->sc_dev, "PCI IO/Memory space exhausted\n"); return (ENOMEM); } } return (0); } static struct resource * mv_pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct mv_pcib_softc *sc = device_get_softc(dev); struct rman *rm = NULL; struct resource *res; switch (type) { case SYS_RES_IOPORT: rm = &sc->sc_io_rman; break; case SYS_RES_MEMORY: rm = &sc->sc_mem_rman; break; default: return (BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, type, rid, start, end, count, flags)); }; if (RMAN_IS_DEFAULT_RANGE(start, end)) { start = sc->sc_mem_base; end = sc->sc_mem_base + sc->sc_mem_size - 1; count = sc->sc_mem_size; } if ((start < sc->sc_mem_base) || (start + count - 1 != end) || (end > sc->sc_mem_base + sc->sc_mem_size - 1)) return (NULL); res = rman_reserve_resource(rm, start, end, count, flags, child); if (res == NULL) return (NULL); rman_set_rid(res, *rid); rman_set_bustag(res, fdtbus_bs_tag); rman_set_bushandle(res, start); if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res)) { rman_release_resource(res); return (NULL); } return (res); } static int mv_pcib_release_resource(device_t dev, device_t child, int type, int rid, struct resource *res) { if (type != SYS_RES_IOPORT && type != SYS_RES_MEMORY) return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, type, rid, res)); return (rman_release_resource(res)); } static int mv_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct mv_pcib_softc *sc = device_get_softc(dev); switch (which) { case PCIB_IVAR_BUS: *result = sc->sc_busnr; return (0); case PCIB_IVAR_DOMAIN: *result = device_get_unit(dev); return (0); } return (ENOENT); } static int mv_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { struct mv_pcib_softc *sc = device_get_softc(dev); switch (which) { case PCIB_IVAR_BUS: sc->sc_busnr = value; return (0); } return (ENOENT); } static inline void pcib_write_irq_mask(struct mv_pcib_softc *sc, uint32_t mask) { if (sc->sc_type != MV_TYPE_PCI) return; bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_IRQ_MASK, mask); } static void mv_pcib_hw_cfginit(void) { static int opened = 0; if (opened) return; mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN); opened = 1; } static uint32_t mv_pcib_hw_cfgread(struct mv_pcib_softc *sc, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { uint32_t addr, data, ca, cd; ca = (sc->sc_type != MV_TYPE_PCI) ? PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR; cd = (sc->sc_type != MV_TYPE_PCI) ? PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA; addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) | PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg); mtx_lock_spin(&pcicfg_mtx); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr); data = ~0; switch (bytes) { case 1: data = bus_space_read_1(sc->sc_bst, sc->sc_bsh, cd + (reg & 3)); break; case 2: data = le16toh(bus_space_read_2(sc->sc_bst, sc->sc_bsh, cd + (reg & 2))); break; case 4: data = le32toh(bus_space_read_4(sc->sc_bst, sc->sc_bsh, cd)); break; } mtx_unlock_spin(&pcicfg_mtx); return (data); } static void mv_pcib_hw_cfgwrite(struct mv_pcib_softc *sc, u_int bus, u_int slot, u_int func, u_int reg, uint32_t data, int bytes) { uint32_t addr, ca, cd; ca = (sc->sc_type != MV_TYPE_PCI) ? PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR; cd = (sc->sc_type != MV_TYPE_PCI) ? PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA; addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) | PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg); mtx_lock_spin(&pcicfg_mtx); bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr); switch (bytes) { case 1: bus_space_write_1(sc->sc_bst, sc->sc_bsh, cd + (reg & 3), data); break; case 2: bus_space_write_2(sc->sc_bst, sc->sc_bsh, cd + (reg & 2), htole16(data)); break; case 4: bus_space_write_4(sc->sc_bst, sc->sc_bsh, cd, htole32(data)); break; } mtx_unlock_spin(&pcicfg_mtx); } static int mv_pcib_maxslots(device_t dev) { struct mv_pcib_softc *sc = device_get_softc(dev); return ((sc->sc_type != MV_TYPE_PCI) ? 1 : PCI_SLOTMAX); } static int mv_pcib_root_slot(device_t dev, u_int bus, u_int slot, u_int func) { #if defined(SOC_MV_ARMADA38X) struct mv_pcib_softc *sc = device_get_softc(dev); uint32_t vendor, device; vendor = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_VENDOR, PCIR_VENDOR_LENGTH); device = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_DEVICE, PCIR_DEVICE_LENGTH) & MV_DEV_FAMILY_MASK; return (vendor == PCI_VENDORID_MRVL && device == MV_DEV_ARMADA38X); #else /* On platforms other than Armada38x, root link is always at slot 0 */ return (slot == 0); #endif } static uint32_t mv_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, int bytes) { struct mv_pcib_softc *sc = device_get_softc(dev); /* Return ~0 if link is inactive or trying to read from Root */ if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) & PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func)) return (~0U); return (mv_pcib_hw_cfgread(sc, bus, slot, func, reg, bytes)); } static void mv_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg, uint32_t val, int bytes) { struct mv_pcib_softc *sc = device_get_softc(dev); /* Return if link is inactive or trying to write to Root */ if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) & PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func)) return; mv_pcib_hw_cfgwrite(sc, bus, slot, func, reg, val, bytes); } static int mv_pcib_route_interrupt(device_t bus, device_t dev, int pin) { struct mv_pcib_softc *sc; struct ofw_pci_register reg; uint32_t pintr, mintr[4]; int icells; phandle_t iparent; sc = device_get_softc(bus); pintr = pin; /* Fabricate imap information in case this isn't an OFW device */ bzero(®, sizeof(reg)); reg.phys_hi = (pci_get_bus(dev) << OFW_PCI_PHYS_HI_BUSSHIFT) | (pci_get_slot(dev) << OFW_PCI_PHYS_HI_DEVICESHIFT) | (pci_get_function(dev) << OFW_PCI_PHYS_HI_FUNCTIONSHIFT); icells = ofw_bus_lookup_imap(ofw_bus_get_node(dev), &sc->sc_pci_iinfo, ®, sizeof(reg), &pintr, sizeof(pintr), mintr, sizeof(mintr), &iparent); if (icells > 0) return (ofw_bus_map_intr(dev, iparent, icells, mintr)); /* Maybe it's a real interrupt, not an intpin */ if (pin > 4) return (pin); device_printf(bus, "could not route pin %d for device %d.%d\n", pin, pci_get_slot(dev), pci_get_function(dev)); return (PCI_INVALID_IRQ); } static int mv_pcib_decode_win(phandle_t node, struct mv_pcib_softc *sc) { struct mv_pci_range io_space, mem_space; device_t dev; int error; dev = sc->sc_dev; if ((error = mv_pci_ranges(node, &io_space, &mem_space)) != 0) { device_printf(dev, "could not retrieve 'ranges' data\n"); return (error); } /* Configure CPU decoding windows */ error = decode_win_cpu_set(sc->sc_win_target, sc->sc_io_win_attr, io_space.base_parent, io_space.len, ~0); if (error < 0) { device_printf(dev, "could not set up CPU decode " "window for PCI IO\n"); return (ENXIO); } error = decode_win_cpu_set(sc->sc_win_target, sc->sc_mem_win_attr, mem_space.base_parent, mem_space.len, mem_space.base_parent); if (error < 0) { device_printf(dev, "could not set up CPU decode " "windows for PCI MEM\n"); return (ENXIO); } sc->sc_io_base = io_space.base_parent; sc->sc_io_size = io_space.len; sc->sc_mem_base = mem_space.base_parent; sc->sc_mem_size = mem_space.len; return (0); } #if defined(SOC_MV_ARMADAXP) static int mv_pcib_map_msi(device_t dev, device_t child, int irq, uint64_t *addr, uint32_t *data) { struct mv_pcib_softc *sc; sc = device_get_softc(dev); irq = irq - MSI_IRQ; /* validate parameters */ if (isclr(&sc->sc_msi_bitmap, irq)) { device_printf(dev, "invalid MSI 0x%x\n", irq); return (EINVAL); } mv_msi_data(irq, addr, data); debugf("%s: irq: %d addr: %jx data: %x\n", __func__, irq, *addr, *data); return (0); } static int mv_pcib_alloc_msi(device_t dev, device_t child, int count, int maxcount __unused, int *irqs) { struct mv_pcib_softc *sc; u_int start = 0, i; if (powerof2(count) == 0 || count > MSI_IRQ_NUM) return (EINVAL); sc = device_get_softc(dev); mtx_lock(&sc->sc_msi_mtx); for (start = 0; (start + count) < MSI_IRQ_NUM; start++) { for (i = start; i < start + count; i++) { if (isset(&sc->sc_msi_bitmap, i)) break; } if (i == start + count) break; } if ((start + count) == MSI_IRQ_NUM) { mtx_unlock(&sc->sc_msi_mtx); return (ENXIO); } for (i = start; i < start + count; i++) { setbit(&sc->sc_msi_bitmap, i); *irqs++ = MSI_IRQ + i; } debugf("%s: start: %x count: %x\n", __func__, start, count); mtx_unlock(&sc->sc_msi_mtx); return (0); } static int mv_pcib_release_msi(device_t dev, device_t child, int count, int *irqs) { struct mv_pcib_softc *sc; u_int i; sc = device_get_softc(dev); mtx_lock(&sc->sc_msi_mtx); for (i = 0; i < count; i++) clrbit(&sc->sc_msi_bitmap, irqs[i] - MSI_IRQ); mtx_unlock(&sc->sc_msi_mtx); return (0); } #endif