/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD. * All rights reserved. * * Developed by Semihalf. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of MARVELL nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/kernel.h> #include <sys/malloc.h> #include <sys/kdb.h> #include <sys/reboot.h> #include <dev/fdt/fdt_common.h> #include <dev/ofw/openfirm.h> #include <dev/ofw/ofw_bus_subr.h> #include <machine/bus.h> #include <machine/fdt.h> #include <machine/vmparam.h> #include <machine/intr.h> #include <arm/mv/mvreg.h> #include <arm/mv/mvvar.h> #include <arm/mv/mvwin.h> MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory"); #define IDMA_DEBUG #undef IDMA_DEBUG #define MAX_CPU_WIN 5 #ifdef DEBUG #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif #ifdef DEBUG #define MV_DUMP_WIN 1 #else #define MV_DUMP_WIN 0 #endif struct soc_node_spec; static enum soc_family soc_family; static int mv_win_cesa_attr_armv5(int eng_sel); static int mv_win_cesa_attr_armada38x(int eng_sel); static int mv_win_cesa_attr_armadaxp(int eng_sel); uint32_t read_cpu_ctrl_armv5(uint32_t reg); uint32_t read_cpu_ctrl_armv7(uint32_t reg); void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val); void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val); static int win_eth_can_remap(int i); static int decode_win_cesa_valid(void); static int decode_win_usb_valid(void); static int decode_win_usb3_valid(void); static int decode_win_eth_valid(void); static int decode_win_pcie_valid(void); static int decode_win_sata_valid(void); static int decode_win_sdhci_valid(void); static int decode_win_idma_valid(void); static int decode_win_xor_valid(void); static void decode_win_cpu_setup(void); static int decode_win_sdram_fixup(void); static void decode_win_cesa_setup(u_long); static void decode_win_a38x_cesa_setup(u_long); static void decode_win_usb_setup(u_long); static void decode_win_usb3_setup(u_long); static void decode_win_eth_setup(u_long); static void decode_win_neta_setup(u_long); static void decode_win_sata_setup(u_long); static void decode_win_ahci_setup(u_long); static void decode_win_sdhci_setup(u_long); static void decode_win_idma_setup(u_long); static void decode_win_xor_setup(u_long); static void decode_win_cesa_dump(u_long); static void decode_win_a38x_cesa_dump(u_long); static void decode_win_usb_dump(u_long); static void decode_win_usb3_dump(u_long); static void decode_win_eth_dump(u_long base); static void decode_win_neta_dump(u_long base); static void decode_win_idma_dump(u_long base); static void decode_win_xor_dump(u_long base); static void decode_win_ahci_dump(u_long base); static void decode_win_sdhci_dump(u_long); static void decode_win_pcie_dump(u_long); static uint32_t win_cpu_cr_read(int); static uint32_t win_cpu_armv5_cr_read(int); static uint32_t win_cpu_armv7_cr_read(int); static uint32_t win_cpu_br_read(int); static uint32_t win_cpu_armv5_br_read(int); static uint32_t win_cpu_armv7_br_read(int); static uint32_t win_cpu_remap_l_read(int); static uint32_t win_cpu_armv5_remap_l_read(int); static uint32_t win_cpu_armv7_remap_l_read(int); static uint32_t win_cpu_remap_h_read(int); static uint32_t win_cpu_armv5_remap_h_read(int); static uint32_t win_cpu_armv7_remap_h_read(int); static void win_cpu_cr_write(int, uint32_t); static void win_cpu_armv5_cr_write(int, uint32_t); static void win_cpu_armv7_cr_write(int, uint32_t); static void win_cpu_br_write(int, uint32_t); static void win_cpu_armv5_br_write(int, uint32_t); static void win_cpu_armv7_br_write(int, uint32_t); static void win_cpu_remap_l_write(int, uint32_t); static void win_cpu_armv5_remap_l_write(int, uint32_t); static void win_cpu_armv7_remap_l_write(int, uint32_t); static void win_cpu_remap_h_write(int, uint32_t); static void win_cpu_armv5_remap_h_write(int, uint32_t); static void win_cpu_armv7_remap_h_write(int, uint32_t); static uint32_t ddr_br_read(int); static uint32_t ddr_sz_read(int); static uint32_t ddr_armv5_br_read(int); static uint32_t ddr_armv5_sz_read(int); static uint32_t ddr_armv7_br_read(int); static uint32_t ddr_armv7_sz_read(int); static void ddr_br_write(int, uint32_t); static void ddr_sz_write(int, uint32_t); static void ddr_armv5_br_write(int, uint32_t); static void ddr_armv5_sz_write(int, uint32_t); static void ddr_armv7_br_write(int, uint32_t); static void ddr_armv7_sz_write(int, uint32_t); static int fdt_get_ranges(const char *, void *, int, int *, int *); int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt, int *trig, int *pol); static int win_cpu_from_dt(void); static int fdt_win_setup(void); static int fdt_win_process_child(phandle_t, struct soc_node_spec *, const char*); static void soc_identify(uint32_t, uint32_t); static uint32_t dev_mask = 0; static int cpu_wins_no = 0; static int eth_port = 0; static int usb_port = 0; static boolean_t platform_io_coherent = false; static struct decode_win cpu_win_tbl[MAX_CPU_WIN]; const struct decode_win *cpu_wins = cpu_win_tbl; typedef void (*decode_win_setup_t)(u_long); typedef void (*dump_win_t)(u_long); typedef int (*valid_t)(void); /* * The power status of device feature is only supported on * Kirkwood and Discovery SoCs. */ #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY) #define SOC_MV_POWER_STAT_SUPPORTED 1 #else #define SOC_MV_POWER_STAT_SUPPORTED 0 #endif struct soc_node_spec { const char *compat; decode_win_setup_t decode_handler; dump_win_t dump_handler; valid_t valid_handler; }; static struct soc_node_spec soc_nodes[] = { { "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump, &decode_win_eth_valid}, { "marvell,armada-370-neta", &decode_win_neta_setup, &decode_win_neta_dump, NULL }, { "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid}, { "marvell,orion-ehci", &decode_win_usb_setup, &decode_win_usb_dump, &decode_win_usb_valid }, { "marvell,armada-380-xhci", &decode_win_usb3_setup, &decode_win_usb3_dump, &decode_win_usb3_valid }, { "marvell,armada-380-ahci", &decode_win_ahci_setup, &decode_win_ahci_dump, NULL }, { "marvell,armada-380-sdhci", &decode_win_sdhci_setup, &decode_win_sdhci_dump, &decode_win_sdhci_valid}, { "mrvl,sata", &decode_win_sata_setup, NULL, &decode_win_sata_valid}, { "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump, &decode_win_xor_valid}, { "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump, &decode_win_idma_valid}, { "mrvl,cesa", &decode_win_cesa_setup, &decode_win_cesa_dump, &decode_win_cesa_valid}, { "mrvl,pcie", &decode_win_pcie_setup, &decode_win_pcie_dump, &decode_win_pcie_valid}, { "marvell,armada-38x-crypto", &decode_win_a38x_cesa_setup, &decode_win_a38x_cesa_dump, &decode_win_cesa_valid}, { NULL, NULL, NULL, NULL }, }; #define SOC_NODE_PCIE_ENTRY_IDX 11 typedef uint32_t(*read_cpu_ctrl_t)(uint32_t); typedef void(*write_cpu_ctrl_t)(uint32_t, uint32_t); typedef uint32_t (*win_read_t)(int); typedef void (*win_write_t)(int, uint32_t); typedef int (*win_cesa_attr_t)(int); typedef uint32_t (*get_t)(void); struct decode_win_spec { read_cpu_ctrl_t read_cpu_ctrl; write_cpu_ctrl_t write_cpu_ctrl; win_read_t cr_read; win_read_t br_read; win_read_t remap_l_read; win_read_t remap_h_read; win_write_t cr_write; win_write_t br_write; win_write_t remap_l_write; win_write_t remap_h_write; uint32_t mv_win_cpu_max; win_cesa_attr_t win_cesa_attr; int win_cesa_target; win_read_t ddr_br_read; win_read_t ddr_sz_read; win_write_t ddr_br_write; win_write_t ddr_sz_write; get_t get_tclk; get_t get_cpu_freq; }; struct decode_win_spec *soc_decode_win_spec; static struct decode_win_spec decode_win_specs[] = { { &read_cpu_ctrl_armv7, &write_cpu_ctrl_armv7, &win_cpu_armv7_cr_read, &win_cpu_armv7_br_read, &win_cpu_armv7_remap_l_read, &win_cpu_armv7_remap_h_read, &win_cpu_armv7_cr_write, &win_cpu_armv7_br_write, &win_cpu_armv7_remap_l_write, &win_cpu_armv7_remap_h_write, MV_WIN_CPU_MAX_ARMV7, &mv_win_cesa_attr_armada38x, MV_WIN_CESA_TARGET_ARMADA38X, &ddr_armv7_br_read, &ddr_armv7_sz_read, &ddr_armv7_br_write, &ddr_armv7_sz_write, &get_tclk_armada38x, &get_cpu_freq_armada38x, }, { &read_cpu_ctrl_armv7, &write_cpu_ctrl_armv7, &win_cpu_armv7_cr_read, &win_cpu_armv7_br_read, &win_cpu_armv7_remap_l_read, &win_cpu_armv7_remap_h_read, &win_cpu_armv7_cr_write, &win_cpu_armv7_br_write, &win_cpu_armv7_remap_l_write, &win_cpu_armv7_remap_h_write, MV_WIN_CPU_MAX_ARMV7, &mv_win_cesa_attr_armadaxp, MV_WIN_CESA_TARGET_ARMADAXP, &ddr_armv7_br_read, &ddr_armv7_sz_read, &ddr_armv7_br_write, &ddr_armv7_sz_write, &get_tclk_armadaxp, &get_cpu_freq_armadaxp, }, { &read_cpu_ctrl_armv5, &write_cpu_ctrl_armv5, &win_cpu_armv5_cr_read, &win_cpu_armv5_br_read, &win_cpu_armv5_remap_l_read, &win_cpu_armv5_remap_h_read, &win_cpu_armv5_cr_write, &win_cpu_armv5_br_write, &win_cpu_armv5_remap_l_write, &win_cpu_armv5_remap_h_write, MV_WIN_CPU_MAX, &mv_win_cesa_attr_armv5, MV_WIN_CESA_TARGET, &ddr_armv5_br_read, &ddr_armv5_sz_read, &ddr_armv5_br_write, &ddr_armv5_sz_write, NULL, NULL, }, }; struct fdt_pm_mask_entry { char *compat; uint32_t mask; }; static struct fdt_pm_mask_entry fdt_pm_mask_table[] = { { "mrvl,ge", CPU_PM_CTRL_GE(0) }, { "mrvl,ge", CPU_PM_CTRL_GE(1) }, { "mrvl,usb-ehci", CPU_PM_CTRL_USB(0) }, { "mrvl,usb-ehci", CPU_PM_CTRL_USB(1) }, { "mrvl,usb-ehci", CPU_PM_CTRL_USB(2) }, { "mrvl,xor", CPU_PM_CTRL_XOR }, { "mrvl,sata", CPU_PM_CTRL_SATA }, { NULL, 0 } }; static __inline int pm_is_disabled(uint32_t mask) { #if SOC_MV_POWER_STAT_SUPPORTED return (soc_power_ctrl_get(mask) == mask ? 0 : 1); #else return (0); #endif } /* * Disable device using power management register. * 1 - Device Power On * 0 - Device Power Off * Mask can be set in loader. * EXAMPLE: * loader> set hw.pm-disable-mask=0x2 * * Common mask: * |-------------------------------| * | Device | Kirkwood | Discovery | * |-------------------------------| * | USB0 | 0x00008 | 0x020000 | * |-------------------------------| * | USB1 | - | 0x040000 | * |-------------------------------| * | USB2 | - | 0x080000 | * |-------------------------------| * | GE0 | 0x00001 | 0x000002 | * |-------------------------------| * | GE1 | - | 0x000004 | * |-------------------------------| * | IDMA | - | 0x100000 | * |-------------------------------| * | XOR | 0x10000 | 0x200000 | * |-------------------------------| * | CESA | 0x20000 | 0x400000 | * |-------------------------------| * | SATA | 0x04000 | 0x004000 | * --------------------------------| * This feature can be used only on Kirkwood and Discovery * machines. */ static int mv_win_cesa_attr_armv5(int eng_sel) { return MV_WIN_CESA_ATTR(eng_sel); } static int mv_win_cesa_attr_armada38x(int eng_sel) { return MV_WIN_CESA_ATTR_ARMADA38X(eng_sel); } static int mv_win_cesa_attr_armadaxp(int eng_sel) { return MV_WIN_CESA_ATTR_ARMADAXP(eng_sel); } enum soc_family mv_check_soc_family(void) { uint32_t dev, rev; soc_id(&dev, &rev); switch (dev) { case MV_DEV_MV78230: case MV_DEV_MV78260: case MV_DEV_MV78460: soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_XP]; soc_family = MV_SOC_ARMADA_XP; break; case MV_DEV_88F6828: case MV_DEV_88F6820: case MV_DEV_88F6810: soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMADA_38X]; soc_family = MV_SOC_ARMADA_38X; break; case MV_DEV_88F5181: case MV_DEV_88F5182: case MV_DEV_88F5281: case MV_DEV_88F6281: case MV_DEV_88RC8180: case MV_DEV_88RC9480: case MV_DEV_88RC9580: case MV_DEV_88F6781: case MV_DEV_88F6282: case MV_DEV_MV78100_Z0: case MV_DEV_MV78100: case MV_DEV_MV78160: soc_decode_win_spec = &decode_win_specs[MV_SOC_ARMV5]; soc_family = MV_SOC_ARMV5; break; default: soc_family = MV_SOC_UNSUPPORTED; return (MV_SOC_UNSUPPORTED); } soc_identify(dev, rev); return (soc_family); } static __inline void pm_disable_device(int mask) { #ifdef DIAGNOSTIC uint32_t reg; reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL); printf("Power Management Register: 0%x\n", reg); reg &= ~mask; soc_power_ctrl_set(reg); printf("Device %x is disabled\n", mask); reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL); printf("Power Management Register: 0%x\n", reg); #endif } int mv_fdt_is_type(phandle_t node, const char *typestr) { #define FDT_TYPE_LEN 64 char type[FDT_TYPE_LEN]; if (OF_getproplen(node, "device_type") <= 0) return (0); if (OF_getprop(node, "device_type", type, FDT_TYPE_LEN) < 0) return (0); if (strncasecmp(type, typestr, FDT_TYPE_LEN) == 0) /* This fits. */ return (1); return (0); #undef FDT_TYPE_LEN } int mv_fdt_pm(phandle_t node) { uint32_t cpu_pm_ctrl; int i, ena, compat; ena = 1; cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL); for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) { if (dev_mask & (1 << i)) continue; compat = ofw_bus_node_is_compatible(node, fdt_pm_mask_table[i].compat); #if defined(SOC_MV_KIRKWOOD) if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) { dev_mask |= (1 << i); ena = 0; break; } else if (compat) { dev_mask |= (1 << i); break; } #else if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) { dev_mask |= (1 << i); ena = 0; break; } else if (compat) { dev_mask |= (1 << i); break; } #endif } return (ena); } uint32_t read_cpu_ctrl(uint32_t reg) { if (soc_decode_win_spec->read_cpu_ctrl != NULL) return (soc_decode_win_spec->read_cpu_ctrl(reg)); return (-1); } uint32_t read_cpu_ctrl_armv5(uint32_t reg) { return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg)); } uint32_t read_cpu_ctrl_armv7(uint32_t reg) { return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg)); } void write_cpu_ctrl(uint32_t reg, uint32_t val) { if (soc_decode_win_spec->write_cpu_ctrl != NULL) soc_decode_win_spec->write_cpu_ctrl(reg, val); } void write_cpu_ctrl_armv5(uint32_t reg, uint32_t val) { bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val); } void write_cpu_ctrl_armv7(uint32_t reg, uint32_t val) { bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE_ARMV7, reg, val); } uint32_t read_cpu_mp_clocks(uint32_t reg) { return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg)); } void write_cpu_mp_clocks(uint32_t reg, uint32_t val) { bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val); } uint32_t read_cpu_misc(uint32_t reg) { return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg)); } void write_cpu_misc(uint32_t reg, uint32_t val) { bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val); } uint32_t cpu_extra_feat(void) { uint32_t dev, rev; uint32_t ef = 0; soc_id(&dev, &rev); switch (dev) { case MV_DEV_88F6281: case MV_DEV_88F6282: case MV_DEV_88RC8180: case MV_DEV_MV78100_Z0: case MV_DEV_MV78100: __asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef)); break; case MV_DEV_88F5182: case MV_DEV_88F5281: __asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef)); break; default: if (bootverbose) printf("This ARM Core does not support any extra features\n"); } return (ef); } /* * Get the power status of device. This feature is only supported on * Kirkwood and Discovery SoCs. */ uint32_t soc_power_ctrl_get(uint32_t mask) { #if SOC_MV_POWER_STAT_SUPPORTED if (mask != CPU_PM_CTRL_NONE) mask &= read_cpu_ctrl(CPU_PM_CTRL); return (mask); #else return (mask); #endif } /* * Set the power status of device. This feature is only supported on * Kirkwood and Discovery SoCs. */ void soc_power_ctrl_set(uint32_t mask) { #if !defined(SOC_MV_ORION) if (mask != CPU_PM_CTRL_NONE) write_cpu_ctrl(CPU_PM_CTRL, mask); #endif } void soc_id(uint32_t *dev, uint32_t *rev) { uint64_t mv_pcie_base = MV_PCIE_BASE; phandle_t node; /* * Notice: system identifiers are available in the registers range of * PCIE controller, so using this function is only allowed (and * possible) after the internal registers range has been mapped in via * devmap_bootstrap(). */ *dev = 0; *rev = 0; if ((node = OF_finddevice("/")) == -1) return; if (ofw_bus_node_is_compatible(node, "marvell,armada380")) mv_pcie_base = MV_PCIE_BASE_ARMADA38X; *dev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 0) >> 16; *rev = bus_space_read_4(fdtbus_bs_tag, mv_pcie_base, 8) & 0xff; } static void soc_identify(uint32_t d, uint32_t r) { uint32_t size, mode, freq; const char *dev; const char *rev; printf("SOC: "); if (bootverbose) printf("(0x%4x:0x%02x) ", d, r); rev = ""; switch (d) { case MV_DEV_88F5181: dev = "Marvell 88F5181"; if (r == 3) rev = "B1"; break; case MV_DEV_88F5182: dev = "Marvell 88F5182"; if (r == 2) rev = "A2"; break; case MV_DEV_88F5281: dev = "Marvell 88F5281"; if (r == 4) rev = "D0"; else if (r == 5) rev = "D1"; else if (r == 6) rev = "D2"; break; case MV_DEV_88F6281: dev = "Marvell 88F6281"; if (r == 0) rev = "Z0"; else if (r == 2) rev = "A0"; else if (r == 3) rev = "A1"; break; case MV_DEV_88RC8180: dev = "Marvell 88RC8180"; break; case MV_DEV_88RC9480: dev = "Marvell 88RC9480"; break; case MV_DEV_88RC9580: dev = "Marvell 88RC9580"; break; case MV_DEV_88F6781: dev = "Marvell 88F6781"; if (r == 2) rev = "Y0"; break; case MV_DEV_88F6282: dev = "Marvell 88F6282"; if (r == 0) rev = "A0"; else if (r == 1) rev = "A1"; break; case MV_DEV_88F6828: dev = "Marvell 88F6828"; break; case MV_DEV_88F6820: dev = "Marvell 88F6820"; break; case MV_DEV_88F6810: dev = "Marvell 88F6810"; break; case MV_DEV_MV78100_Z0: dev = "Marvell MV78100 Z0"; break; case MV_DEV_MV78100: dev = "Marvell MV78100"; break; case MV_DEV_MV78160: dev = "Marvell MV78160"; break; case MV_DEV_MV78260: dev = "Marvell MV78260"; break; case MV_DEV_MV78460: dev = "Marvell MV78460"; break; default: dev = "UNKNOWN"; break; } printf("%s", dev); if (*rev != '\0') printf(" rev %s", rev); printf(", TClock %dMHz", get_tclk() / 1000 / 1000); freq = get_cpu_freq(); if (freq != 0) printf(", Frequency %dMHz", freq / 1000 / 1000); printf("\n"); mode = read_cpu_ctrl(CPU_CONFIG); printf(" Instruction cache prefetch %s, data cache prefetch %s\n", (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled", (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled"); switch (d) { case MV_DEV_88F6281: case MV_DEV_88F6282: mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE; printf(" 256KB 4-way set-associative %s unified L2 cache\n", mode ? "write-through" : "write-back"); break; case MV_DEV_MV78100: mode = read_cpu_ctrl(CPU_CONTROL); size = mode & CPU_CONTROL_L2_SIZE; mode = mode & CPU_CONTROL_L2_MODE; printf(" %s set-associative %s unified L2 cache\n", size ? "256KB 4-way" : "512KB 8-way", mode ? "write-through" : "write-back"); break; default: break; } } #ifdef KDB static void mv_enter_debugger(void *dummy) { if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); } SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL); #endif int soc_decode_win(void) { uint32_t dev, rev; int mask, err; mask = 0; TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask); if (mask != 0) pm_disable_device(mask); /* Retrieve data about physical addresses from device tree. */ if ((err = win_cpu_from_dt()) != 0) return (err); /* Retrieve our ID: some windows facilities vary between SoC models */ soc_id(&dev, &rev); if (soc_family == MV_SOC_ARMADA_XP) if ((err = decode_win_sdram_fixup()) != 0) return(err); decode_win_cpu_setup(); if (MV_DUMP_WIN) soc_dump_decode_win(); eth_port = 0; usb_port = 0; if ((err = fdt_win_setup()) != 0) return (err); return (0); } /************************************************************************** * Decode windows registers accessors **************************************************************************/ WIN_REG_IDX_RD(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv5, cr, MV_WIN_CPU_CTRL_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv5, br, MV_WIN_CPU_BASE_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv5, remap_l, MV_WIN_CPU_REMAP_LO_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv5, remap_h, MV_WIN_CPU_REMAP_HI_ARMV5, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_RD(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv7, cr, MV_WIN_CPU_CTRL_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv7, br, MV_WIN_CPU_BASE_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv7, remap_l, MV_WIN_CPU_REMAP_LO_ARMV7, MV_MBUS_BRIDGE_BASE) WIN_REG_IDX_WR(win_cpu_armv7, remap_h, MV_WIN_CPU_REMAP_HI_ARMV7, MV_MBUS_BRIDGE_BASE) static uint32_t win_cpu_cr_read(int i) { if (soc_decode_win_spec->cr_read != NULL) return (soc_decode_win_spec->cr_read(i)); return (-1); } static uint32_t win_cpu_br_read(int i) { if (soc_decode_win_spec->br_read != NULL) return (soc_decode_win_spec->br_read(i)); return (-1); } static uint32_t win_cpu_remap_l_read(int i) { if (soc_decode_win_spec->remap_l_read != NULL) return (soc_decode_win_spec->remap_l_read(i)); return (-1); } static uint32_t win_cpu_remap_h_read(int i) { if (soc_decode_win_spec->remap_h_read != NULL) return soc_decode_win_spec->remap_h_read(i); return (-1); } static void win_cpu_cr_write(int i, uint32_t val) { if (soc_decode_win_spec->cr_write != NULL) soc_decode_win_spec->cr_write(i, val); } static void win_cpu_br_write(int i, uint32_t val) { if (soc_decode_win_spec->br_write != NULL) soc_decode_win_spec->br_write(i, val); } static void win_cpu_remap_l_write(int i, uint32_t val) { if (soc_decode_win_spec->remap_l_write != NULL) soc_decode_win_spec->remap_l_write(i, val); } static void win_cpu_remap_h_write(int i, uint32_t val) { if (soc_decode_win_spec->remap_h_write != NULL) soc_decode_win_spec->remap_h_write(i, val); } WIN_REG_BASE_IDX_RD(win_cesa, cr, MV_WIN_CESA_CTRL) WIN_REG_BASE_IDX_RD(win_cesa, br, MV_WIN_CESA_BASE) WIN_REG_BASE_IDX_WR(win_cesa, cr, MV_WIN_CESA_CTRL) WIN_REG_BASE_IDX_WR(win_cesa, br, MV_WIN_CESA_BASE) WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL) WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE) WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL) WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE) WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL) WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE) WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL) WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE) WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE) WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE) WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP) WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE) WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE) WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP) WIN_REG_BASE_RD(win_eth, bare, 0x290) WIN_REG_BASE_RD(win_eth, epap, 0x294) WIN_REG_BASE_WR(win_eth, bare, 0x290) WIN_REG_BASE_WR(win_eth, epap, 0x294) WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL); WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE); WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP); WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL); WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE); WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP); WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE); WIN_REG_BASE_IDX_RD(pcie_bar, brh, MV_PCIE_BAR_BASE_H); WIN_REG_BASE_IDX_RD(pcie_bar, cr, MV_PCIE_BAR_CTRL); WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE); WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H); WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL); WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL); WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE); WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL); WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE); WIN_REG_BASE_IDX_RD(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X); WIN_REG_BASE_IDX_WR(win_sata_armada38x, sz, MV_WIN_SATA_SIZE_ARMADA38X); WIN_REG_BASE_IDX_RD(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X); WIN_REG_BASE_IDX_WR(win_sata_armada38x, cr, MV_WIN_SATA_CTRL_ARMADA38X); WIN_REG_BASE_IDX_WR(win_sata_armada38x, br, MV_WIN_SATA_BASE_ARMADA38X); WIN_REG_BASE_IDX_RD(win_sdhci, cr, MV_WIN_SDHCI_CTRL); WIN_REG_BASE_IDX_RD(win_sdhci, br, MV_WIN_SDHCI_BASE); WIN_REG_BASE_IDX_WR(win_sdhci, cr, MV_WIN_SDHCI_CTRL); WIN_REG_BASE_IDX_WR(win_sdhci, br, MV_WIN_SDHCI_BASE); #ifndef SOC_MV_DOVE WIN_REG_IDX_RD(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE) WIN_REG_IDX_RD(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE) WIN_REG_IDX_WR(ddr_armv5, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE) WIN_REG_IDX_WR(ddr_armv5, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE) WIN_REG_IDX_RD(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7) WIN_REG_IDX_RD(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7) WIN_REG_IDX_WR(ddr_armv7, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE_ARMV7) WIN_REG_IDX_WR(ddr_armv7, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE_ARMV7) static inline uint32_t ddr_br_read(int i) { if (soc_decode_win_spec->ddr_br_read != NULL) return (soc_decode_win_spec->ddr_br_read(i)); return (-1); } static inline uint32_t ddr_sz_read(int i) { if (soc_decode_win_spec->ddr_sz_read != NULL) return (soc_decode_win_spec->ddr_sz_read(i)); return (-1); } static inline void ddr_br_write(int i, uint32_t val) { if (soc_decode_win_spec->ddr_br_write != NULL) soc_decode_win_spec->ddr_br_write(i, val); } static inline void ddr_sz_write(int i, uint32_t val) { if (soc_decode_win_spec->ddr_sz_write != NULL) soc_decode_win_spec->ddr_sz_write(i, val); } #else /* * On 88F6781 (Dove) SoC DDR Controller is accessed through * single MBUS <-> AXI bridge. In this case we provide emulated * ddr_br_read() and ddr_sz_read() functions to keep compatibility * with common decoding windows setup code. */ static inline uint32_t ddr_br_read(int i) { uint32_t mmap; /* Read Memory Address Map Register for CS i */ mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0); /* Return CS i base address */ return (mmap & 0xFF000000); } static inline uint32_t ddr_sz_read(int i) { uint32_t mmap, size; /* Read Memory Address Map Register for CS i */ mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0); /* Extract size of CS space in 64kB units */ size = (1 << ((mmap >> 16) & 0x0F)); /* Return CS size and enable/disable status */ return (((size - 1) << 16) | (mmap & 0x01)); } #endif /************************************************************************** * Decode windows helper routines **************************************************************************/ void soc_dump_decode_win(void) { int i; for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) { printf("CPU window#%d: c 0x%08x, b 0x%08x", i, win_cpu_cr_read(i), win_cpu_br_read(i)); if (win_cpu_can_remap(i)) printf(", rl 0x%08x, rh 0x%08x", win_cpu_remap_l_read(i), win_cpu_remap_h_read(i)); printf("\n"); } printf("Internal regs base: 0x%08x\n", bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0)); for (i = 0; i < MV_WIN_DDR_MAX; i++) printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i, ddr_br_read(i), ddr_sz_read(i)); } /************************************************************************** * CPU windows routines **************************************************************************/ int win_cpu_can_remap(int i) { uint32_t dev, rev; soc_id(&dev, &rev); /* Depending on the SoC certain windows have remap capability */ if ((dev == MV_DEV_88F5182 && i < 2) || (dev == MV_DEV_88F5281 && i < 4) || (dev == MV_DEV_88F6281 && i < 4) || (dev == MV_DEV_88F6282 && i < 4) || (dev == MV_DEV_88F6828 && i < 20) || (dev == MV_DEV_88F6820 && i < 20) || (dev == MV_DEV_88F6810 && i < 20) || (dev == MV_DEV_88RC8180 && i < 2) || (dev == MV_DEV_88F6781 && i < 4) || (dev == MV_DEV_MV78100_Z0 && i < 8) || ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8)) return (1); return (0); } /* XXX This should check for overlapping remap fields too.. */ int decode_win_overlap(int win, int win_no, const struct decode_win *wintab) { const struct decode_win *tab; int i; tab = wintab; for (i = 0; i < win_no; i++, tab++) { if (i == win) /* Skip self */ continue; if ((tab->base + tab->size - 1) < (wintab + win)->base) continue; else if (((wintab + win)->base + (wintab + win)->size - 1) < tab->base) continue; else return (i); } return (-1); } int decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size, vm_paddr_t remap) { uint32_t br, cr; int win, i; if (remap == ~0) { win = soc_decode_win_spec->mv_win_cpu_max - 1; i = -1; } else { win = 0; i = 1; } while ((win >= 0) && (win < soc_decode_win_spec->mv_win_cpu_max)) { cr = win_cpu_cr_read(win); if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0) break; if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) | (0x1f << MV_WIN_CPU_TARGET_SHIFT))) == ((attr << MV_WIN_CPU_ATTR_SHIFT) | (target << MV_WIN_CPU_TARGET_SHIFT))) break; win += i; } if ((win < 0) || (win >= soc_decode_win_spec->mv_win_cpu_max) || ((remap != ~0) && (win_cpu_can_remap(win) == 0))) return (-1); br = base & 0xffff0000; win_cpu_br_write(win, br); if (win_cpu_can_remap(win)) { if (remap != ~0) { win_cpu_remap_l_write(win, remap & 0xffff0000); win_cpu_remap_h_write(win, 0); } else { /* * Remap function is not used for a given window * (capable of remapping) - set remap field with the * same value as base. */ win_cpu_remap_l_write(win, base & 0xffff0000); win_cpu_remap_h_write(win, 0); } } cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) | (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT; win_cpu_cr_write(win, cr); return (0); } static void decode_win_cpu_setup(void) { int i; /* Disable all CPU windows */ for (i = 0; i < soc_decode_win_spec->mv_win_cpu_max; i++) { win_cpu_cr_write(i, 0); win_cpu_br_write(i, 0); if (win_cpu_can_remap(i)) { win_cpu_remap_l_write(i, 0); win_cpu_remap_h_write(i, 0); } } for (i = 0; i < cpu_wins_no; i++) if (cpu_wins[i].target > 0) decode_win_cpu_set(cpu_wins[i].target, cpu_wins[i].attr, cpu_wins[i].base, cpu_wins[i].size, cpu_wins[i].remap); } static int decode_win_sdram_fixup(void) { struct mem_region mr[FDT_MEM_REGIONS]; uint8_t window_valid[MV_WIN_DDR_MAX]; int mr_cnt, err, i, j; uint32_t valid_win_num = 0; /* Grab physical memory regions information from device tree. */ err = fdt_get_mem_regions(mr, &mr_cnt, NULL); if (err != 0) return (err); for (i = 0; i < MV_WIN_DDR_MAX; i++) window_valid[i] = 0; /* Try to match entries from device tree with settings from u-boot */ for (i = 0; i < mr_cnt; i++) { for (j = 0; j < MV_WIN_DDR_MAX; j++) { if (ddr_is_active(j) && (ddr_base(j) == mr[i].mr_start) && (ddr_size(j) == mr[i].mr_size)) { window_valid[j] = 1; valid_win_num++; } } } if (mr_cnt != valid_win_num) return (EINVAL); /* Destroy windows without corresponding device tree entry */ for (j = 0; j < MV_WIN_DDR_MAX; j++) { if (ddr_is_active(j) && (window_valid[j] != 1)) { printf("Disabling SDRAM decoding window: %d\n", j); ddr_disable(j); } } return (0); } /* * Check if we're able to cover all active DDR banks. */ static int decode_win_can_cover_ddr(int max) { int i, c; c = 0; for (i = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) c++; if (c > max) { printf("Unable to cover all active DDR banks: " "%d, available windows: %d\n", c, max); return (0); } return (1); } /************************************************************************** * DDR windows routines **************************************************************************/ int ddr_is_active(int i) { if (ddr_sz_read(i) & 0x1) return (1); return (0); } void ddr_disable(int i) { ddr_sz_write(i, 0); ddr_br_write(i, 0); } uint32_t ddr_base(int i) { return (ddr_br_read(i) & 0xff000000); } uint32_t ddr_size(int i) { return ((ddr_sz_read(i) | 0x00ffffff) + 1); } uint32_t ddr_attr(int i) { uint32_t dev, rev, attr; soc_id(&dev, &rev); if (dev == MV_DEV_88RC8180) return ((ddr_sz_read(i) & 0xf0) >> 4); if (dev == MV_DEV_88F6781) return (0); attr = (i == 0 ? 0xe : (i == 1 ? 0xd : (i == 2 ? 0xb : (i == 3 ? 0x7 : 0xff)))); if (platform_io_coherent) attr |= 0x10; return (attr); } uint32_t ddr_target(int i) { uint32_t dev, rev; soc_id(&dev, &rev); if (dev == MV_DEV_88RC8180) { i = (ddr_sz_read(i) & 0xf0) >> 4; return (i == 0xe ? 0xc : (i == 0xd ? 0xd : (i == 0xb ? 0xe : (i == 0x7 ? 0xf : 0xc)))); } /* * On SOCs other than 88RC8180 Mbus unit ID for * DDR SDRAM controller is always 0x0. */ return (0); } /************************************************************************** * CESA windows routines **************************************************************************/ static int decode_win_cesa_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_CESA_MAX)); } static void decode_win_cesa_dump(u_long base) { int i; for (i = 0; i < MV_WIN_CESA_MAX; i++) printf("CESA window#%d: c 0x%08x, b 0x%08x\n", i, win_cesa_cr_read(base, i), win_cesa_br_read(base, i)); } /* * Set CESA decode windows. */ static void decode_win_cesa_setup(u_long base) { uint32_t br, cr; uint64_t size; int i, j; for (i = 0; i < MV_WIN_CESA_MAX; i++) { win_cesa_cr_write(base, i, 0); win_cesa_br_write(base, i, 0); } /* Only access to active DRAM banks is required */ for (i = 0; i < MV_WIN_DDR_MAX; i++) { if (ddr_is_active(i)) { br = ddr_base(i); size = ddr_size(i); /* * Armada 38x SoC's equipped with 4GB DRAM * suffer freeze during CESA operation, if * MBUS window opened at given DRAM CS reaches * end of the address space. Apply a workaround * by setting the window size to the closest possible * value, i.e. divide it by 2. */ if ((soc_family == MV_SOC_ARMADA_38X) && (size + ddr_base(i) == 0x100000000ULL)) size /= 2; cr = (((size - 1) & 0xffff0000) | (ddr_attr(i) << IO_WIN_ATTR_SHIFT) | (ddr_target(i) << IO_WIN_TGT_SHIFT) | IO_WIN_ENA_MASK); /* Set the first free CESA window */ for (j = 0; j < MV_WIN_CESA_MAX; j++) { if (win_cesa_cr_read(base, j) & 0x1) continue; win_cesa_br_write(base, j, br); win_cesa_cr_write(base, j, cr); break; } } } } static void decode_win_a38x_cesa_setup(u_long base) { decode_win_cesa_setup(base); decode_win_cesa_setup(base + MV_WIN_CESA_OFFSET); } static void decode_win_a38x_cesa_dump(u_long base) { decode_win_cesa_dump(base); decode_win_cesa_dump(base + MV_WIN_CESA_OFFSET); } /************************************************************************** * USB windows routines **************************************************************************/ static int decode_win_usb_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_USB_MAX)); } static void decode_win_usb_dump(u_long base) { int i; if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1))) return; for (i = 0; i < MV_WIN_USB_MAX; i++) printf("USB window#%d: c 0x%08x, b 0x%08x\n", i, win_usb_cr_read(base, i), win_usb_br_read(base, i)); } /* * Set USB decode windows. */ static void decode_win_usb_setup(u_long base) { uint32_t br, cr; int i, j; if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port))) return; usb_port++; for (i = 0; i < MV_WIN_USB_MAX; i++) { win_usb_cr_write(base, i, 0); win_usb_br_write(base, i, 0); } /* Only access to active DRAM banks is required */ for (i = 0; i < MV_WIN_DDR_MAX; i++) { if (ddr_is_active(i)) { br = ddr_base(i); /* * XXX for 6281 we should handle Mbus write * burst limit field in the ctrl reg */ cr = (((ddr_size(i) - 1) & 0xffff0000) | (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1); /* Set the first free USB window */ for (j = 0; j < MV_WIN_USB_MAX; j++) { if (win_usb_cr_read(base, j) & 0x1) continue; win_usb_br_write(base, j, br); win_usb_cr_write(base, j, cr); break; } } } } /************************************************************************** * USB3 windows routines **************************************************************************/ static int decode_win_usb3_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX)); } static void decode_win_usb3_dump(u_long base) { int i; for (i = 0; i < MV_WIN_USB3_MAX; i++) printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i, win_usb3_cr_read(base, i), win_usb3_br_read(base, i)); } /* * Set USB3 decode windows */ static void decode_win_usb3_setup(u_long base) { uint32_t br, cr; int i, j; for (i = 0; i < MV_WIN_USB3_MAX; i++) { win_usb3_cr_write(base, i, 0); win_usb3_br_write(base, i, 0); } /* Only access to active DRAM banks is required */ for (i = 0; i < MV_WIN_DDR_MAX; i++) { if (ddr_is_active(i)) { br = ddr_base(i); cr = (((ddr_size(i) - 1) & (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) | (ddr_attr(i) << IO_WIN_ATTR_SHIFT) | (ddr_target(i) << IO_WIN_TGT_SHIFT) | IO_WIN_ENA_MASK); /* Set the first free USB3.0 window */ for (j = 0; j < MV_WIN_USB3_MAX; j++) { if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK) continue; win_usb3_br_write(base, j, br); win_usb3_cr_write(base, j, cr); break; } } } } /************************************************************************** * ETH windows routines **************************************************************************/ static int win_eth_can_remap(int i) { /* ETH encode windows 0-3 have remap capability */ if (i < 4) return (1); return (0); } static int eth_bare_read(uint32_t base, int i) { uint32_t v; v = win_eth_bare_read(base); v &= (1 << i); return (v >> i); } static void eth_bare_write(uint32_t base, int i, int val) { uint32_t v; v = win_eth_bare_read(base); v &= ~(1 << i); v |= (val << i); win_eth_bare_write(base, v); } static void eth_epap_write(uint32_t base, int i, int val) { uint32_t v; v = win_eth_epap_read(base); v &= ~(0x3 << (i * 2)); v |= (val << (i * 2)); win_eth_epap_write(base, v); } static void decode_win_eth_dump(u_long base) { int i; if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1))) return; for (i = 0; i < MV_WIN_ETH_MAX; i++) { printf("ETH window#%d: b 0x%08x, s 0x%08x", i, win_eth_br_read(base, i), win_eth_sz_read(base, i)); if (win_eth_can_remap(i)) printf(", ha 0x%08x", win_eth_har_read(base, i)); printf("\n"); } printf("ETH windows: bare 0x%08x, epap 0x%08x\n", win_eth_bare_read(base), win_eth_epap_read(base)); } #define MV_WIN_ETH_DDR_TRGT(n) ddr_target(n) static void decode_win_eth_setup(u_long base) { uint32_t br, sz; int i, j; if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port))) return; eth_port++; /* Disable, clear and revoke protection for all ETH windows */ for (i = 0; i < MV_WIN_ETH_MAX; i++) { eth_bare_write(base, i, 1); eth_epap_write(base, i, 0); win_eth_br_write(base, i, 0); win_eth_sz_write(base, i, 0); if (win_eth_can_remap(i)) win_eth_har_write(base, i, 0); } /* Only access to active DRAM banks is required */ for (i = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) { br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i); sz = ((ddr_size(i) - 1) & 0xffff0000); /* Set the first free ETH window */ for (j = 0; j < MV_WIN_ETH_MAX; j++) { if (eth_bare_read(base, j) == 0) continue; win_eth_br_write(base, j, br); win_eth_sz_write(base, j, sz); /* XXX remapping ETH windows not supported */ /* Set protection RW */ eth_epap_write(base, j, 0x3); /* Enable window */ eth_bare_write(base, j, 0); break; } } } static void decode_win_neta_dump(u_long base) { decode_win_eth_dump(base + MV_WIN_NETA_OFFSET); } static void decode_win_neta_setup(u_long base) { decode_win_eth_setup(base + MV_WIN_NETA_OFFSET); } static int decode_win_eth_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX)); } /************************************************************************** * PCIE windows routines **************************************************************************/ static void decode_win_pcie_dump(u_long base) { int i; printf("PCIE windows base 0x%08lx\n", base); for (i = 0; i < MV_WIN_PCIE_MAX; i++) printf("PCIE window#%d: cr 0x%08x br 0x%08x remap 0x%08x\n", i, win_pcie_cr_read(base, i), win_pcie_br_read(base, i), win_pcie_remap_read(base, i)); for (i = 0; i < MV_PCIE_BAR_MAX; i++) printf("PCIE bar#%d: cr 0x%08x br 0x%08x brh 0x%08x\n", i, pcie_bar_cr_read(base, i), pcie_bar_br_read(base, i), pcie_bar_brh_read(base, i)); } void decode_win_pcie_setup(u_long base) { uint32_t size = 0, ddrbase = ~0; uint32_t cr, br; int i, j; for (i = 0; i < MV_PCIE_BAR_MAX; i++) { pcie_bar_br_write(base, i, MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN); if (i < 3) pcie_bar_brh_write(base, i, 0); if (i > 0) pcie_bar_cr_write(base, i, 0); } for (i = 0; i < MV_WIN_PCIE_MAX; i++) { win_pcie_cr_write(base, i, 0); win_pcie_br_write(base, i, 0); win_pcie_remap_write(base, i, 0); } /* On End-Point only set BAR size to 1MB regardless of DDR size */ if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL) & MV_PCIE_ROOT_CMPLX) == 0) { pcie_bar_cr_write(base, 1, 0xf0000 | 1); return; } for (i = 0; i < MV_WIN_DDR_MAX; i++) { if (ddr_is_active(i)) { /* Map DDR to BAR 1 */ cr = (ddr_size(i) - 1) & 0xffff0000; size += ddr_size(i) & 0xffff0000; cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1; br = ddr_base(i); if (br < ddrbase) ddrbase = br; /* Use the first available PCIE window */ for (j = 0; j < MV_WIN_PCIE_MAX; j++) { if (win_pcie_cr_read(base, j) != 0) continue; win_pcie_br_write(base, j, br); win_pcie_cr_write(base, j, cr); break; } } } /* * Upper 16 bits in BAR register is interpreted as BAR size * (in 64 kB units) plus 64kB, so subtract 0x10000 * form value passed to register to get correct value. */ size -= 0x10000; pcie_bar_cr_write(base, 1, size | 1); pcie_bar_br_write(base, 1, ddrbase | MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN); pcie_bar_br_write(base, 0, fdt_immr_pa | MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN); } static int decode_win_pcie_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX)); } /************************************************************************** * IDMA windows routines **************************************************************************/ #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY) static int idma_bare_read(u_long base, int i) { uint32_t v; v = win_idma_bare_read(base); v &= (1 << i); return (v >> i); } static void idma_bare_write(u_long base, int i, int val) { uint32_t v; v = win_idma_bare_read(base); v &= ~(1 << i); v |= (val << i); win_idma_bare_write(base, v); } /* * Sets channel protection 'val' for window 'w' on channel 'c' */ static void idma_cap_write(u_long base, int c, int w, int val) { uint32_t v; v = win_idma_cap_read(base, c); v &= ~(0x3 << (w * 2)); v |= (val << (w * 2)); win_idma_cap_write(base, c, v); } /* * Set protection 'val' on all channels for window 'w' */ static void idma_set_prot(u_long base, int w, int val) { int c; for (c = 0; c < MV_IDMA_CHAN_MAX; c++) idma_cap_write(base, c, w, val); } static int win_idma_can_remap(int i) { /* IDMA decode windows 0-3 have remap capability */ if (i < 4) return (1); return (0); } void decode_win_idma_setup(u_long base) { uint32_t br, sz; int i, j; if (pm_is_disabled(CPU_PM_CTRL_IDMA)) return; /* * Disable and clear all IDMA windows, revoke protection for all channels */ for (i = 0; i < MV_WIN_IDMA_MAX; i++) { idma_bare_write(base, i, 1); win_idma_br_write(base, i, 0); win_idma_sz_write(base, i, 0); if (win_idma_can_remap(i) == 1) win_idma_har_write(base, i, 0); } for (i = 0; i < MV_IDMA_CHAN_MAX; i++) win_idma_cap_write(base, i, 0); /* * Set up access to all active DRAM banks */ for (i = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) { br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i); sz = ((ddr_size(i) - 1) & 0xffff0000); /* Place DDR entries in non-remapped windows */ for (j = 0; j < MV_WIN_IDMA_MAX; j++) if (win_idma_can_remap(j) != 1 && idma_bare_read(base, j) == 1) { /* Configure window */ win_idma_br_write(base, j, br); win_idma_sz_write(base, j, sz); /* Set protection RW on all channels */ idma_set_prot(base, j, 0x3); /* Enable window */ idma_bare_write(base, j, 0); break; } } /* * Remaining targets -- from statically defined table */ for (i = 0; i < idma_wins_no; i++) if (idma_wins[i].target > 0) { br = (idma_wins[i].base & 0xffff0000) | (idma_wins[i].attr << 8) | idma_wins[i].target; sz = ((idma_wins[i].size - 1) & 0xffff0000); /* Set the first free IDMA window */ for (j = 0; j < MV_WIN_IDMA_MAX; j++) { if (idma_bare_read(base, j) == 0) continue; /* Configure window */ win_idma_br_write(base, j, br); win_idma_sz_write(base, j, sz); if (win_idma_can_remap(j) && idma_wins[j].remap >= 0) win_idma_har_write(base, j, idma_wins[j].remap); /* Set protection RW on all channels */ idma_set_prot(base, j, 0x3); /* Enable window */ idma_bare_write(base, j, 0); break; } } } int decode_win_idma_valid(void) { const struct decode_win *wintab; int c, i, j, rv; uint32_t b, e, s; if (idma_wins_no > MV_WIN_IDMA_MAX) { printf("IDMA windows: too many entries: %d\n", idma_wins_no); return (0); } for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) c++; if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) { printf("IDMA windows: too many entries: %d, available: %d\n", idma_wins_no, MV_WIN_IDMA_MAX - c); return (0); } wintab = idma_wins; rv = 1; for (i = 0; i < idma_wins_no; i++, wintab++) { if (wintab->target == 0) { printf("IDMA window#%d: DDR target window is not " "supposed to be reprogrammed!\n", i); rv = 0; } if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) { printf("IDMA window#%d: not capable of remapping, but " "val 0x%08x defined\n", i, wintab->remap); rv = 0; } s = wintab->size; b = wintab->base; e = b + s - 1; if (s > (0xFFFFFFFF - b + 1)) { /* XXX this boundary check should account for 64bit and * remapping.. */ printf("IDMA window#%d: no space for size 0x%08x at " "0x%08x\n", i, s, b); rv = 0; continue; } j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]); if (j >= 0) { printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps " "with #%d (0x%08x - 0x%08x)\n", i, b, e, j, idma_wins[j].base, idma_wins[j].base + idma_wins[j].size - 1); rv = 0; } } return (rv); } void decode_win_idma_dump(u_long base) { int i; if (pm_is_disabled(CPU_PM_CTRL_IDMA)) return; for (i = 0; i < MV_WIN_IDMA_MAX; i++) { printf("IDMA window#%d: b 0x%08x, s 0x%08x", i, win_idma_br_read(base, i), win_idma_sz_read(base, i)); if (win_idma_can_remap(i)) printf(", ha 0x%08x", win_idma_har_read(base, i)); printf("\n"); } for (i = 0; i < MV_IDMA_CHAN_MAX; i++) printf("IDMA channel#%d: ap 0x%08x\n", i, win_idma_cap_read(base, i)); printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base)); } #else /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */ int decode_win_idma_valid(void) { return (1); } void decode_win_idma_setup(u_long base) { } void decode_win_idma_dump(u_long base) { } #endif /************************************************************************** * XOR windows routines **************************************************************************/ #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY) static int xor_ctrl_read(u_long base, int i, int c, int e) { uint32_t v; v = win_xor_ctrl_read(base, c, e); v &= (1 << i); return (v >> i); } static void xor_ctrl_write(u_long base, int i, int c, int e, int val) { uint32_t v; v = win_xor_ctrl_read(base, c, e); v &= ~(1 << i); v |= (val << i); win_xor_ctrl_write(base, c, e, v); } /* * Set channel protection 'val' for window 'w' on channel 'c' */ static void xor_chan_write(u_long base, int c, int e, int w, int val) { uint32_t v; v = win_xor_ctrl_read(base, c, e); v &= ~(0x3 << (w * 2 + 16)); v |= (val << (w * 2 + 16)); win_xor_ctrl_write(base, c, e, v); } /* * Set protection 'val' on all channels for window 'w' on engine 'e' */ static void xor_set_prot(u_long base, int w, int e, int val) { int c; for (c = 0; c < MV_XOR_CHAN_MAX; c++) xor_chan_write(base, c, e, w, val); } static int win_xor_can_remap(int i) { /* XOR decode windows 0-3 have remap capability */ if (i < 4) return (1); return (0); } static int xor_max_eng(void) { uint32_t dev, rev; soc_id(&dev, &rev); switch (dev) { case MV_DEV_88F6281: case MV_DEV_88F6282: case MV_DEV_MV78130: case MV_DEV_MV78160: case MV_DEV_MV78230: case MV_DEV_MV78260: case MV_DEV_MV78460: return (2); case MV_DEV_MV78100: case MV_DEV_MV78100_Z0: return (1); default: return (0); } } static void xor_active_dram(u_long base, int c, int e, int *window) { uint32_t br, sz; int i, m, w; /* * Set up access to all active DRAM banks */ m = xor_max_eng(); for (i = 0; i < m; i++) if (ddr_is_active(i)) { br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i); sz = ((ddr_size(i) - 1) & 0xffff0000); /* Place DDR entries in non-remapped windows */ for (w = 0; w < MV_WIN_XOR_MAX; w++) if (win_xor_can_remap(w) != 1 && (xor_ctrl_read(base, w, c, e) == 0) && w > *window) { /* Configure window */ win_xor_br_write(base, w, e, br); win_xor_sz_write(base, w, e, sz); /* Set protection RW on all channels */ xor_set_prot(base, w, e, 0x3); /* Enable window */ xor_ctrl_write(base, w, c, e, 1); (*window)++; break; } } } void decode_win_xor_setup(u_long base) { uint32_t br, sz; int i, j, z, e = 1, m, window; if (pm_is_disabled(CPU_PM_CTRL_XOR)) return; /* * Disable and clear all XOR windows, revoke protection for all * channels */ m = xor_max_eng(); for (j = 0; j < m; j++, e--) { /* Number of non-remaped windows */ window = MV_XOR_NON_REMAP - 1; for (i = 0; i < MV_WIN_XOR_MAX; i++) { win_xor_br_write(base, i, e, 0); win_xor_sz_write(base, i, e, 0); } if (win_xor_can_remap(i) == 1) win_xor_har_write(base, i, e, 0); for (i = 0; i < MV_XOR_CHAN_MAX; i++) { win_xor_ctrl_write(base, i, e, 0); xor_active_dram(base, i, e, &window); } /* * Remaining targets -- from a statically defined table */ for (i = 0; i < xor_wins_no; i++) if (xor_wins[i].target > 0) { br = (xor_wins[i].base & 0xffff0000) | (xor_wins[i].attr << 8) | xor_wins[i].target; sz = ((xor_wins[i].size - 1) & 0xffff0000); /* Set the first free XOR window */ for (z = 0; z < MV_WIN_XOR_MAX; z++) { if (xor_ctrl_read(base, z, 0, e) && xor_ctrl_read(base, z, 1, e)) continue; /* Configure window */ win_xor_br_write(base, z, e, br); win_xor_sz_write(base, z, e, sz); if (win_xor_can_remap(z) && xor_wins[z].remap >= 0) win_xor_har_write(base, z, e, xor_wins[z].remap); /* Set protection RW on all channels */ xor_set_prot(base, z, e, 0x3); /* Enable window */ xor_ctrl_write(base, z, 0, e, 1); xor_ctrl_write(base, z, 1, e, 1); break; } } } } int decode_win_xor_valid(void) { const struct decode_win *wintab; int c, i, j, rv; uint32_t b, e, s; if (xor_wins_no > MV_WIN_XOR_MAX) { printf("XOR windows: too many entries: %d\n", xor_wins_no); return (0); } for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) c++; if (xor_wins_no > (MV_WIN_XOR_MAX - c)) { printf("XOR windows: too many entries: %d, available: %d\n", xor_wins_no, MV_WIN_IDMA_MAX - c); return (0); } wintab = xor_wins; rv = 1; for (i = 0; i < xor_wins_no; i++, wintab++) { if (wintab->target == 0) { printf("XOR window#%d: DDR target window is not " "supposed to be reprogrammed!\n", i); rv = 0; } if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) { printf("XOR window#%d: not capable of remapping, but " "val 0x%08x defined\n", i, wintab->remap); rv = 0; } s = wintab->size; b = wintab->base; e = b + s - 1; if (s > (0xFFFFFFFF - b + 1)) { /* * XXX this boundary check should account for 64bit * and remapping.. */ printf("XOR window#%d: no space for size 0x%08x at " "0x%08x\n", i, s, b); rv = 0; continue; } j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]); if (j >= 0) { printf("XOR window#%d: (0x%08x - 0x%08x) overlaps " "with #%d (0x%08x - 0x%08x)\n", i, b, e, j, xor_wins[j].base, xor_wins[j].base + xor_wins[j].size - 1); rv = 0; } } return (rv); } void decode_win_xor_dump(u_long base) { int i, j; int e = 1; if (pm_is_disabled(CPU_PM_CTRL_XOR)) return; for (j = 0; j < xor_max_eng(); j++, e--) { for (i = 0; i < MV_WIN_XOR_MAX; i++) { printf("XOR window#%d: b 0x%08x, s 0x%08x", i, win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e)); if (win_xor_can_remap(i)) printf(", ha 0x%08x", win_xor_har_read(base, i, e)); printf("\n"); } for (i = 0; i < MV_XOR_CHAN_MAX; i++) printf("XOR control#%d: 0x%08x\n", i, win_xor_ctrl_read(base, i, e)); } } #else /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */ static int decode_win_xor_valid(void) { return (1); } static void decode_win_xor_setup(u_long base) { } static void decode_win_xor_dump(u_long base) { } #endif /************************************************************************** * SATA windows routines **************************************************************************/ static void decode_win_sata_setup(u_long base) { uint32_t cr, br; int i, j; if (pm_is_disabled(CPU_PM_CTRL_SATA)) return; for (i = 0; i < MV_WIN_SATA_MAX; i++) { win_sata_cr_write(base, i, 0); win_sata_br_write(base, i, 0); } for (i = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) { cr = ((ddr_size(i) - 1) & 0xffff0000) | (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1; br = ddr_base(i); /* Use the first available SATA window */ for (j = 0; j < MV_WIN_SATA_MAX; j++) { if ((win_sata_cr_read(base, j) & 1) != 0) continue; win_sata_br_write(base, j, br); win_sata_cr_write(base, j, cr); break; } } } /* * Configure AHCI decoding windows */ static void decode_win_ahci_setup(u_long base) { uint32_t br, cr, sz; int i, j; for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) { win_sata_armada38x_cr_write(base, i, 0); win_sata_armada38x_br_write(base, i, 0); win_sata_armada38x_sz_write(base, i, 0); } for (i = 0; i < MV_WIN_DDR_MAX; i++) { if (ddr_is_active(i)) { cr = (ddr_attr(i) << IO_WIN_ATTR_SHIFT) | (ddr_target(i) << IO_WIN_TGT_SHIFT) | IO_WIN_ENA_MASK; br = ddr_base(i); sz = (ddr_size(i) - 1) & (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT); /* Use first available SATA window */ for (j = 0; j < MV_WIN_SATA_MAX_ARMADA38X; j++) { if (win_sata_armada38x_cr_read(base, j) & IO_WIN_ENA_MASK) continue; /* BASE is set to DRAM base (0x00000000) */ win_sata_armada38x_br_write(base, j, br); /* CTRL targets DRAM ctrl with 0x0E or 0x0D */ win_sata_armada38x_cr_write(base, j, cr); /* SIZE is set to 16MB - max value */ win_sata_armada38x_sz_write(base, j, sz); break; } } } } static void decode_win_ahci_dump(u_long base) { int i; for (i = 0; i < MV_WIN_SATA_MAX_ARMADA38X; i++) printf("SATA window#%d: cr 0x%08x, br 0x%08x, sz 0x%08x\n", i, win_sata_armada38x_cr_read(base, i), win_sata_br_read(base, i), win_sata_armada38x_sz_read(base,i)); } static int decode_win_sata_valid(void) { uint32_t dev, rev; soc_id(&dev, &rev); if (dev == MV_DEV_88F5281) return (1); return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX)); } static void decode_win_sdhci_setup(u_long base) { uint32_t cr, br; int i, j; for (i = 0; i < MV_WIN_SDHCI_MAX; i++) { win_sdhci_cr_write(base, i, 0); win_sdhci_br_write(base, i, 0); } for (i = 0; i < MV_WIN_DDR_MAX; i++) if (ddr_is_active(i)) { br = ddr_base(i); cr = (((ddr_size(i) - 1) & (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) | (ddr_attr(i) << IO_WIN_ATTR_SHIFT) | (ddr_target(i) << IO_WIN_TGT_SHIFT) | IO_WIN_ENA_MASK); /* Use the first available SDHCI window */ for (j = 0; j < MV_WIN_SDHCI_MAX; j++) { if (win_sdhci_cr_read(base, j) & IO_WIN_ENA_MASK) continue; win_sdhci_cr_write(base, j, cr); win_sdhci_br_write(base, j, br); break; } } } static void decode_win_sdhci_dump(u_long base) { int i; for (i = 0; i < MV_WIN_SDHCI_MAX; i++) printf("SDHCI window#%d: c 0x%08x, b 0x%08x\n", i, win_sdhci_cr_read(base, i), win_sdhci_br_read(base, i)); } static int decode_win_sdhci_valid(void) { return (decode_win_can_cover_ddr(MV_WIN_SDHCI_MAX)); } /************************************************************************** * FDT parsing routines. **************************************************************************/ static int fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples, int *tuplesize) { phandle_t node; pcell_t addr_cells, par_addr_cells, size_cells; int len, tuple_size, tuples_count; node = OF_finddevice(nodename); if (node == -1) return (EINVAL); if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0) return (ENXIO); par_addr_cells = fdt_parent_addr_cells(node); if (par_addr_cells > 2) return (ERANGE); tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells + size_cells); /* Note the OF_getprop_alloc() cannot be used at this early stage. */ len = OF_getprop(node, "ranges", buf, size); /* * XXX this does not handle the empty 'ranges;' case, which is * legitimate and should be allowed. */ tuples_count = len / tuple_size; if (tuples_count <= 0) return (ERANGE); if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2) return (ERANGE); *tuples = tuples_count; *tuplesize = tuple_size; return (0); } static int win_cpu_from_dt(void) { pcell_t ranges[48]; phandle_t node; int i, entry_size, err, t, tuple_size, tuples; u_long sram_base, sram_size; t = 0; /* Retrieve 'ranges' property of '/localbus' node. */ if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges), &tuples, &tuple_size)) == 0) { /* * Fill CPU decode windows table. */ bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl)); entry_size = tuple_size / sizeof(pcell_t); cpu_wins_no = tuples; /* Check range */ if (tuples > nitems(cpu_win_tbl)) { debugf("too many tuples to fit into cpu_win_tbl\n"); return (ENOMEM); } for (i = 0, t = 0; t < tuples; i += entry_size, t++) { cpu_win_tbl[t].target = 1; cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]); cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]); cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]); cpu_win_tbl[t].remap = ~0; debugf("target = 0x%0x attr = 0x%0x base = 0x%0x " "size = 0x%0x remap = 0x%0x\n", cpu_win_tbl[t].target, cpu_win_tbl[t].attr, cpu_win_tbl[t].base, cpu_win_tbl[t].size, cpu_win_tbl[t].remap); } } /* * Retrieve CESA SRAM data. */ if ((node = OF_finddevice("sram")) != -1) if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) goto moveon; if ((node = OF_finddevice("/")) == -1) return (ENXIO); if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0) /* SRAM block is not always present. */ return (0); moveon: sram_base = sram_size = 0; if (fdt_regsize(node, &sram_base, &sram_size) != 0) return (EINVAL); /* Check range */ if (t >= nitems(cpu_win_tbl)) { debugf("cannot fit CESA tuple into cpu_win_tbl\n"); return (ENOMEM); } cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target; if (soc_family == MV_SOC_ARMADA_38X) cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(0); else cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1); cpu_win_tbl[t].base = sram_base; cpu_win_tbl[t].size = sram_size; cpu_win_tbl[t].remap = ~0; cpu_wins_no++; debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size); /* Check if there is a second CESA node */ while ((node = OF_peer(node)) != 0) { if (ofw_bus_node_is_compatible(node, "mrvl,cesa-sram")) { if (fdt_regsize(node, &sram_base, &sram_size) != 0) return (EINVAL); break; } } if (node == 0) return (0); t++; if (t >= nitems(cpu_win_tbl)) { debugf("cannot fit CESA tuple into cpu_win_tbl\n"); return (ENOMEM); } /* Configure window for CESA1 */ cpu_win_tbl[t].target = soc_decode_win_spec->win_cesa_target; cpu_win_tbl[t].attr = soc_decode_win_spec->win_cesa_attr(1); cpu_win_tbl[t].base = sram_base; cpu_win_tbl[t].size = sram_size; cpu_win_tbl[t].remap = ~0; cpu_wins_no++; debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size); return (0); } static int fdt_win_process(phandle_t child) { int i, ret; for (i = 0; soc_nodes[i].compat != NULL; i++) { /* Setup only for enabled devices */ if (ofw_bus_node_status_okay(child) == 0) continue; if (!ofw_bus_node_is_compatible(child, soc_nodes[i].compat)) continue; ret = fdt_win_process_child(child, &soc_nodes[i], "reg"); if (ret != 0) return (ret); } return (0); } static int fdt_win_process_child(phandle_t child, struct soc_node_spec *soc_node, const char* mimo_reg_source) { int addr_cells, size_cells; pcell_t reg[8]; u_long base; if (fdt_addrsize_cells(OF_parent(child), &addr_cells, &size_cells)) return (ENXIO); if ((sizeof(pcell_t) * (addr_cells + size_cells)) > sizeof(reg)) return (ENOMEM); if (OF_getprop(child, mimo_reg_source, ®, sizeof(reg)) <= 0) return (EINVAL); if (addr_cells <= 2) base = fdt_data_get(®[0], addr_cells); else base = fdt_data_get(®[addr_cells - 2], 2); fdt_data_get(®[addr_cells], size_cells); if (soc_node->valid_handler != NULL) if (!soc_node->valid_handler()) return (EINVAL); base = (base & 0x000fffff) | fdt_immr_va; if (soc_node->decode_handler != NULL) soc_node->decode_handler(base); else return (ENXIO); if (MV_DUMP_WIN && (soc_node->dump_handler != NULL)) soc_node->dump_handler(base); return (0); } static int fdt_win_setup(void) { phandle_t node, child, sb; phandle_t child_pci; int err; sb = 0; node = OF_finddevice("/"); if (node == -1) panic("fdt_win_setup: no root node"); /* Allow for coherent transactions on the A38x MBUS */ if (ofw_bus_node_is_compatible(node, "marvell,armada380")) platform_io_coherent = true; /* * Traverse through all children of root and simple-bus nodes. * For each found device retrieve decode windows data (if applicable). */ child = OF_child(node); while (child != 0) { /* Lookup for callback and run */ err = fdt_win_process(child); if (err != 0) return (err); /* Process Marvell Armada-XP/38x PCIe controllers */ if (ofw_bus_node_is_compatible(child, "marvell,armada-370-pcie")) { child_pci = OF_child(child); while (child_pci != 0) { err = fdt_win_process_child(child_pci, &soc_nodes[SOC_NODE_PCIE_ENTRY_IDX], "assigned-addresses"); if (err != 0) return (err); child_pci = OF_peer(child_pci); } } /* * Once done with root-level children let's move down to * simple-bus and its children. */ child = OF_peer(child); if ((child == 0) && (node == OF_finddevice("/"))) { sb = node = fdt_find_compatible(node, "simple-bus", 0); if (node == 0) return (ENXIO); child = OF_child(node); } /* * Next, move one more level down to internal-regs node (if * it is present) and its children. This node also have * "simple-bus" compatible. */ if ((child == 0) && (node == sb)) { node = fdt_find_compatible(node, "simple-bus", 0); if (node == 0) return (0); child = OF_child(node); } } return (0); } static void fdt_fixup_busfreq(phandle_t root) { phandle_t sb; pcell_t freq; freq = cpu_to_fdt32(get_tclk()); /* * Fix bus speed in cpu node */ if ((sb = OF_finddevice("cpu")) != -1) if (fdt_is_compatible_strict(sb, "ARM,88VS584")) OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq)); /* * This fixup sets the simple-bus bus-frequency property. */ if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0) OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq)); } static void fdt_fixup_ranges(phandle_t root) { phandle_t node; pcell_t par_addr_cells, addr_cells, size_cells; pcell_t ranges[3], reg[2], *rangesptr; int len, tuple_size, tuples_count; uint32_t base; /* Fix-up SoC ranges according to real fdt_immr_pa */ if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) { if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 && ((par_addr_cells = fdt_parent_addr_cells(node)) <= 2)) { tuple_size = sizeof(pcell_t) * (par_addr_cells + addr_cells + size_cells); len = OF_getprop(node, "ranges", ranges, sizeof(ranges)); tuples_count = len / tuple_size; /* Unexpected settings are not supported */ if (tuples_count != 1) goto fixup_failed; rangesptr = &ranges[0]; rangesptr += par_addr_cells; base = fdt_data_get((void *)rangesptr, addr_cells); *rangesptr = cpu_to_fdt32(fdt_immr_pa); if (OF_setprop(node, "ranges", (void *)&ranges[0], sizeof(ranges)) < 0) goto fixup_failed; } } /* Fix-up PCIe reg according to real PCIe registers' PA */ if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) { if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells, &size_cells) == 0) { tuple_size = sizeof(pcell_t) * (par_addr_cells + size_cells); len = OF_getprop(node, "reg", reg, sizeof(reg)); tuples_count = len / tuple_size; /* Unexpected settings are not supported */ if (tuples_count != 1) goto fixup_failed; base = fdt_data_get((void *)®[0], par_addr_cells); base &= ~0xFF000000; base |= fdt_immr_pa; reg[0] = cpu_to_fdt32(base); if (OF_setprop(node, "reg", (void *)®[0], sizeof(reg)) < 0) goto fixup_failed; } } /* Fix-up succeeded. May return and continue */ return; fixup_failed: while (1) { /* * In case of any error while fixing ranges just hang. * 1. No message can be displayed yet since console * is not initialized. * 2. Going further will cause failure on bus_space_map() * relying on the wrong ranges or data abort when * accessing PCIe registers. */ } } struct fdt_fixup_entry fdt_fixup_table[] = { { "mrvl,DB-88F6281", &fdt_fixup_busfreq }, { "mrvl,DB-78460", &fdt_fixup_busfreq }, { "mrvl,DB-78460", &fdt_fixup_ranges }, { NULL, NULL } }; uint32_t get_tclk(void) { if (soc_decode_win_spec->get_tclk != NULL) return soc_decode_win_spec->get_tclk(); else return -1; } uint32_t get_cpu_freq(void) { if (soc_decode_win_spec->get_cpu_freq != NULL) return soc_decode_win_spec->get_cpu_freq(); else return -1; }