/*-
* Copyright (c) 2014 Ruslan Bukin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Vybrid Family Serial Peripheral Interface (SPI)
* Chapter 47, Vybrid Reference Manual, Rev. 5, 07/2013
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "spibus_if.h"
#include
#include
#include
#include
#include
#include
#include
#define SPI_FIFO_SIZE 4
#define SPI_MCR 0x00 /* Module Configuration */
#define MCR_MSTR (1 << 31) /* Master/Slave Mode Select */
#define MCR_CONT_SCKE (1 << 30) /* Continuous SCK Enable */
#define MCR_FRZ (1 << 27) /* Freeze */
#define MCR_PCSIS_S 16 /* Peripheral Chip Select */
#define MCR_PCSIS_M 0x3f
#define MCR_MDIS (1 << 14) /* Module Disable */
#define MCR_CLR_TXF (1 << 11) /* Clear TX FIFO */
#define MCR_CLR_RXF (1 << 10) /* Clear RX FIFO */
#define MCR_HALT (1 << 0) /* Starts and stops SPI transfers */
#define SPI_TCR 0x08 /* Transfer Count */
#define SPI_CTAR0 0x0C /* Clock and Transfer Attributes */
#define SPI_CTAR0_SLAVE 0x0C /* Clock and Transfer Attributes */
#define SPI_CTAR1 0x10 /* Clock and Transfer Attributes */
#define SPI_CTAR2 0x14 /* Clock and Transfer Attributes */
#define SPI_CTAR3 0x18 /* Clock and Transfer Attributes */
#define CTAR_FMSZ_M 0xf
#define CTAR_FMSZ_S 27 /* Frame Size */
#define CTAR_FMSZ_8 0x7 /* 8 bits */
#define CTAR_CPOL (1 << 26) /* Clock Polarity */
#define CTAR_CPHA (1 << 25) /* Clock Phase */
#define CTAR_LSBFE (1 << 24) /* Less significant bit first */
#define CTAR_PCSSCK_M 0x3
#define CTAR_PCSSCK_S 22 /* PCS to SCK Delay Prescaler */
#define CTAR_PBR_M 0x3
#define CTAR_PBR_S 16 /* Baud Rate Prescaler */
#define CTAR_PBR_7 0x3 /* Divide by 7 */
#define CTAR_CSSCK_M 0xf
#define CTAR_CSSCK_S 12 /* PCS to SCK Delay Scaler */
#define CTAR_BR_M 0xf
#define CTAR_BR_S 0 /* Baud Rate Scaler */
#define SPI_SR 0x2C /* Status Register */
#define SR_TCF (1 << 31) /* Transfer Complete Flag */
#define SR_EOQF (1 << 28) /* End of Queue Flag */
#define SR_TFFF (1 << 25) /* Transmit FIFO Fill Flag */
#define SR_RFDF (1 << 17) /* Receive FIFO Drain Flag */
#define SPI_RSER 0x30 /* DMA/Interrupt Select */
#define RSER_EOQF_RE (1 << 28) /* Finished Request Enable */
#define SPI_PUSHR 0x34 /* PUSH TX FIFO In Master Mode */
#define PUSHR_CONT (1 << 31) /* Continuous Peripheral CS */
#define PUSHR_EOQ (1 << 27) /* End Of Queue */
#define PUSHR_CTCNT (1 << 26) /* Clear Transfer Counter */
#define PUSHR_PCS_M 0x3f
#define PUSHR_PCS_S 16 /* Select PCS signals */
#define SPI_PUSHR_SLAVE 0x34 /* PUSH TX FIFO Register In Slave Mode */
#define SPI_POPR 0x38 /* POP RX FIFO Register */
#define SPI_TXFR0 0x3C /* Transmit FIFO Registers */
#define SPI_TXFR1 0x40
#define SPI_TXFR2 0x44
#define SPI_TXFR3 0x48
#define SPI_RXFR0 0x7C /* Receive FIFO Registers */
#define SPI_RXFR1 0x80
#define SPI_RXFR2 0x84
#define SPI_RXFR3 0x88
struct spi_softc {
struct resource *res[2];
bus_space_tag_t bst;
bus_space_handle_t bsh;
void *ih;
};
static struct resource_spec spi_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static int
spi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fsl,mvf600-spi"))
return (ENXIO);
device_set_desc(dev, "Vybrid Family Serial Peripheral Interface");
return (BUS_PROBE_DEFAULT);
}
static int
spi_attach(device_t dev)
{
struct spi_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
if (bus_alloc_resources(dev, spi_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
reg = READ4(sc, SPI_MCR);
reg |= MCR_MSTR;
reg &= ~(MCR_CONT_SCKE | MCR_MDIS | MCR_FRZ);
reg &= ~(MCR_PCSIS_M << MCR_PCSIS_S);
reg |= (MCR_PCSIS_M << MCR_PCSIS_S); /* PCS Active low */
reg |= (MCR_CLR_TXF | MCR_CLR_RXF);
WRITE4(sc, SPI_MCR, reg);
reg = READ4(sc, SPI_RSER);
reg |= RSER_EOQF_RE;
WRITE4(sc, SPI_RSER, reg);
reg = READ4(sc, SPI_MCR);
reg &= ~MCR_HALT;
WRITE4(sc, SPI_MCR, reg);
reg = READ4(sc, SPI_CTAR0);
reg &= ~(CTAR_FMSZ_M << CTAR_FMSZ_S);
reg |= (CTAR_FMSZ_8 << CTAR_FMSZ_S);
/*
* TODO: calculate BR
* SCK baud rate = ( fsys / PBR ) * (1 + DBR) / BR
*
* reg &= ~(CTAR_BR_M << CTAR_BR_S);
*/
reg &= ~CTAR_CPOL; /* Polarity */
reg |= CTAR_CPHA;
/*
* Set LSB (Less significant bit first)
* must be used for some applications, e.g. some LCDs
*/
reg |= CTAR_LSBFE;
WRITE4(sc, SPI_CTAR0, reg);
reg = READ4(sc, SPI_CTAR0);
reg &= ~(CTAR_PBR_M << CTAR_PBR_S);
reg |= (CTAR_PBR_7 << CTAR_PBR_S);
WRITE4(sc, SPI_CTAR0, reg);
device_add_child(dev, "spibus", 0);
return (bus_generic_attach(dev));
}
static int
spi_txrx(struct spi_softc *sc, uint8_t *out_buf,
uint8_t *in_buf, int bufsz, int cs)
{
uint32_t reg, wreg;
uint32_t txcnt;
uint32_t i;
txcnt = 0;
for (i = 0; i < bufsz; i++) {
txcnt++;
wreg = out_buf[i];
wreg |= PUSHR_CONT;
wreg |= (cs << PUSHR_PCS_S);
if (i == 0)
wreg |= PUSHR_CTCNT;
if (i == (bufsz - 1) || txcnt == SPI_FIFO_SIZE)
wreg |= PUSHR_EOQ;
WRITE4(sc, SPI_PUSHR, wreg);
if (i == (bufsz - 1) || txcnt == SPI_FIFO_SIZE) {
txcnt = 0;
/* Wait last entry in a queue to be transmitted */
while((READ4(sc, SPI_SR) & SR_EOQF) == 0)
continue;
reg = READ4(sc, SPI_SR);
reg |= (SR_TCF | SR_EOQF);
WRITE4(sc, SPI_SR, reg);
}
/* Wait until RX FIFO is empty */
while((READ4(sc, SPI_SR) & SR_RFDF) == 0)
continue;
in_buf[i] = READ1(sc, SPI_POPR);
}
return (0);
}
static int
spi_transfer(device_t dev, device_t child, struct spi_command *cmd)
{
struct spi_softc *sc;
uint32_t cs;
sc = device_get_softc(dev);
KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
("%s: TX/RX command sizes should be equal", __func__));
KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
("%s: TX/RX data sizes should be equal", __func__));
/* get the proper chip select */
spibus_get_cs(child, &cs);
cs &= ~SPIBUS_CS_HIGH;
/* Command */
spi_txrx(sc, cmd->tx_cmd, cmd->rx_cmd, cmd->tx_cmd_sz, cs);
/* Data */
spi_txrx(sc, cmd->tx_data, cmd->rx_data, cmd->tx_data_sz, cs);
return (0);
}
static device_method_t spi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, spi_probe),
DEVMETHOD(device_attach, spi_attach),
/* SPI interface */
DEVMETHOD(spibus_transfer, spi_transfer),
{ 0, 0 }
};
static driver_t spi_driver = {
"spi",
spi_methods,
sizeof(struct spi_softc),
};
DRIVER_MODULE(spi, simplebus, spi_driver, 0, 0);