/*-
* Copyright (c) 2014 Ruslan Bukin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Vybrid Family Synchronous Audio Interface (SAI)
* Chapter 51, Vybrid Reference Manual, Rev. 5, 07/2013
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define I2S_TCSR 0x00 /* SAI Transmit Control */
#define I2S_TCR1 0x04 /* SAI Transmit Configuration 1 */
#define I2S_TCR2 0x08 /* SAI Transmit Configuration 2 */
#define I2S_TCR3 0x0C /* SAI Transmit Configuration 3 */
#define I2S_TCR4 0x10 /* SAI Transmit Configuration 4 */
#define I2S_TCR5 0x14 /* SAI Transmit Configuration 5 */
#define I2S_TDR0 0x20 /* SAI Transmit Data */
#define I2S_TFR0 0x40 /* SAI Transmit FIFO */
#define I2S_TMR 0x60 /* SAI Transmit Mask */
#define I2S_RCSR 0x80 /* SAI Receive Control */
#define I2S_RCR1 0x84 /* SAI Receive Configuration 1 */
#define I2S_RCR2 0x88 /* SAI Receive Configuration 2 */
#define I2S_RCR3 0x8C /* SAI Receive Configuration 3 */
#define I2S_RCR4 0x90 /* SAI Receive Configuration 4 */
#define I2S_RCR5 0x94 /* SAI Receive Configuration 5 */
#define I2S_RDR0 0xA0 /* SAI Receive Data */
#define I2S_RFR0 0xC0 /* SAI Receive FIFO */
#define I2S_RMR 0xE0 /* SAI Receive Mask */
#define TCR1_TFW_M 0x1f /* Transmit FIFO Watermark Mask */
#define TCR1_TFW_S 0 /* Transmit FIFO Watermark Shift */
#define TCR2_MSEL_M 0x3 /* MCLK Select Mask*/
#define TCR2_MSEL_S 26 /* MCLK Select Shift*/
#define TCR2_BCP (1 << 25) /* Bit Clock Polarity */
#define TCR2_BCD (1 << 24) /* Bit Clock Direction */
#define TCR3_TCE (1 << 16) /* Transmit Channel Enable */
#define TCR4_FRSZ_M 0x1f /* Frame size Mask */
#define TCR4_FRSZ_S 16 /* Frame size Shift */
#define TCR4_SYWD_M 0x1f /* Sync Width Mask */
#define TCR4_SYWD_S 8 /* Sync Width Shift */
#define TCR4_MF (1 << 4) /* MSB First */
#define TCR4_FSE (1 << 3) /* Frame Sync Early */
#define TCR4_FSP (1 << 1) /* Frame Sync Polarity Low */
#define TCR4_FSD (1 << 0) /* Frame Sync Direction Master */
#define TCR5_FBT_M 0x1f /* First Bit Shifted */
#define TCR5_FBT_S 8 /* First Bit Shifted */
#define TCR5_W0W_M 0x1f /* Word 0 Width */
#define TCR5_W0W_S 16 /* Word 0 Width */
#define TCR5_WNW_M 0x1f /* Word N Width */
#define TCR5_WNW_S 24 /* Word N Width */
#define TCSR_TE (1 << 31) /* Transmitter Enable */
#define TCSR_BCE (1 << 28) /* Bit Clock Enable */
#define TCSR_FRDE (1 << 0) /* FIFO Request DMA Enable */
#define SAI_NCHANNELS 1
static MALLOC_DEFINE(M_SAI, "sai", "sai audio");
struct sai_rate {
uint32_t speed;
uint32_t div; /* Bit Clock Divide. Division value is (div + 1) * 2. */
uint32_t mfi; /* PLL4 Multiplication Factor Integer */
uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
};
/*
* Bit clock divider formula
* (div + 1) * 2 = MCLK/(nch * LRCLK * bits/1000000),
* where:
* MCLK - master clock
* nch - number of channels
* LRCLK - left right clock
* e.g. (div + 1) * 2 = 16.9344/(2 * 44100 * 24/1000000)
*
* Example for 96khz, 24bit, 18.432 Mhz mclk (192fs)
* { 96000, 1, 18, 40176000, 93000000 },
*/
static struct sai_rate rate_map[] = {
{ 44100, 7, 33, 80798400, 93000000 }, /* 33.8688 Mhz */
{ 96000, 3, 36, 80352000, 93000000 }, /* 36.864 Mhz */
{ 192000, 1, 36, 80352000, 93000000 }, /* 36.864 Mhz */
{ 0, 0 },
};
struct sc_info {
struct resource *res[2];
bus_space_tag_t bst;
bus_space_handle_t bsh;
device_t dev;
struct mtx *lock;
uint32_t speed;
uint32_t period;
void *ih;
int pos;
int dma_size;
bus_dma_tag_t dma_tag;
bus_dmamap_t dma_map;
bus_addr_t buf_base_phys;
uint32_t *buf_base;
struct tcd_conf *tcd;
struct sai_rate *sr;
struct edma_softc *edma_sc;
int edma_chnum;
};
/* Channel registers */
struct sc_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_pcminfo *parent;
/* Channel information */
uint32_t dir;
uint32_t format;
/* Flags */
uint32_t run;
};
/* PCM device private data */
struct sc_pcminfo {
device_t dev;
uint32_t (*ih) (struct sc_pcminfo *scp);
uint32_t chnum;
struct sc_chinfo chan[SAI_NCHANNELS];
struct sc_info *sc;
};
static struct resource_spec sai_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static int setup_dma(struct sc_pcminfo *scp);
static void setup_sai(struct sc_info *);
static void sai_configure_clock(struct sc_info *);
/*
* Mixer interface.
*/
static int
saimixer_init(struct snd_mixer *m)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
return -1;
mask = SOUND_MASK_PCM;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
return (0);
}
static int
saimixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
struct sc_pcminfo *scp;
scp = mix_getdevinfo(m);
#if 0
device_printf(scp->dev, "saimixer_set() %d %d\n",
left, right);
#endif
return (0);
}
static kobj_method_t saimixer_methods[] = {
KOBJMETHOD(mixer_init, saimixer_init),
KOBJMETHOD(mixer_set, saimixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(saimixer);
/*
* Channel interface.
*/
static void *
saichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
scp = (struct sc_pcminfo *)devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
ch = &scp->chan[0];
ch->dir = dir;
ch->run = 0;
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
return NULL;
}
return ch;
}
static int
saichan_free(kobj_t obj, void *data)
{
struct sc_chinfo *ch = data;
struct sc_pcminfo *scp = ch->parent;
struct sc_info *sc = scp->sc;
#if 0
device_printf(scp->dev, "saichan_free()\n");
#endif
snd_mtxlock(sc->lock);
/* TODO: free channel buffer */
snd_mtxunlock(sc->lock);
return (0);
}
static int
saichan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct sc_chinfo *ch = data;
ch->format = format;
return (0);
}
static uint32_t
saichan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sai_rate *sr;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
sr = NULL;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
sr = &rate_map[i];
}
/* If no match, just find nearest. */
if (sr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
sr = &rate_map[i];
threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
sc->sr = sr;
sai_configure_clock(sc);
return (sr->speed);
}
static void
sai_configure_clock(struct sc_info *sc)
{
struct sai_rate *sr;
int reg;
sr = sc->sr;
/*
* Manual says that TCR/RCR registers must not be
* altered when TCSR[TE] is set.
* We ignore it since we have problem sometimes
* after re-enabling transmitter (DMA goes stall).
*/
reg = READ4(sc, I2S_TCR2);
reg &= ~(0xff << 0);
reg |= (sr->div << 0);
WRITE4(sc, I2S_TCR2, reg);
pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);
}
static uint32_t
saichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct sc_chinfo *ch = data;
struct sc_pcminfo *scp = ch->parent;
struct sc_info *sc = scp->sc;
sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);
sc->period = sndbuf_getblksz(ch->buffer);
return (sc->period);
}
uint32_t sai_dma_intr(void *arg, int chn);
uint32_t
sai_dma_intr(void *arg, int chn)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
struct tcd_conf *tcd;
scp = arg;
ch = &scp->chan[0];
sc = scp->sc;
tcd = sc->tcd;
sc->pos += (tcd->nbytes * tcd->nmajor);
if (sc->pos >= sc->dma_size)
sc->pos -= sc->dma_size;
if (ch->run)
chn_intr(ch->channel);
return (0);
}
static int
find_edma_controller(struct sc_info *sc)
{
struct edma_softc *edma_sc;
phandle_t node, edma_node;
int edma_src_transmit;
int edma_mux_group;
int edma_device_id;
device_t edma_dev;
int dts_value;
int len;
int i;
if ((node = ofw_bus_get_node(sc->dev)) == -1)
return (ENXIO);
if ((len = OF_getproplen(node, "edma-controller")) <= 0)
return (ENXIO);
if ((len = OF_getproplen(node, "edma-src-transmit")) <= 0)
return (ENXIO);
if ((len = OF_getproplen(node, "edma-mux-group")) <= 0)
return (ENXIO);
OF_getprop(node, "edma-src-transmit", &dts_value, len);
edma_src_transmit = fdt32_to_cpu(dts_value);
OF_getprop(node, "edma-mux-group", &dts_value, len);
edma_mux_group = fdt32_to_cpu(dts_value);
OF_getprop(node, "edma-controller", &dts_value, len);
edma_node = OF_node_from_xref(fdt32_to_cpu(dts_value));
if ((len = OF_getproplen(edma_node, "device-id")) <= 0) {
return (ENXIO);
};
OF_getprop(edma_node, "device-id", &dts_value, len);
edma_device_id = fdt32_to_cpu(dts_value);
edma_sc = NULL;
for (i = 0; i < EDMA_NUM_DEVICES; i++) {
edma_dev = devclass_get_device(devclass_find("edma"), i);
if (edma_dev) {
edma_sc = device_get_softc(edma_dev);
if (edma_sc->device_id == edma_device_id) {
/* found */
break;
};
edma_sc = NULL;
};
};
if (edma_sc == NULL) {
device_printf(sc->dev, "no eDMA. can't operate\n");
return (ENXIO);
};
sc->edma_sc = edma_sc;
sc->edma_chnum = edma_sc->channel_configure(edma_sc, edma_mux_group,
edma_src_transmit);
if (sc->edma_chnum < 0) {
/* cant setup eDMA */
return (ENXIO);
};
return (0);
};
static int
setup_dma(struct sc_pcminfo *scp)
{
struct tcd_conf *tcd;
struct sc_info *sc;
sc = scp->sc;
tcd = malloc(sizeof(struct tcd_conf), M_DEVBUF, M_WAITOK | M_ZERO);
tcd->channel = sc->edma_chnum;
tcd->ih = sai_dma_intr;
tcd->ih_user = scp;
tcd->saddr = sc->buf_base_phys;
tcd->daddr = rman_get_start(sc->res[0]) + I2S_TDR0;
/*
* Bytes to transfer per each minor loop.
* Hardware FIFO buffer size is 32x32bits.
*/
tcd->nbytes = 64;
tcd->nmajor = 512;
tcd->smod = 17; /* dma_size range */
tcd->dmod = 0;
tcd->esg = 0;
tcd->soff = 0x4;
tcd->doff = 0;
tcd->ssize = 0x2;
tcd->dsize = 0x2;
tcd->slast = 0;
tcd->dlast_sga = 0;
sc->tcd = tcd;
sc->edma_sc->dma_setup(sc->edma_sc, sc->tcd);
return (0);
}
static int
saichan_trigger(kobj_t obj, void *data, int go)
{
struct sc_chinfo *ch = data;
struct sc_pcminfo *scp = ch->parent;
struct sc_info *sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "trigger start\n");
#endif
ch->run = 1;
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "trigger stop or abort\n");
#endif
ch->run = 0;
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
saichan_getptr(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
return (sc->pos);
}
static uint32_t sai_pfmt[] = {
/*
* eDMA doesn't allow 24-bit coping,
* so we use 32.
*/
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
static struct pcmchan_caps sai_pcaps = {44100, 192000, sai_pfmt, 0};
static struct pcmchan_caps *
saichan_getcaps(kobj_t obj, void *data)
{
return (&sai_pcaps);
}
static kobj_method_t saichan_methods[] = {
KOBJMETHOD(channel_init, saichan_init),
KOBJMETHOD(channel_free, saichan_free),
KOBJMETHOD(channel_setformat, saichan_setformat),
KOBJMETHOD(channel_setspeed, saichan_setspeed),
KOBJMETHOD(channel_setblocksize, saichan_setblocksize),
KOBJMETHOD(channel_trigger, saichan_trigger),
KOBJMETHOD(channel_getptr, saichan_getptr),
KOBJMETHOD(channel_getcaps, saichan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(saichan);
static int
sai_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fsl,mvf600-sai"))
return (ENXIO);
device_set_desc(dev, "Vybrid Family Synchronous Audio Interface");
return (BUS_PROBE_DEFAULT);
}
static void
sai_intr(void *arg)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
scp = arg;
sc = scp->sc;
device_printf(sc->dev, "Error I2S_TCSR == 0x%08x\n",
READ4(sc, I2S_TCSR));
}
static void
setup_sai(struct sc_info *sc)
{
int reg;
/*
* TCR/RCR registers must not be altered when TCSR[TE] is set.
*/
reg = READ4(sc, I2S_TCSR);
reg &= ~(TCSR_BCE | TCSR_TE | TCSR_FRDE);
WRITE4(sc, I2S_TCSR, reg);
reg = READ4(sc, I2S_TCR3);
reg &= ~(TCR3_TCE);
WRITE4(sc, I2S_TCR3, reg);
reg = (64 << TCR1_TFW_S);
WRITE4(sc, I2S_TCR1, reg);
reg = READ4(sc, I2S_TCR2);
reg &= ~(TCR2_MSEL_M << TCR2_MSEL_S);
reg |= (1 << TCR2_MSEL_S);
reg |= (TCR2_BCP | TCR2_BCD);
WRITE4(sc, I2S_TCR2, reg);
sai_configure_clock(sc);
reg = READ4(sc, I2S_TCR3);
reg |= (TCR3_TCE);
WRITE4(sc, I2S_TCR3, reg);
/* Configure to 32-bit I2S mode */
reg = READ4(sc, I2S_TCR4);
reg &= ~(TCR4_FRSZ_M << TCR4_FRSZ_S);
reg |= (1 << TCR4_FRSZ_S); /* 2 words per frame */
reg &= ~(TCR4_SYWD_M << TCR4_SYWD_S);
reg |= (23 << TCR4_SYWD_S);
reg |= (TCR4_MF | TCR4_FSE | TCR4_FSP | TCR4_FSD);
WRITE4(sc, I2S_TCR4, reg);
reg = READ4(sc, I2S_TCR5);
reg &= ~(TCR5_W0W_M << TCR5_W0W_S);
reg |= (23 << TCR5_W0W_S);
reg &= ~(TCR5_WNW_M << TCR5_WNW_S);
reg |= (23 << TCR5_WNW_S);
reg &= ~(TCR5_FBT_M << TCR5_FBT_S);
reg |= (31 << TCR5_FBT_S);
WRITE4(sc, I2S_TCR5, reg);
/* Enable transmitter */
reg = READ4(sc, I2S_TCSR);
reg |= (TCSR_BCE | TCSR_TE | TCSR_FRDE);
reg |= (1 << 10); /* FEIE */
WRITE4(sc, I2S_TCSR, reg);
}
static void
sai_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
bus_addr_t *addr;
if (err)
return;
addr = (bus_addr_t*)arg;
*addr = segs[0].ds_addr;
}
static int
sai_attach(device_t dev)
{
char status[SND_STATUSLEN];
struct sc_pcminfo *scp;
struct sc_info *sc;
int err;
sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
sc->dev = dev;
sc->sr = &rate_map[0];
sc->pos = 0;
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "sai softc");
if (sc->lock == NULL) {
device_printf(dev, "Cant create mtx\n");
return (ENXIO);
}
if (bus_alloc_resources(dev, sai_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* eDMA */
if (find_edma_controller(sc)) {
device_printf(dev, "could not find active eDMA\n");
return (ENXIO);
}
/* Setup PCM */
scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
scp->sc = sc;
scp->dev = dev;
/* DMA */
sc->dma_size = 131072;
/*
* Must use dma_size boundary as modulo feature required.
* Modulo feature allows setup circular buffer.
*/
err = bus_dma_tag_create(
bus_get_dma_tag(sc->dev),
4, sc->dma_size, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->dma_size, 1, /* maxsize, nsegments */
sc->dma_size, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dma_tag);
err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
if (err) {
device_printf(dev, "cannot allocate framebuffer\n");
return (ENXIO);
}
err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
sc->dma_size, sai_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
if (err) {
device_printf(dev, "cannot load DMA map\n");
return (ENXIO);
}
bzero(sc->buf_base, sc->dma_size);
/* Setup interrupt handler */
err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
NULL, sai_intr, scp, &sc->ih);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
err = pcm_register(dev, scp, 1, 0);
if (err) {
device_printf(dev, "Can't register pcm.\n");
return (ENXIO);
}
scp->chnum = 0;
pcm_addchan(dev, PCMDIR_PLAY, &saichan_class, scp);
scp->chnum++;
snprintf(status, SND_STATUSLEN, "at simplebus");
pcm_setstatus(dev, status);
mixer_init(dev, &saimixer_class, scp);
setup_dma(scp);
setup_sai(sc);
return (0);
}
static device_method_t sai_pcm_methods[] = {
DEVMETHOD(device_probe, sai_probe),
DEVMETHOD(device_attach, sai_attach),
{ 0, 0 }
};
static driver_t sai_pcm_driver = {
"pcm",
sai_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(sai, simplebus, sai_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(sai, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(sai, 1);