/*-
* Copyright (c) 2015 Ruslan Bukin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* i.MX6 Synchronous Serial Interface (SSI)
*
* Chapter 61, i.MX 6Dual/6Quad Applications Processor Reference Manual,
* Rev. 1, 04/2013
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define READ4(_sc, _reg) \
bus_space_read_4(_sc->bst, _sc->bsh, _reg)
#define WRITE4(_sc, _reg, _val) \
bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val)
#define SSI_NCHANNELS 1
#define DMAS_TOTAL 8
/* i.MX6 SSI registers */
#define SSI_STX0 0x00 /* Transmit Data Register n */
#define SSI_STX1 0x04 /* Transmit Data Register n */
#define SSI_SRX0 0x08 /* Receive Data Register n */
#define SSI_SRX1 0x0C /* Receive Data Register n */
#define SSI_SCR 0x10 /* Control Register */
#define SCR_I2S_MODE_S 5 /* I2S Mode Select. */
#define SCR_I2S_MODE_M 0x3
#define SCR_SYN (1 << 4)
#define SCR_NET (1 << 3) /* Network mode */
#define SCR_RE (1 << 2) /* Receive Enable. */
#define SCR_TE (1 << 1) /* Transmit Enable. */
#define SCR_SSIEN (1 << 0) /* SSI Enable */
#define SSI_SISR 0x14 /* Interrupt Status Register */
#define SSI_SIER 0x18 /* Interrupt Enable Register */
#define SIER_RDMAE (1 << 22) /* Receive DMA Enable. */
#define SIER_RIE (1 << 21) /* Receive Interrupt Enable. */
#define SIER_TDMAE (1 << 20) /* Transmit DMA Enable. */
#define SIER_TIE (1 << 19) /* Transmit Interrupt Enable. */
#define SIER_TDE0IE (1 << 12) /* Transmit Data Register Empty 0. */
#define SIER_TUE0IE (1 << 8) /* Transmitter Underrun Error 0. */
#define SIER_TFE0IE (1 << 0) /* Transmit FIFO Empty 0 IE. */
#define SSI_STCR 0x1C /* Transmit Configuration Register */
#define STCR_TXBIT0 (1 << 9) /* Transmit Bit 0 shift MSB/LSB */
#define STCR_TFEN1 (1 << 8) /* Transmit FIFO Enable 1. */
#define STCR_TFEN0 (1 << 7) /* Transmit FIFO Enable 0. */
#define STCR_TFDIR (1 << 6) /* Transmit Frame Direction. */
#define STCR_TXDIR (1 << 5) /* Transmit Clock Direction. */
#define STCR_TSHFD (1 << 4) /* Transmit Shift Direction. */
#define STCR_TSCKP (1 << 3) /* Transmit Clock Polarity. */
#define STCR_TFSI (1 << 2) /* Transmit Frame Sync Invert. */
#define STCR_TFSL (1 << 1) /* Transmit Frame Sync Length. */
#define STCR_TEFS (1 << 0) /* Transmit Early Frame Sync. */
#define SSI_SRCR 0x20 /* Receive Configuration Register */
#define SSI_STCCR 0x24 /* Transmit Clock Control Register */
#define STCCR_DIV2 (1 << 18) /* Divide By 2. */
#define STCCR_PSR (1 << 17) /* Divide clock by 8. */
#define WL3_WL0_S 13
#define WL3_WL0_M 0xf
#define DC4_DC0_S 8
#define DC4_DC0_M 0x1f
#define PM7_PM0_S 0
#define PM7_PM0_M 0xff
#define SSI_SRCCR 0x28 /* Receive Clock Control Register */
#define SSI_SFCSR 0x2C /* FIFO Control/Status Register */
#define SFCSR_RFWM1_S 20 /* Receive FIFO Empty WaterMark 1 */
#define SFCSR_RFWM1_M 0xf
#define SFCSR_TFWM1_S 16 /* Transmit FIFO Empty WaterMark 1 */
#define SFCSR_TFWM1_M 0xf
#define SFCSR_RFWM0_S 4 /* Receive FIFO Empty WaterMark 0 */
#define SFCSR_RFWM0_M 0xf
#define SFCSR_TFWM0_S 0 /* Transmit FIFO Empty WaterMark 0 */
#define SFCSR_TFWM0_M 0xf
#define SSI_SACNT 0x38 /* AC97 Control Register */
#define SSI_SACADD 0x3C /* AC97 Command Address Register */
#define SSI_SACDAT 0x40 /* AC97 Command Data Register */
#define SSI_SATAG 0x44 /* AC97 Tag Register */
#define SSI_STMSK 0x48 /* Transmit Time Slot Mask Register */
#define SSI_SRMSK 0x4C /* Receive Time Slot Mask Register */
#define SSI_SACCST 0x50 /* AC97 Channel Status Register */
#define SSI_SACCEN 0x54 /* AC97 Channel Enable Register */
#define SSI_SACCDIS 0x58 /* AC97 Channel Disable Register */
static MALLOC_DEFINE(M_SSI, "ssi", "ssi audio");
uint32_t ssi_dma_intr(void *arg, int chn);
struct ssi_rate {
uint32_t speed;
uint32_t mfi; /* PLL4 Multiplication Factor Integer */
uint32_t mfn; /* PLL4 Multiplication Factor Numerator */
uint32_t mfd; /* PLL4 Multiplication Factor Denominator */
/* More dividers to configure can be added here */
};
static struct ssi_rate rate_map[] = {
{ 192000, 49, 152, 1000 }, /* PLL4 49.152 Mhz */
/* TODO: add more frequences */
{ 0, 0 },
};
/*
* i.MX6 example bit clock formula
*
* BCLK = 2 channels * 192000 hz * 24 bit = 9216000 hz =
* (24000000 * (49 + 152/1000.0) / 4 / 4 / 2 / 2 / 2 / 1 / 1)
* ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
* | | | | | | | | | | |
* Fref ------/ | | | | | | | | | |
* PLL4 div select -/ | | | | | | | | |
* PLL4 num --------------/ | | | | | | | |
* PLL4 denom -------------------/ | | | | | | |
* PLL4 post div ---------------------/ | | | | | |
* CCM ssi pre div (CCM_CS1CDR) ----------/ | | | | |
* CCM ssi post div (CCM_CS1CDR) -------------/ | | | |
* SSI PM7_PM0_S ---------------------------------/ | | |
* SSI Fixed divider ---------------------------------/ | |
* SSI DIV2 ----------------------------------------------/ |
* SSI PSR (prescaler /1 or /8) ------------------------------/
*
* MCLK (Master clock) depends on DAC, usually BCLK * 4
*/
struct sc_info {
struct resource *res[2];
bus_space_tag_t bst;
bus_space_handle_t bsh;
device_t dev;
struct mtx *lock;
void *ih;
int pos;
int dma_size;
bus_dma_tag_t dma_tag;
bus_dmamap_t dma_map;
bus_addr_t buf_base_phys;
uint32_t *buf_base;
struct sdma_conf *conf;
struct ssi_rate *sr;
struct sdma_softc *sdma_sc;
uint32_t sdma_ev_rx;
uint32_t sdma_ev_tx;
int sdma_channel;
};
/* Channel registers */
struct sc_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_pcminfo *parent;
/* Channel information */
uint32_t dir;
uint32_t format;
/* Flags */
uint32_t run;
};
/* PCM device private data */
struct sc_pcminfo {
device_t dev;
uint32_t (*ih)(struct sc_pcminfo *scp);
uint32_t chnum;
struct sc_chinfo chan[SSI_NCHANNELS];
struct sc_info *sc;
};
static struct resource_spec ssi_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static int setup_dma(struct sc_pcminfo *scp);
static void setup_ssi(struct sc_info *);
static void ssi_configure_clock(struct sc_info *);
/*
* Mixer interface.
*/
static int
ssimixer_init(struct snd_mixer *m)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
return -1;
mask = SOUND_MASK_PCM;
mask |= SOUND_MASK_VOLUME;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
return (0);
}
static int
ssimixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
struct sc_pcminfo *scp;
scp = mix_getdevinfo(m);
/* Here we can configure hardware volume on our DAC */
#if 1
device_printf(scp->dev, "ssimixer_set() %d %d\n",
left, right);
#endif
return (0);
}
static kobj_method_t ssimixer_methods[] = {
KOBJMETHOD(mixer_init, ssimixer_init),
KOBJMETHOD(mixer_set, ssimixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(ssimixer);
/*
* Channel interface.
*/
static void *
ssichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
scp = (struct sc_pcminfo *)devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
ch = &scp->chan[0];
ch->dir = dir;
ch->run = 0;
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
return NULL;
}
return ch;
}
static int
ssichan_free(kobj_t obj, void *data)
{
struct sc_chinfo *ch = data;
struct sc_pcminfo *scp = ch->parent;
struct sc_info *sc = scp->sc;
#if 0
device_printf(scp->dev, "ssichan_free()\n");
#endif
snd_mtxlock(sc->lock);
/* TODO: free channel buffer */
snd_mtxunlock(sc->lock);
return (0);
}
static int
ssichan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct sc_chinfo *ch = data;
ch->format = format;
return (0);
}
static uint32_t
ssichan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct ssi_rate *sr;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
sr = NULL;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
sr = &rate_map[i];
}
/* If no match, just find nearest. */
if (sr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
sr = &rate_map[i];
threshold = sr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - sr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
sc->sr = sr;
ssi_configure_clock(sc);
return (sr->speed);
}
static void
ssi_configure_clock(struct sc_info *sc)
{
struct ssi_rate *sr;
sr = sc->sr;
pll4_configure_output(sr->mfi, sr->mfn, sr->mfd);
/* Configure other dividers here, if any */
}
static uint32_t
ssichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct sc_chinfo *ch = data;
struct sc_pcminfo *scp = ch->parent;
struct sc_info *sc = scp->sc;
sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize);
setup_dma(scp);
return (sndbuf_getblksz(ch->buffer));
}
uint32_t
ssi_dma_intr(void *arg, int chn)
{
struct sc_pcminfo *scp;
struct sdma_conf *conf;
struct sc_chinfo *ch;
struct sc_info *sc;
int bufsize;
scp = arg;
ch = &scp->chan[0];
sc = scp->sc;
conf = sc->conf;
bufsize = sndbuf_getsize(ch->buffer);
sc->pos += conf->period;
if (sc->pos >= bufsize)
sc->pos -= bufsize;
if (ch->run)
chn_intr(ch->channel);
return (0);
}
static int
find_sdma_controller(struct sc_info *sc)
{
struct sdma_softc *sdma_sc;
phandle_t node;
device_t sdma_dev;
pcell_t dts_value[DMAS_TOTAL];
int len;
if ((node = ofw_bus_get_node(sc->dev)) == -1)
return (ENXIO);
if ((len = OF_getproplen(node, "dmas")) <= 0)
return (ENXIO);
if (len != sizeof(dts_value)) {
device_printf(sc->dev,
"\"dmas\" property length is invalid: %d (expected %d)",
len, sizeof(dts_value));
return (ENXIO);
}
OF_getencprop(node, "dmas", dts_value, sizeof(dts_value));
sc->sdma_ev_rx = dts_value[1];
sc->sdma_ev_tx = dts_value[5];
sdma_sc = NULL;
sdma_dev = devclass_get_device(devclass_find("sdma"), 0);
if (sdma_dev)
sdma_sc = device_get_softc(sdma_dev);
if (sdma_sc == NULL) {
device_printf(sc->dev, "No sDMA found. Can't operate\n");
return (ENXIO);
}
sc->sdma_sc = sdma_sc;
return (0);
};
static int
setup_dma(struct sc_pcminfo *scp)
{
struct sdma_conf *conf;
struct sc_chinfo *ch;
struct sc_info *sc;
int fmt;
ch = &scp->chan[0];
sc = scp->sc;
conf = sc->conf;
conf->ih = ssi_dma_intr;
conf->ih_user = scp;
conf->saddr = sc->buf_base_phys;
conf->daddr = rman_get_start(sc->res[0]) + SSI_STX0;
conf->event = sc->sdma_ev_tx; /* SDMA TX event */
conf->period = sndbuf_getblksz(ch->buffer);
conf->num_bd = sndbuf_getblkcnt(ch->buffer);
/*
* Word Length
* Can be 32, 24, 16 or 8 for sDMA.
*
* SSI supports 24 at max.
*/
fmt = sndbuf_getfmt(ch->buffer);
if (fmt & AFMT_16BIT) {
conf->word_length = 16;
conf->command = CMD_2BYTES;
} else if (fmt & AFMT_24BIT) {
conf->word_length = 24;
conf->command = CMD_3BYTES;
} else {
device_printf(sc->dev, "Unknown format\n");
return (-1);
}
return (0);
}
static int
ssi_start(struct sc_pcminfo *scp)
{
struct sc_info *sc;
int reg;
sc = scp->sc;
if (sdma_configure(sc->sdma_channel, sc->conf) != 0) {
device_printf(sc->dev, "Can't configure sDMA\n");
return (-1);
}
/* Enable DMA interrupt */
reg = (SIER_TDMAE);
WRITE4(sc, SSI_SIER, reg);
sdma_start(sc->sdma_channel);
return (0);
}
static int
ssi_stop(struct sc_pcminfo *scp)
{
struct sc_info *sc;
int reg;
sc = scp->sc;
reg = READ4(sc, SSI_SIER);
reg &= ~(SIER_TDMAE);
WRITE4(sc, SSI_SIER, reg);
sdma_stop(sc->sdma_channel);
bzero(sc->buf_base, sc->dma_size);
return (0);
}
static int
ssichan_trigger(kobj_t obj, void *data, int go)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "trigger start\n");
#endif
ch->run = 1;
ssi_start(scp);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "trigger stop or abort\n");
#endif
ch->run = 0;
ssi_stop(scp);
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
ssichan_getptr(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
return (sc->pos);
}
static uint32_t ssi_pfmt[] = {
SND_FORMAT(AFMT_S24_LE, 2, 0),
0
};
static struct pcmchan_caps ssi_pcaps = {44100, 192000, ssi_pfmt, 0};
static struct pcmchan_caps *
ssichan_getcaps(kobj_t obj, void *data)
{
return (&ssi_pcaps);
}
static kobj_method_t ssichan_methods[] = {
KOBJMETHOD(channel_init, ssichan_init),
KOBJMETHOD(channel_free, ssichan_free),
KOBJMETHOD(channel_setformat, ssichan_setformat),
KOBJMETHOD(channel_setspeed, ssichan_setspeed),
KOBJMETHOD(channel_setblocksize, ssichan_setblocksize),
KOBJMETHOD(channel_trigger, ssichan_trigger),
KOBJMETHOD(channel_getptr, ssichan_getptr),
KOBJMETHOD(channel_getcaps, ssichan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(ssichan);
static int
ssi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "fsl,imx6q-ssi"))
return (ENXIO);
device_set_desc(dev, "i.MX6 Synchronous Serial Interface (SSI)");
return (BUS_PROBE_DEFAULT);
}
static void
ssi_intr(void *arg)
{
#if 0
struct sc_pcminfo *scp;
struct sc_info *sc;
scp = arg;
sc = scp->sc;
#endif
/* We don't use SSI interrupt */
#if 0
device_printf(scp->sc->dev, "SSI Intr 0x%08x\n",
READ4(sc, SSI_SISR));
#endif
}
static void
setup_ssi(struct sc_info *sc)
{
int reg;
reg = READ4(sc, SSI_STCCR);
reg &= ~(WL3_WL0_M << WL3_WL0_S);
reg |= (0xb << WL3_WL0_S); /* 24 bit */
reg &= ~(DC4_DC0_M << DC4_DC0_S);
reg |= (1 << DC4_DC0_S); /* 2 words per frame */
reg &= ~(STCCR_DIV2); /* Divide by 1 */
reg &= ~(STCCR_PSR); /* Divide by 1 */
reg &= ~(PM7_PM0_M << PM7_PM0_S);
reg |= (1 << PM7_PM0_S); /* Divide by 2 */
WRITE4(sc, SSI_STCCR, reg);
reg = READ4(sc, SSI_SFCSR);
reg &= ~(SFCSR_TFWM0_M << SFCSR_TFWM0_S);
reg |= (8 << SFCSR_TFWM0_S); /* empty slots */
WRITE4(sc, SSI_SFCSR, reg);
reg = READ4(sc, SSI_STCR);
reg |= (STCR_TFEN0);
reg &= ~(STCR_TFEN1);
reg &= ~(STCR_TSHFD); /* MSB */
reg |= (STCR_TXBIT0);
reg |= (STCR_TXDIR | STCR_TFDIR);
reg |= (STCR_TSCKP); /* falling edge */
reg |= (STCR_TFSI);
reg &= ~(STCR_TFSI); /* active high frame sync */
reg &= ~(STCR_TFSL);
reg |= STCR_TEFS;
WRITE4(sc, SSI_STCR, reg);
reg = READ4(sc, SSI_SCR);
reg &= ~(SCR_I2S_MODE_M << SCR_I2S_MODE_S); /* Not master */
reg |= (SCR_SSIEN | SCR_TE);
reg |= (SCR_NET);
reg |= (SCR_SYN);
WRITE4(sc, SSI_SCR, reg);
}
static void
ssi_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
bus_addr_t *addr;
if (err)
return;
addr = (bus_addr_t*)arg;
*addr = segs[0].ds_addr;
}
static int
ssi_attach(device_t dev)
{
char status[SND_STATUSLEN];
struct sc_pcminfo *scp;
struct sc_info *sc;
int err;
sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
sc->dev = dev;
sc->sr = &rate_map[0];
sc->pos = 0;
sc->conf = malloc(sizeof(struct sdma_conf), M_DEVBUF, M_WAITOK | M_ZERO);
sc->lock = snd_mtxcreate(device_get_nameunit(dev), "ssi softc");
if (sc->lock == NULL) {
device_printf(dev, "Can't create mtx\n");
return (ENXIO);
}
if (bus_alloc_resources(dev, ssi_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* SDMA */
if (find_sdma_controller(sc)) {
device_printf(dev, "could not find active SDMA\n");
return (ENXIO);
}
/* Setup PCM */
scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
scp->sc = sc;
scp->dev = dev;
/*
* Maximum possible DMA buffer.
* Will be used partially to match 24 bit word.
*/
sc->dma_size = 131072;
/*
* Must use dma_size boundary as modulo feature required.
* Modulo feature allows setup circular buffer.
*/
err = bus_dma_tag_create(
bus_get_dma_tag(sc->dev),
4, sc->dma_size, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->dma_size, 1, /* maxsize, nsegments */
sc->dma_size, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->dma_tag);
err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map);
if (err) {
device_printf(dev, "cannot allocate framebuffer\n");
return (ENXIO);
}
err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base,
sc->dma_size, ssi_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT);
if (err) {
device_printf(dev, "cannot load DMA map\n");
return (ENXIO);
}
bzero(sc->buf_base, sc->dma_size);
/* Setup interrupt handler */
err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV,
NULL, ssi_intr, scp, &sc->ih);
if (err) {
device_printf(dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
err = pcm_register(dev, scp, 1, 0);
if (err) {
device_printf(dev, "Can't register pcm.\n");
return (ENXIO);
}
scp->chnum = 0;
pcm_addchan(dev, PCMDIR_PLAY, &ssichan_class, scp);
scp->chnum++;
snprintf(status, SND_STATUSLEN, "at simplebus");
pcm_setstatus(dev, status);
mixer_init(dev, &ssimixer_class, scp);
setup_ssi(sc);
imx_ccm_ssi_configure(dev);
sc->sdma_channel = sdma_alloc();
if (sc->sdma_channel < 0) {
device_printf(sc->dev, "Can't get sDMA channel\n");
return (1);
}
return (0);
}
static device_method_t ssi_pcm_methods[] = {
DEVMETHOD(device_probe, ssi_probe),
DEVMETHOD(device_attach, ssi_attach),
{ 0, 0 }
};
static driver_t ssi_pcm_driver = {
"pcm",
ssi_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(ssi, simplebus, ssi_pcm_driver, 0, 0);
MODULE_DEPEND(ssi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_DEPEND(ssi, sdma, 0, 0, 0);
MODULE_VERSION(ssi, 1);