/*- * Copyright (c) 2015 Ruslan Bukin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * i.MX6 Synchronous Serial Interface (SSI) * * Chapter 61, i.MX 6Dual/6Quad Applications Processor Reference Manual, * Rev. 1, 04/2013 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define READ4(_sc, _reg) \ bus_space_read_4(_sc->bst, _sc->bsh, _reg) #define WRITE4(_sc, _reg, _val) \ bus_space_write_4(_sc->bst, _sc->bsh, _reg, _val) #define SSI_NCHANNELS 1 #define DMAS_TOTAL 8 /* i.MX6 SSI registers */ #define SSI_STX0 0x00 /* Transmit Data Register n */ #define SSI_STX1 0x04 /* Transmit Data Register n */ #define SSI_SRX0 0x08 /* Receive Data Register n */ #define SSI_SRX1 0x0C /* Receive Data Register n */ #define SSI_SCR 0x10 /* Control Register */ #define SCR_I2S_MODE_S 5 /* I2S Mode Select. */ #define SCR_I2S_MODE_M 0x3 #define SCR_SYN (1 << 4) #define SCR_NET (1 << 3) /* Network mode */ #define SCR_RE (1 << 2) /* Receive Enable. */ #define SCR_TE (1 << 1) /* Transmit Enable. */ #define SCR_SSIEN (1 << 0) /* SSI Enable */ #define SSI_SISR 0x14 /* Interrupt Status Register */ #define SSI_SIER 0x18 /* Interrupt Enable Register */ #define SIER_RDMAE (1 << 22) /* Receive DMA Enable. */ #define SIER_RIE (1 << 21) /* Receive Interrupt Enable. */ #define SIER_TDMAE (1 << 20) /* Transmit DMA Enable. */ #define SIER_TIE (1 << 19) /* Transmit Interrupt Enable. */ #define SIER_TDE0IE (1 << 12) /* Transmit Data Register Empty 0. */ #define SIER_TUE0IE (1 << 8) /* Transmitter Underrun Error 0. */ #define SIER_TFE0IE (1 << 0) /* Transmit FIFO Empty 0 IE. */ #define SSI_STCR 0x1C /* Transmit Configuration Register */ #define STCR_TXBIT0 (1 << 9) /* Transmit Bit 0 shift MSB/LSB */ #define STCR_TFEN1 (1 << 8) /* Transmit FIFO Enable 1. */ #define STCR_TFEN0 (1 << 7) /* Transmit FIFO Enable 0. */ #define STCR_TFDIR (1 << 6) /* Transmit Frame Direction. */ #define STCR_TXDIR (1 << 5) /* Transmit Clock Direction. */ #define STCR_TSHFD (1 << 4) /* Transmit Shift Direction. */ #define STCR_TSCKP (1 << 3) /* Transmit Clock Polarity. */ #define STCR_TFSI (1 << 2) /* Transmit Frame Sync Invert. */ #define STCR_TFSL (1 << 1) /* Transmit Frame Sync Length. */ #define STCR_TEFS (1 << 0) /* Transmit Early Frame Sync. */ #define SSI_SRCR 0x20 /* Receive Configuration Register */ #define SSI_STCCR 0x24 /* Transmit Clock Control Register */ #define STCCR_DIV2 (1 << 18) /* Divide By 2. */ #define STCCR_PSR (1 << 17) /* Divide clock by 8. */ #define WL3_WL0_S 13 #define WL3_WL0_M 0xf #define DC4_DC0_S 8 #define DC4_DC0_M 0x1f #define PM7_PM0_S 0 #define PM7_PM0_M 0xff #define SSI_SRCCR 0x28 /* Receive Clock Control Register */ #define SSI_SFCSR 0x2C /* FIFO Control/Status Register */ #define SFCSR_RFWM1_S 20 /* Receive FIFO Empty WaterMark 1 */ #define SFCSR_RFWM1_M 0xf #define SFCSR_TFWM1_S 16 /* Transmit FIFO Empty WaterMark 1 */ #define SFCSR_TFWM1_M 0xf #define SFCSR_RFWM0_S 4 /* Receive FIFO Empty WaterMark 0 */ #define SFCSR_RFWM0_M 0xf #define SFCSR_TFWM0_S 0 /* Transmit FIFO Empty WaterMark 0 */ #define SFCSR_TFWM0_M 0xf #define SSI_SACNT 0x38 /* AC97 Control Register */ #define SSI_SACADD 0x3C /* AC97 Command Address Register */ #define SSI_SACDAT 0x40 /* AC97 Command Data Register */ #define SSI_SATAG 0x44 /* AC97 Tag Register */ #define SSI_STMSK 0x48 /* Transmit Time Slot Mask Register */ #define SSI_SRMSK 0x4C /* Receive Time Slot Mask Register */ #define SSI_SACCST 0x50 /* AC97 Channel Status Register */ #define SSI_SACCEN 0x54 /* AC97 Channel Enable Register */ #define SSI_SACCDIS 0x58 /* AC97 Channel Disable Register */ static MALLOC_DEFINE(M_SSI, "ssi", "ssi audio"); uint32_t ssi_dma_intr(void *arg, int chn); struct ssi_rate { uint32_t speed; uint32_t mfi; /* PLL4 Multiplication Factor Integer */ uint32_t mfn; /* PLL4 Multiplication Factor Numerator */ uint32_t mfd; /* PLL4 Multiplication Factor Denominator */ /* More dividers to configure can be added here */ }; static struct ssi_rate rate_map[] = { { 192000, 49, 152, 1000 }, /* PLL4 49.152 Mhz */ /* TODO: add more frequences */ { 0, 0 }, }; /* * i.MX6 example bit clock formula * * BCLK = 2 channels * 192000 hz * 24 bit = 9216000 hz = * (24000000 * (49 + 152/1000.0) / 4 / 4 / 2 / 2 / 2 / 1 / 1) * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * | | | | | | | | | | | * Fref ------/ | | | | | | | | | | * PLL4 div select -/ | | | | | | | | | * PLL4 num --------------/ | | | | | | | | * PLL4 denom -------------------/ | | | | | | | * PLL4 post div ---------------------/ | | | | | | * CCM ssi pre div (CCM_CS1CDR) ----------/ | | | | | * CCM ssi post div (CCM_CS1CDR) -------------/ | | | | * SSI PM7_PM0_S ---------------------------------/ | | | * SSI Fixed divider ---------------------------------/ | | * SSI DIV2 ----------------------------------------------/ | * SSI PSR (prescaler /1 or /8) ------------------------------/ * * MCLK (Master clock) depends on DAC, usually BCLK * 4 */ struct sc_info { struct resource *res[2]; bus_space_tag_t bst; bus_space_handle_t bsh; device_t dev; struct mtx *lock; void *ih; int pos; int dma_size; bus_dma_tag_t dma_tag; bus_dmamap_t dma_map; bus_addr_t buf_base_phys; uint32_t *buf_base; struct sdma_conf *conf; struct ssi_rate *sr; struct sdma_softc *sdma_sc; uint32_t sdma_ev_rx; uint32_t sdma_ev_tx; int sdma_channel; }; /* Channel registers */ struct sc_chinfo { struct snd_dbuf *buffer; struct pcm_channel *channel; struct sc_pcminfo *parent; /* Channel information */ uint32_t dir; uint32_t format; /* Flags */ uint32_t run; }; /* PCM device private data */ struct sc_pcminfo { device_t dev; uint32_t (*ih)(struct sc_pcminfo *scp); uint32_t chnum; struct sc_chinfo chan[SSI_NCHANNELS]; struct sc_info *sc; }; static struct resource_spec ssi_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static int setup_dma(struct sc_pcminfo *scp); static void setup_ssi(struct sc_info *); static void ssi_configure_clock(struct sc_info *); /* * Mixer interface. */ static int ssimixer_init(struct snd_mixer *m) { struct sc_pcminfo *scp; struct sc_info *sc; int mask; scp = mix_getdevinfo(m); sc = scp->sc; if (sc == NULL) return -1; mask = SOUND_MASK_PCM; mask |= SOUND_MASK_VOLUME; snd_mtxlock(sc->lock); pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL); mix_setdevs(m, mask); snd_mtxunlock(sc->lock); return (0); } static int ssimixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_pcminfo *scp; scp = mix_getdevinfo(m); /* Here we can configure hardware volume on our DAC */ #if 1 device_printf(scp->dev, "ssimixer_set() %d %d\n", left, right); #endif return (0); } static kobj_method_t ssimixer_methods[] = { KOBJMETHOD(mixer_init, ssimixer_init), KOBJMETHOD(mixer_set, ssimixer_set), KOBJMETHOD_END }; MIXER_DECLARE(ssimixer); /* * Channel interface. */ static void * ssichan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; scp = (struct sc_pcminfo *)devinfo; sc = scp->sc; snd_mtxlock(sc->lock); ch = &scp->chan[0]; ch->dir = dir; ch->run = 0; ch->buffer = b; ch->channel = c; ch->parent = scp; snd_mtxunlock(sc->lock); if (sndbuf_setup(ch->buffer, sc->buf_base, sc->dma_size) != 0) { device_printf(scp->dev, "Can't setup sndbuf.\n"); return NULL; } return ch; } static int ssichan_free(kobj_t obj, void *data) { struct sc_chinfo *ch = data; struct sc_pcminfo *scp = ch->parent; struct sc_info *sc = scp->sc; #if 0 device_printf(scp->dev, "ssichan_free()\n"); #endif snd_mtxlock(sc->lock); /* TODO: free channel buffer */ snd_mtxunlock(sc->lock); return (0); } static int ssichan_setformat(kobj_t obj, void *data, uint32_t format) { struct sc_chinfo *ch = data; ch->format = format; return (0); } static uint32_t ssichan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct ssi_rate *sr; struct sc_info *sc; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; sr = NULL; /* First look for equal frequency. */ for (i = 0; rate_map[i].speed != 0; i++) { if (rate_map[i].speed == speed) sr = &rate_map[i]; } /* If no match, just find nearest. */ if (sr == NULL) { for (i = 0; rate_map[i].speed != 0; i++) { sr = &rate_map[i]; threshold = sr->speed + ((rate_map[i + 1].speed != 0) ? ((rate_map[i + 1].speed - sr->speed) >> 1) : 0); if (speed < threshold) break; } } sc->sr = sr; ssi_configure_clock(sc); return (sr->speed); } static void ssi_configure_clock(struct sc_info *sc) { struct ssi_rate *sr; sr = sc->sr; pll4_configure_output(sr->mfi, sr->mfn, sr->mfd); /* Configure other dividers here, if any */ } static uint32_t ssichan_setblocksize(kobj_t obj, void *data, uint32_t blocksize) { struct sc_chinfo *ch = data; struct sc_pcminfo *scp = ch->parent; struct sc_info *sc = scp->sc; sndbuf_resize(ch->buffer, sc->dma_size / blocksize, blocksize); setup_dma(scp); return (sndbuf_getblksz(ch->buffer)); } uint32_t ssi_dma_intr(void *arg, int chn) { struct sc_pcminfo *scp; struct sdma_conf *conf; struct sc_chinfo *ch; struct sc_info *sc; int bufsize; scp = arg; ch = &scp->chan[0]; sc = scp->sc; conf = sc->conf; bufsize = sndbuf_getsize(ch->buffer); sc->pos += conf->period; if (sc->pos >= bufsize) sc->pos -= bufsize; if (ch->run) chn_intr(ch->channel); return (0); } static int find_sdma_controller(struct sc_info *sc) { struct sdma_softc *sdma_sc; phandle_t node; device_t sdma_dev; pcell_t dts_value[DMAS_TOTAL]; int len; if ((node = ofw_bus_get_node(sc->dev)) == -1) return (ENXIO); if ((len = OF_getproplen(node, "dmas")) <= 0) return (ENXIO); if (len != sizeof(dts_value)) { device_printf(sc->dev, "\"dmas\" property length is invalid: %d (expected %d)", len, sizeof(dts_value)); return (ENXIO); } OF_getencprop(node, "dmas", dts_value, sizeof(dts_value)); sc->sdma_ev_rx = dts_value[1]; sc->sdma_ev_tx = dts_value[5]; sdma_sc = NULL; sdma_dev = devclass_get_device(devclass_find("sdma"), 0); if (sdma_dev) sdma_sc = device_get_softc(sdma_dev); if (sdma_sc == NULL) { device_printf(sc->dev, "No sDMA found. Can't operate\n"); return (ENXIO); } sc->sdma_sc = sdma_sc; return (0); }; static int setup_dma(struct sc_pcminfo *scp) { struct sdma_conf *conf; struct sc_chinfo *ch; struct sc_info *sc; int fmt; ch = &scp->chan[0]; sc = scp->sc; conf = sc->conf; conf->ih = ssi_dma_intr; conf->ih_user = scp; conf->saddr = sc->buf_base_phys; conf->daddr = rman_get_start(sc->res[0]) + SSI_STX0; conf->event = sc->sdma_ev_tx; /* SDMA TX event */ conf->period = sndbuf_getblksz(ch->buffer); conf->num_bd = sndbuf_getblkcnt(ch->buffer); /* * Word Length * Can be 32, 24, 16 or 8 for sDMA. * * SSI supports 24 at max. */ fmt = sndbuf_getfmt(ch->buffer); if (fmt & AFMT_16BIT) { conf->word_length = 16; conf->command = CMD_2BYTES; } else if (fmt & AFMT_24BIT) { conf->word_length = 24; conf->command = CMD_3BYTES; } else { device_printf(sc->dev, "Unknown format\n"); return (-1); } return (0); } static int ssi_start(struct sc_pcminfo *scp) { struct sc_info *sc; int reg; sc = scp->sc; if (sdma_configure(sc->sdma_channel, sc->conf) != 0) { device_printf(sc->dev, "Can't configure sDMA\n"); return (-1); } /* Enable DMA interrupt */ reg = (SIER_TDMAE); WRITE4(sc, SSI_SIER, reg); sdma_start(sc->sdma_channel); return (0); } static int ssi_stop(struct sc_pcminfo *scp) { struct sc_info *sc; int reg; sc = scp->sc; reg = READ4(sc, SSI_SIER); reg &= ~(SIER_TDMAE); WRITE4(sc, SSI_SIER, reg); sdma_stop(sc->sdma_channel); bzero(sc->buf_base, sc->dma_size); return (0); } static int ssichan_trigger(kobj_t obj, void *data, int go) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); switch (go) { case PCMTRIG_START: #if 0 device_printf(scp->dev, "trigger start\n"); #endif ch->run = 1; ssi_start(scp); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: #if 0 device_printf(scp->dev, "trigger stop or abort\n"); #endif ch->run = 0; ssi_stop(scp); break; } snd_mtxunlock(sc->lock); return (0); } static uint32_t ssichan_getptr(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; return (sc->pos); } static uint32_t ssi_pfmt[] = { SND_FORMAT(AFMT_S24_LE, 2, 0), 0 }; static struct pcmchan_caps ssi_pcaps = {44100, 192000, ssi_pfmt, 0}; static struct pcmchan_caps * ssichan_getcaps(kobj_t obj, void *data) { return (&ssi_pcaps); } static kobj_method_t ssichan_methods[] = { KOBJMETHOD(channel_init, ssichan_init), KOBJMETHOD(channel_free, ssichan_free), KOBJMETHOD(channel_setformat, ssichan_setformat), KOBJMETHOD(channel_setspeed, ssichan_setspeed), KOBJMETHOD(channel_setblocksize, ssichan_setblocksize), KOBJMETHOD(channel_trigger, ssichan_trigger), KOBJMETHOD(channel_getptr, ssichan_getptr), KOBJMETHOD(channel_getcaps, ssichan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(ssichan); static int ssi_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "fsl,imx6q-ssi")) return (ENXIO); device_set_desc(dev, "i.MX6 Synchronous Serial Interface (SSI)"); return (BUS_PROBE_DEFAULT); } static void ssi_intr(void *arg) { #if 0 struct sc_pcminfo *scp; struct sc_info *sc; scp = arg; sc = scp->sc; #endif /* We don't use SSI interrupt */ #if 0 device_printf(scp->sc->dev, "SSI Intr 0x%08x\n", READ4(sc, SSI_SISR)); #endif } static void setup_ssi(struct sc_info *sc) { int reg; reg = READ4(sc, SSI_STCCR); reg &= ~(WL3_WL0_M << WL3_WL0_S); reg |= (0xb << WL3_WL0_S); /* 24 bit */ reg &= ~(DC4_DC0_M << DC4_DC0_S); reg |= (1 << DC4_DC0_S); /* 2 words per frame */ reg &= ~(STCCR_DIV2); /* Divide by 1 */ reg &= ~(STCCR_PSR); /* Divide by 1 */ reg &= ~(PM7_PM0_M << PM7_PM0_S); reg |= (1 << PM7_PM0_S); /* Divide by 2 */ WRITE4(sc, SSI_STCCR, reg); reg = READ4(sc, SSI_SFCSR); reg &= ~(SFCSR_TFWM0_M << SFCSR_TFWM0_S); reg |= (8 << SFCSR_TFWM0_S); /* empty slots */ WRITE4(sc, SSI_SFCSR, reg); reg = READ4(sc, SSI_STCR); reg |= (STCR_TFEN0); reg &= ~(STCR_TFEN1); reg &= ~(STCR_TSHFD); /* MSB */ reg |= (STCR_TXBIT0); reg |= (STCR_TXDIR | STCR_TFDIR); reg |= (STCR_TSCKP); /* falling edge */ reg |= (STCR_TFSI); reg &= ~(STCR_TFSI); /* active high frame sync */ reg &= ~(STCR_TFSL); reg |= STCR_TEFS; WRITE4(sc, SSI_STCR, reg); reg = READ4(sc, SSI_SCR); reg &= ~(SCR_I2S_MODE_M << SCR_I2S_MODE_S); /* Not master */ reg |= (SCR_SSIEN | SCR_TE); reg |= (SCR_NET); reg |= (SCR_SYN); WRITE4(sc, SSI_SCR, reg); } static void ssi_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { bus_addr_t *addr; if (err) return; addr = (bus_addr_t*)arg; *addr = segs[0].ds_addr; } static int ssi_attach(device_t dev) { char status[SND_STATUSLEN]; struct sc_pcminfo *scp; struct sc_info *sc; int err; sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO); sc->dev = dev; sc->sr = &rate_map[0]; sc->pos = 0; sc->conf = malloc(sizeof(struct sdma_conf), M_DEVBUF, M_WAITOK | M_ZERO); sc->lock = snd_mtxcreate(device_get_nameunit(dev), "ssi softc"); if (sc->lock == NULL) { device_printf(dev, "Can't create mtx\n"); return (ENXIO); } if (bus_alloc_resources(dev, ssi_spec, sc->res)) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } /* Memory interface */ sc->bst = rman_get_bustag(sc->res[0]); sc->bsh = rman_get_bushandle(sc->res[0]); /* SDMA */ if (find_sdma_controller(sc)) { device_printf(dev, "could not find active SDMA\n"); return (ENXIO); } /* Setup PCM */ scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO); scp->sc = sc; scp->dev = dev; /* * Maximum possible DMA buffer. * Will be used partially to match 24 bit word. */ sc->dma_size = 131072; /* * Must use dma_size boundary as modulo feature required. * Modulo feature allows setup circular buffer. */ err = bus_dma_tag_create( bus_get_dma_tag(sc->dev), 4, sc->dma_size, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->dma_size, 1, /* maxsize, nsegments */ sc->dma_size, 0, /* maxsegsize, flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->dma_tag); err = bus_dmamem_alloc(sc->dma_tag, (void **)&sc->buf_base, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->dma_map); if (err) { device_printf(dev, "cannot allocate framebuffer\n"); return (ENXIO); } err = bus_dmamap_load(sc->dma_tag, sc->dma_map, sc->buf_base, sc->dma_size, ssi_dmamap_cb, &sc->buf_base_phys, BUS_DMA_NOWAIT); if (err) { device_printf(dev, "cannot load DMA map\n"); return (ENXIO); } bzero(sc->buf_base, sc->dma_size); /* Setup interrupt handler */ err = bus_setup_intr(dev, sc->res[1], INTR_MPSAFE | INTR_TYPE_AV, NULL, ssi_intr, scp, &sc->ih); if (err) { device_printf(dev, "Unable to alloc interrupt resource.\n"); return (ENXIO); } pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE); err = pcm_register(dev, scp, 1, 0); if (err) { device_printf(dev, "Can't register pcm.\n"); return (ENXIO); } scp->chnum = 0; pcm_addchan(dev, PCMDIR_PLAY, &ssichan_class, scp); scp->chnum++; snprintf(status, SND_STATUSLEN, "at simplebus"); pcm_setstatus(dev, status); mixer_init(dev, &ssimixer_class, scp); setup_ssi(sc); imx_ccm_ssi_configure(dev); sc->sdma_channel = sdma_alloc(); if (sc->sdma_channel < 0) { device_printf(sc->dev, "Can't get sDMA channel\n"); return (1); } return (0); } static device_method_t ssi_pcm_methods[] = { DEVMETHOD(device_probe, ssi_probe), DEVMETHOD(device_attach, ssi_attach), { 0, 0 } }; static driver_t ssi_pcm_driver = { "pcm", ssi_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(ssi, simplebus, ssi_pcm_driver, pcm_devclass, 0, 0); MODULE_DEPEND(ssi, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_DEPEND(ssi, sdma, 0, 0, 0); MODULE_VERSION(ssi, 1);