/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 Ian Lepore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include /* * Clocks and power control driver for Freescale i.MX6 family of SoCs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CCGR_CLK_MODE_ALWAYS #define CCGR_CLK_MODE_OFF 0 #define CCGR_CLK_MODE_RUNMODE 1 #define CCGR_CLK_MODE_ALWAYS 3 #endif struct ccm_softc { device_t dev; struct resource *mem_res; }; static struct ccm_softc *ccm_sc; static inline uint32_t RD4(struct ccm_softc *sc, bus_size_t off) { return (bus_read_4(sc->mem_res, off)); } static inline void WR4(struct ccm_softc *sc, bus_size_t off, uint32_t val) { bus_write_4(sc->mem_res, off, val); } /* * Until we have a fully functional ccm driver which implements the fdt_clock * interface, use the age-old workaround of unconditionally enabling the clocks * for devices we might need to use. The SoC defaults to most clocks enabled, * but the rom boot code and u-boot disable a few of them. We turn on only * what's needed to run the chip plus devices we have drivers for, and turn off * devices we don't yet have drivers for. (Note that USB is not turned on here * because that is one we do when the driver asks for it.) */ static void ccm_init_gates(struct ccm_softc *sc) { uint32_t reg; /* ahpbdma, aipstz 1 & 2 buses */ reg = CCGR0_AIPS_TZ1 | CCGR0_AIPS_TZ2 | CCGR0_ABPHDMA; WR4(sc, CCM_CCGR0, reg); /* enet, epit, gpt, spi */ reg = CCGR1_ENET | CCGR1_EPIT1 | CCGR1_GPT | CCGR1_ECSPI1 | CCGR1_ECSPI2 | CCGR1_ECSPI3 | CCGR1_ECSPI4 | CCGR1_ECSPI5; WR4(sc, CCM_CCGR1, reg); /* ipmux & ipsync (bridges), iomux, i2c */ reg = CCGR2_I2C1 | CCGR2_I2C2 | CCGR2_I2C3 | CCGR2_IIM | CCGR2_IOMUX_IPT | CCGR2_IPMUX1 | CCGR2_IPMUX2 | CCGR2_IPMUX3 | CCGR2_IPSYNC_IP2APB_TZASC1 | CCGR2_IPSYNC_IP2APB_TZASC2 | CCGR2_IPSYNC_VDOA; WR4(sc, CCM_CCGR2, reg); /* DDR memory controller */ reg = CCGR3_OCRAM | CCGR3_MMDC_CORE_IPG | CCGR3_MMDC_CORE_ACLK_FAST | CCGR3_CG11 | CCGR3_CG13; WR4(sc, CCM_CCGR3, reg); /* pl301 bus crossbar */ reg = CCGR4_PL301_MX6QFAST1_S133 | CCGR4_PL301_MX6QPER1_BCH | CCGR4_PL301_MX6QPER2_MAIN; WR4(sc, CCM_CCGR4, reg); /* uarts, ssi, sdma */ reg = CCGR5_SDMA | CCGR5_SSI1 | CCGR5_SSI2 | CCGR5_SSI3 | CCGR5_UART | CCGR5_UART_SERIAL; WR4(sc, CCM_CCGR5, reg); /* usdhc 1-4, usboh3 */ reg = CCGR6_USBOH3 | CCGR6_USDHC1 | CCGR6_USDHC2 | CCGR6_USDHC3 | CCGR6_USDHC4; WR4(sc, CCM_CCGR6, reg); } static int ccm_detach(device_t dev) { struct ccm_softc *sc; sc = device_get_softc(dev); if (sc->mem_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res); return (0); } static int ccm_attach(device_t dev) { struct ccm_softc *sc; int err, rid; uint32_t reg; sc = device_get_softc(dev); err = 0; /* Allocate bus_space resources. */ rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem_res == NULL) { device_printf(dev, "Cannot allocate memory resources\n"); err = ENXIO; goto out; } ccm_sc = sc; /* * Configure the Low Power Mode setting to leave the ARM core power on * when a WFI instruction is executed. This lets the MPCore timers and * GIC continue to run, which is helpful when the only thing that can * wake you up is an MPCore Private Timer interrupt delivered via GIC. * * XXX Based on the docs, setting CCM_CGPR_INT_MEM_CLK_LPM shouldn't be * required when the LPM bits are set to LPM_RUN. But experimentally * I've experienced a fairly rare lockup when not setting it. I was * unable to prove conclusively that the lockup was related to power * management or that this definitively fixes it. Revisit this. */ reg = RD4(sc, CCM_CGPR); reg |= CCM_CGPR_INT_MEM_CLK_LPM; WR4(sc, CCM_CGPR, reg); reg = RD4(sc, CCM_CLPCR); reg = (reg & ~CCM_CLPCR_LPM_MASK) | CCM_CLPCR_LPM_RUN; WR4(sc, CCM_CLPCR, reg); ccm_init_gates(sc); err = 0; out: if (err != 0) ccm_detach(dev); return (err); } static int ccm_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_is_compatible(dev, "fsl,imx6q-ccm") == 0) return (ENXIO); device_set_desc(dev, "Freescale i.MX6 Clock Control Module"); return (BUS_PROBE_DEFAULT); } void imx_ccm_ssi_configure(device_t _ssidev) { struct ccm_softc *sc; uint32_t reg; sc = ccm_sc; /* * Select PLL4 (Audio PLL) clock multiplexer as source. * PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */ reg = RD4(sc, CCM_CSCMR1); reg &= ~(SSI_CLK_SEL_M << SSI1_CLK_SEL_S); reg |= (SSI_CLK_SEL_PLL4 << SSI1_CLK_SEL_S); reg &= ~(SSI_CLK_SEL_M << SSI2_CLK_SEL_S); reg |= (SSI_CLK_SEL_PLL4 << SSI2_CLK_SEL_S); reg &= ~(SSI_CLK_SEL_M << SSI3_CLK_SEL_S); reg |= (SSI_CLK_SEL_PLL4 << SSI3_CLK_SEL_S); WR4(sc, CCM_CSCMR1, reg); /* * Ensure we have set hardware-default values * for pre and post dividers. */ /* SSI1 and SSI3 */ reg = RD4(sc, CCM_CS1CDR); /* Divide by 2 */ reg &= ~(SSI_CLK_PODF_MASK << SSI1_CLK_PODF_SHIFT); reg &= ~(SSI_CLK_PODF_MASK << SSI3_CLK_PODF_SHIFT); reg |= (0x1 << SSI1_CLK_PODF_SHIFT); reg |= (0x1 << SSI3_CLK_PODF_SHIFT); /* Divide by 4 */ reg &= ~(SSI_CLK_PRED_MASK << SSI1_CLK_PRED_SHIFT); reg &= ~(SSI_CLK_PRED_MASK << SSI3_CLK_PRED_SHIFT); reg |= (0x3 << SSI1_CLK_PRED_SHIFT); reg |= (0x3 << SSI3_CLK_PRED_SHIFT); WR4(sc, CCM_CS1CDR, reg); /* SSI2 */ reg = RD4(sc, CCM_CS2CDR); /* Divide by 2 */ reg &= ~(SSI_CLK_PODF_MASK << SSI2_CLK_PODF_SHIFT); reg |= (0x1 << SSI2_CLK_PODF_SHIFT); /* Divide by 4 */ reg &= ~(SSI_CLK_PRED_MASK << SSI2_CLK_PRED_SHIFT); reg |= (0x3 << SSI2_CLK_PRED_SHIFT); WR4(sc, CCM_CS2CDR, reg); } void imx_ccm_usb_enable(device_t _usbdev) { /* * For imx6, the USBOH3 clock gate is bits 0-1 of CCGR6, so no need for * shifting and masking here, just set the low-order two bits to ALWAYS. */ WR4(ccm_sc, CCM_CCGR6, RD4(ccm_sc, CCM_CCGR6) | CCGR_CLK_MODE_ALWAYS); } void imx_ccm_usbphy_enable(device_t _phydev) { /* * XXX Which unit? * Right now it's not clear how to figure from fdt data which phy unit * we're supposed to operate on. Until this is worked out, just enable * both PHYs. */ #if 0 int phy_num, regoff; phy_num = 0; /* XXX */ switch (phy_num) { case 0: regoff = 0; break; case 1: regoff = 0x10; break; default: device_printf(ccm_sc->dev, "Bad PHY number %u,\n", phy_num); return; } imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + regoff, IMX6_ANALOG_CCM_PLL_USB_ENABLE | IMX6_ANALOG_CCM_PLL_USB_POWER | IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS); #else imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0, IMX6_ANALOG_CCM_PLL_USB_ENABLE | IMX6_ANALOG_CCM_PLL_USB_POWER | IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS); imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0x10, IMX6_ANALOG_CCM_PLL_USB_ENABLE | IMX6_ANALOG_CCM_PLL_USB_POWER | IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS); #endif } int imx6_ccm_sata_enable(void) { uint32_t v; int timeout; /* Un-gate the sata controller. */ WR4(ccm_sc, CCM_CCGR5, RD4(ccm_sc, CCM_CCGR5) | CCGR5_SATA); /* Power up the PLL that feeds ENET/SATA/PCI phys, wait for lock. */ v = RD4(ccm_sc, CCM_ANALOG_PLL_ENET); v &= ~CCM_ANALOG_PLL_ENET_POWERDOWN; WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v); for (timeout = 100000; timeout > 0; timeout--) { if (RD4(ccm_sc, CCM_ANALOG_PLL_ENET) & CCM_ANALOG_PLL_ENET_LOCK) { break; } } if (timeout <= 0) { return ETIMEDOUT; } /* Enable the PLL, and enable its 100mhz output. */ v |= CCM_ANALOG_PLL_ENET_ENABLE; v &= ~CCM_ANALOG_PLL_ENET_BYPASS; WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v); v |= CCM_ANALOG_PLL_ENET_ENABLE_100M; WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v); return 0; } uint32_t imx_ccm_ecspi_hz(void) { return (60000000); } uint32_t imx_ccm_ipg_hz(void) { return (66000000); } uint32_t imx_ccm_perclk_hz(void) { return (66000000); } uint32_t imx_ccm_sdhci_hz(void) { return (200000000); } uint32_t imx_ccm_uart_hz(void) { return (80000000); } uint32_t imx_ccm_ahb_hz(void) { return (132000000); } int imx_ccm_pll_video_enable(void) { uint32_t reg; int timeout; /* Power down PLL */ reg = RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO); reg &= ~CCM_ANALOG_PLL_VIDEO_POWERDOWN; WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg); /* * Fvideo = Fref * (37 + 11/12) / 2 * Fref = 24MHz, Fvideo = 455MHz */ reg &= ~CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK; reg |= CCM_ANALOG_PLL_VIDEO_POST_DIV_2; reg &= ~CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK; reg |= 37 << CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT; WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg); WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO_NUM, 11); WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO_DENOM, 12); /* Power up and wait for PLL lock down */ reg = RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO); reg &= ~CCM_ANALOG_PLL_VIDEO_POWERDOWN; WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg); for (timeout = 100000; timeout > 0; timeout--) { if (RD4(ccm_sc, CCM_ANALOG_PLL_VIDEO) & CCM_ANALOG_PLL_VIDEO_LOCK) { break; } } if (timeout <= 0) { return ETIMEDOUT; } /* Enable the PLL */ reg |= CCM_ANALOG_PLL_VIDEO_ENABLE; reg &= ~CCM_ANALOG_PLL_VIDEO_BYPASS; WR4(ccm_sc, CCM_ANALOG_PLL_VIDEO, reg); return (0); } void imx_ccm_ipu_enable(int ipu) { struct ccm_softc *sc; uint32_t reg; sc = ccm_sc; reg = RD4(sc, CCM_CCGR3); if (ipu == 1) reg |= CCGR3_IPU1_IPU | CCGR3_IPU1_DI0; else reg |= CCGR3_IPU2_IPU | CCGR3_IPU2_DI0; WR4(sc, CCM_CCGR3, reg); /* Set IPU1_DI0 clock to source from PLL5 and divide it by 3 */ reg = RD4(sc, CCM_CHSCCDR); reg &= ~(CHSCCDR_IPU1_DI0_PRE_CLK_SEL_MASK | CHSCCDR_IPU1_DI0_PODF_MASK | CHSCCDR_IPU1_DI0_CLK_SEL_MASK); reg |= (CHSCCDR_PODF_DIVIDE_BY_3 << CHSCCDR_IPU1_DI0_PODF_SHIFT); reg |= (CHSCCDR_IPU_PRE_CLK_PLL5 << CHSCCDR_IPU1_DI0_PRE_CLK_SEL_SHIFT); WR4(sc, CCM_CHSCCDR, reg); reg |= (CHSCCDR_CLK_SEL_PREMUXED << CHSCCDR_IPU1_DI0_CLK_SEL_SHIFT); WR4(sc, CCM_CHSCCDR, reg); } uint32_t imx_ccm_ipu_hz(void) { return (455000000 / 3); } void imx_ccm_hdmi_enable(void) { struct ccm_softc *sc; uint32_t reg; sc = ccm_sc; reg = RD4(sc, CCM_CCGR2); reg |= CCGR2_HDMI_TX | CCGR2_HDMI_TX_ISFR; WR4(sc, CCM_CCGR2, reg); } uint32_t imx_ccm_get_cacrr(void) { return (RD4(ccm_sc, CCM_CACCR)); } void imx_ccm_set_cacrr(uint32_t divisor) { WR4(ccm_sc, CCM_CACCR, divisor); } static device_method_t ccm_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ccm_probe), DEVMETHOD(device_attach, ccm_attach), DEVMETHOD(device_detach, ccm_detach), DEVMETHOD_END }; static driver_t ccm_driver = { "ccm", ccm_methods, sizeof(struct ccm_softc) }; EARLY_DRIVER_MODULE(ccm, simplebus, ccm_driver, 0, 0, BUS_PASS_CPU + BUS_PASS_ORDER_EARLY);