/*- * Copyright (c) 2015-2016 Emmanuel Vadot * Copyright (c) 2016 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * X-Power AXP209 PMU for Allwinner SoCs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iicbus_if.h" #include "gpio_if.h" #include "regdev_if.h" MALLOC_DEFINE(M_AXP209_REG, "Axp209 regulator", "Axp209 power regulator"); struct axp209_regdef { intptr_t id; char *name; uint8_t enable_reg; uint8_t enable_mask; uint8_t voltage_reg; uint8_t voltage_mask; uint8_t voltage_shift; int voltage_min; int voltage_max; int voltage_step; int voltage_nstep; }; static struct axp209_regdef axp209_regdefs[] = { { .id = AXP209_REG_ID_DCDC2, .name = "dcdc2", .enable_reg = AXP209_POWERCTL, .enable_mask = AXP209_POWERCTL_DCDC2, .voltage_reg = AXP209_REG_DCDC2_VOLTAGE, .voltage_mask = 0x3f, .voltage_min = 700, .voltage_max = 2275, .voltage_step = 25, .voltage_nstep = 64, }, { .id = AXP209_REG_ID_DCDC3, .name = "dcdc3", .enable_reg = AXP209_POWERCTL, .enable_mask = AXP209_POWERCTL_DCDC3, .voltage_reg = AXP209_REG_DCDC3_VOLTAGE, .voltage_mask = 0x7f, .voltage_min = 700, .voltage_max = 3500, .voltage_step = 25, .voltage_nstep = 128, }, { .id = AXP209_REG_ID_LDO2, .name = "ldo2", .enable_reg = AXP209_POWERCTL, .enable_mask = AXP209_POWERCTL_LDO2, .voltage_reg = AXP209_REG_LDO24_VOLTAGE, .voltage_mask = 0xf0, .voltage_shift = 4, .voltage_min = 1800, .voltage_max = 3300, .voltage_step = 100, .voltage_nstep = 16, }, { .id = AXP209_REG_ID_LDO3, .name = "ldo3", .enable_reg = AXP209_POWERCTL, .enable_mask = AXP209_POWERCTL_LDO3, .voltage_reg = AXP209_REG_LDO3_VOLTAGE, .voltage_mask = 0x7f, .voltage_min = 700, .voltage_max = 2275, .voltage_step = 25, .voltage_nstep = 128, }, }; struct axp209_reg_sc { struct regnode *regnode; device_t base_dev; struct axp209_regdef *def; phandle_t xref; struct regnode_std_param *param; }; struct axp209_softc { device_t dev; uint32_t addr; struct resource * res[1]; void * intrcookie; struct intr_config_hook intr_hook; device_t gpiodev; struct mtx mtx; /* Regulators */ struct axp209_reg_sc **regs; int nregs; }; /* GPIO3 is different, don't expose it for now */ static const struct { const char *name; uint8_t ctrl_reg; } axp209_pins[] = { { "GPIO0", AXP209_GPIO0_CTRL }, { "GPIO1", AXP209_GPIO1_CTRL }, { "GPIO2", AXP209_GPIO2_CTRL }, }; static struct resource_spec axp_res_spec[] = { { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0, 0 } }; #define AXP_LOCK(sc) mtx_lock(&(sc)->mtx) #define AXP_UNLOCK(sc) mtx_unlock(&(sc)->mtx) static int axp209_read(device_t dev, uint8_t reg, uint8_t *data, uint8_t size) { struct axp209_softc *sc = device_get_softc(dev); struct iic_msg msg[2]; msg[0].slave = sc->addr; msg[0].flags = IIC_M_WR; msg[0].len = 1; msg[0].buf = ® msg[1].slave = sc->addr; msg[1].flags = IIC_M_RD; msg[1].len = size; msg[1].buf = data; return (iicbus_transfer(dev, msg, 2)); } static int axp209_write(device_t dev, uint8_t reg, uint8_t data) { uint8_t buffer[2]; struct axp209_softc *sc = device_get_softc(dev); struct iic_msg msg; buffer[0] = reg; buffer[1] = data; msg.slave = sc->addr; msg.flags = IIC_M_WR; msg.len = 2; msg.buf = buffer; return (iicbus_transfer(dev, &msg, 1)); } static int axp209_regnode_init(struct regnode *regnode) { return (0); } static int axp209_regnode_enable(struct regnode *regnode, bool enable, int *udelay) { struct axp209_reg_sc *sc; uint8_t val; sc = regnode_get_softc(regnode); axp209_read(sc->base_dev, sc->def->enable_reg, &val, 1); if (enable) val |= sc->def->enable_mask; else val &= ~sc->def->enable_mask; axp209_write(sc->base_dev, sc->def->enable_reg, val); *udelay = 0; return (0); } static void axp209_regnode_reg_to_voltage(struct axp209_reg_sc *sc, uint8_t val, int *uv) { if (val < sc->def->voltage_nstep) *uv = sc->def->voltage_min + val * sc->def->voltage_step; else *uv = sc->def->voltage_min + (sc->def->voltage_nstep * sc->def->voltage_step); *uv *= 1000; } static int axp209_regnode_voltage_to_reg(struct axp209_reg_sc *sc, int min_uvolt, int max_uvolt, uint8_t *val) { uint8_t nval; int nstep, uvolt; nval = 0; uvolt = sc->def->voltage_min * 1000; for (nstep = 0; nstep < sc->def->voltage_nstep && uvolt < min_uvolt; nstep++) { ++nval; uvolt += (sc->def->voltage_step * 1000); } if (uvolt > max_uvolt) return (EINVAL); *val = nval; return (0); } static int axp209_regnode_set_voltage(struct regnode *regnode, int min_uvolt, int max_uvolt, int *udelay) { struct axp209_reg_sc *sc; uint8_t val; sc = regnode_get_softc(regnode); if (!sc->def->voltage_step) return (ENXIO); if (axp209_regnode_voltage_to_reg(sc, min_uvolt, max_uvolt, &val) != 0) return (ERANGE); axp209_write(sc->base_dev, sc->def->voltage_reg, val); *udelay = 0; return (0); } static int axp209_regnode_get_voltage(struct regnode *regnode, int *uvolt) { struct axp209_reg_sc *sc; uint8_t val; sc = regnode_get_softc(regnode); if (!sc->def->voltage_step) return (ENXIO); axp209_read(sc->base_dev, sc->def->voltage_reg, &val, 1); axp209_regnode_reg_to_voltage(sc, val & sc->def->voltage_mask, uvolt); return (0); } static regnode_method_t axp209_regnode_methods[] = { /* Regulator interface */ REGNODEMETHOD(regnode_init, axp209_regnode_init), REGNODEMETHOD(regnode_enable, axp209_regnode_enable), REGNODEMETHOD(regnode_set_voltage, axp209_regnode_set_voltage), REGNODEMETHOD(regnode_get_voltage, axp209_regnode_get_voltage), REGNODEMETHOD_END }; DEFINE_CLASS_1(axp209_regnode, axp209_regnode_class, axp209_regnode_methods, sizeof(struct axp209_reg_sc), regnode_class); static int axp209_sysctl(SYSCTL_HANDLER_ARGS) { device_t dev = arg1; enum axp209_sensor sensor = arg2; uint8_t data[2]; int val, error; switch (sensor) { case AXP209_TEMP: error = axp209_read(dev, AXP209_TEMPMON, data, 2); if (error != 0) return (error); /* Temperature is between -144.7C and 264.8C, step +0.1C */ val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) - AXP209_TEMPMON_MIN + AXP209_0C_TO_K; break; case AXP209_ACVOLT: error = axp209_read(dev, AXP209_ACIN_VOLTAGE, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_VOLT_STEP; break; case AXP209_ACCURRENT: error = axp209_read(dev, AXP209_ACIN_CURRENT, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_ACCURRENT_STEP; break; case AXP209_VBUSVOLT: error = axp209_read(dev, AXP209_VBUS_VOLTAGE, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_VOLT_STEP; break; case AXP209_VBUSCURRENT: error = axp209_read(dev, AXP209_VBUS_CURRENT, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_VBUSCURRENT_STEP; break; case AXP209_BATVOLT: error = axp209_read(dev, AXP209_BAT_VOLTAGE, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_BATVOLT_STEP; break; case AXP209_BATCHARGECURRENT: error = axp209_read(dev, AXP209_BAT_CHARGE_CURRENT, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_H(data[0]) | AXP209_SENSOR_L(data[1])) * AXP209_BATCURRENT_STEP; break; case AXP209_BATDISCHARGECURRENT: error = axp209_read(dev, AXP209_BAT_DISCHARGE_CURRENT, data, 2); if (error != 0) return (error); val = (AXP209_SENSOR_BAT_H(data[0]) | AXP209_SENSOR_BAT_L(data[1])) * AXP209_BATCURRENT_STEP; break; default: return (ENOENT); } return sysctl_handle_opaque(oidp, &val, sizeof(val), req); } static void axp209_shutdown(void *devp, int howto) { device_t dev; if (!(howto & RB_POWEROFF)) return; dev = (device_t)devp; if (bootverbose) device_printf(dev, "Shutdown AXP209\n"); axp209_write(dev, AXP209_SHUTBAT, AXP209_SHUTBAT_SHUTDOWN); } static void axp_intr(void *arg) { struct axp209_softc *sc; uint8_t reg; sc = arg; axp209_read(sc->dev, AXP209_IRQ1_STATUS, ®, 1); if (reg) { if (reg & AXP209_IRQ1_AC_OVERVOLT) devctl_notify("PMU", "AC", "overvoltage", NULL); if (reg & AXP209_IRQ1_VBUS_OVERVOLT) devctl_notify("PMU", "USB", "overvoltage", NULL); if (reg & AXP209_IRQ1_VBUS_LOW) devctl_notify("PMU", "USB", "undervoltage", NULL); if (reg & AXP209_IRQ1_AC_CONN) devctl_notify("PMU", "AC", "plugged", NULL); if (reg & AXP209_IRQ1_AC_DISCONN) devctl_notify("PMU", "AC", "unplugged", NULL); if (reg & AXP209_IRQ1_VBUS_CONN) devctl_notify("PMU", "USB", "plugged", NULL); if (reg & AXP209_IRQ1_VBUS_DISCONN) devctl_notify("PMU", "USB", "unplugged", NULL); axp209_write(sc->dev, AXP209_IRQ1_STATUS, AXP209_IRQ_ACK); } axp209_read(sc->dev, AXP209_IRQ2_STATUS, ®, 1); if (reg) { if (reg & AXP209_IRQ2_BATT_CHARGED) devctl_notify("PMU", "Battery", "charged", NULL); if (reg & AXP209_IRQ2_BATT_CHARGING) devctl_notify("PMU", "Battery", "charging", NULL); if (reg & AXP209_IRQ2_BATT_CONN) devctl_notify("PMU", "Battery", "connected", NULL); if (reg & AXP209_IRQ2_BATT_DISCONN) devctl_notify("PMU", "Battery", "disconnected", NULL); if (reg & AXP209_IRQ2_BATT_TEMP_LOW) devctl_notify("PMU", "Battery", "low temp", NULL); if (reg & AXP209_IRQ2_BATT_TEMP_OVER) devctl_notify("PMU", "Battery", "high temp", NULL); axp209_write(sc->dev, AXP209_IRQ2_STATUS, AXP209_IRQ_ACK); } axp209_read(sc->dev, AXP209_IRQ3_STATUS, ®, 1); if (reg) { if (reg & AXP209_IRQ3_PEK_SHORT) shutdown_nice(RB_POWEROFF); axp209_write(sc->dev, AXP209_IRQ3_STATUS, AXP209_IRQ_ACK); } axp209_read(sc->dev, AXP209_IRQ4_STATUS, ®, 1); if (reg) { axp209_write(sc->dev, AXP209_IRQ4_STATUS, AXP209_IRQ_ACK); } axp209_read(sc->dev, AXP209_IRQ5_STATUS, ®, 1); if (reg) { axp209_write(sc->dev, AXP209_IRQ5_STATUS, AXP209_IRQ_ACK); } } static device_t axp209_gpio_get_bus(device_t dev) { struct axp209_softc *sc; sc = device_get_softc(dev); return (sc->gpiodev); } static int axp209_gpio_pin_max(device_t dev, int *maxpin) { *maxpin = nitems(axp209_pins) - 1; return (0); } static int axp209_gpio_pin_getname(device_t dev, uint32_t pin, char *name) { if (pin >= nitems(axp209_pins)) return (EINVAL); snprintf(name, GPIOMAXNAME, "%s", axp209_pins[pin].name); return (0); } static int axp209_gpio_pin_getcaps(device_t dev, uint32_t pin, uint32_t *caps) { if (pin >= nitems(axp209_pins)) return (EINVAL); *caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT; return (0); } static int axp209_gpio_pin_getflags(device_t dev, uint32_t pin, uint32_t *flags) { struct axp209_softc *sc; uint8_t data, func; int error; if (pin >= nitems(axp209_pins)) return (EINVAL); sc = device_get_softc(dev); AXP_LOCK(sc); error = axp209_read(dev, axp209_pins[pin].ctrl_reg, &data, 1); if (error == 0) { func = data & AXP209_GPIO_FUNC_MASK; if (func == AXP209_GPIO_FUNC_INPUT) *flags = GPIO_PIN_INPUT; else if (func == AXP209_GPIO_FUNC_DRVLO || func == AXP209_GPIO_FUNC_DRVHI) *flags = GPIO_PIN_OUTPUT; else *flags = 0; } AXP_UNLOCK(sc); return (error); } static int axp209_gpio_pin_setflags(device_t dev, uint32_t pin, uint32_t flags) { struct axp209_softc *sc; uint8_t data; int error; if (pin >= nitems(axp209_pins)) return (EINVAL); sc = device_get_softc(dev); AXP_LOCK(sc); error = axp209_read(dev, axp209_pins[pin].ctrl_reg, &data, 1); if (error == 0) { data &= ~AXP209_GPIO_FUNC_MASK; if ((flags & (GPIO_PIN_INPUT|GPIO_PIN_OUTPUT)) != 0) { if ((flags & GPIO_PIN_OUTPUT) == 0) data |= AXP209_GPIO_FUNC_INPUT; } error = axp209_write(dev, axp209_pins[pin].ctrl_reg, data); } AXP_UNLOCK(sc); return (error); } static int axp209_gpio_pin_get(device_t dev, uint32_t pin, unsigned int *val) { struct axp209_softc *sc; uint8_t data, func; int error; if (pin >= nitems(axp209_pins)) return (EINVAL); sc = device_get_softc(dev); AXP_LOCK(sc); error = axp209_read(dev, axp209_pins[pin].ctrl_reg, &data, 1); if (error == 0) { func = data & AXP209_GPIO_FUNC_MASK; switch (func) { case AXP209_GPIO_FUNC_DRVLO: *val = 0; break; case AXP209_GPIO_FUNC_DRVHI: *val = 1; break; case AXP209_GPIO_FUNC_INPUT: error = axp209_read(dev, AXP209_GPIO_STATUS, &data, 1); if (error == 0) *val = (data & AXP209_GPIO_DATA(pin)) ? 1 : 0; break; default: error = EIO; break; } } AXP_UNLOCK(sc); return (error); } static int axp209_gpio_pin_set(device_t dev, uint32_t pin, unsigned int val) { struct axp209_softc *sc; uint8_t data, func; int error; if (pin >= nitems(axp209_pins)) return (EINVAL); sc = device_get_softc(dev); AXP_LOCK(sc); error = axp209_read(dev, axp209_pins[pin].ctrl_reg, &data, 1); if (error == 0) { func = data & AXP209_GPIO_FUNC_MASK; switch (func) { case AXP209_GPIO_FUNC_DRVLO: case AXP209_GPIO_FUNC_DRVHI: /* GPIO2 can't be set to 1 */ if (pin == 2 && val == 1) { error = EINVAL; break; } data &= ~AXP209_GPIO_FUNC_MASK; data |= val; break; default: error = EIO; break; } } if (error == 0) error = axp209_write(dev, axp209_pins[pin].ctrl_reg, data); AXP_UNLOCK(sc); return (error); } static int axp209_gpio_pin_toggle(device_t dev, uint32_t pin) { struct axp209_softc *sc; uint8_t data, func; int error; if (pin >= nitems(axp209_pins)) return (EINVAL); sc = device_get_softc(dev); AXP_LOCK(sc); error = axp209_read(dev, axp209_pins[pin].ctrl_reg, &data, 1); if (error == 0) { func = data & AXP209_GPIO_FUNC_MASK; switch (func) { case AXP209_GPIO_FUNC_DRVLO: /* Pin 2 can't be set to 1*/ if (pin == 2) { error = EINVAL; break; } data &= ~AXP209_GPIO_FUNC_MASK; data |= AXP209_GPIO_FUNC_DRVHI; break; case AXP209_GPIO_FUNC_DRVHI: data &= ~AXP209_GPIO_FUNC_MASK; data |= AXP209_GPIO_FUNC_DRVLO; break; default: error = EIO; break; } } if (error == 0) error = axp209_write(dev, axp209_pins[pin].ctrl_reg, data); AXP_UNLOCK(sc); return (error); } static int axp209_gpio_map_gpios(device_t bus, phandle_t dev, phandle_t gparent, int gcells, pcell_t *gpios, uint32_t *pin, uint32_t *flags) { if (gpios[0] >= nitems(axp209_pins)) return (EINVAL); *pin = gpios[0]; *flags = gpios[1]; return (0); } static phandle_t axp209_get_node(device_t dev, device_t bus) { return (ofw_bus_get_node(dev)); } static struct axp209_reg_sc * axp209_reg_attach(device_t dev, phandle_t node, struct axp209_regdef *def) { struct axp209_reg_sc *reg_sc; struct regnode_init_def initdef; struct regnode *regnode; memset(&initdef, 0, sizeof(initdef)); if (regulator_parse_ofw_stdparam(dev, node, &initdef) != 0) { device_printf(dev, "cannot create regulator\n"); return (NULL); } if (initdef.std_param.min_uvolt == 0) initdef.std_param.min_uvolt = def->voltage_min * 1000; if (initdef.std_param.max_uvolt == 0) initdef.std_param.max_uvolt = def->voltage_max * 1000; initdef.id = def->id; initdef.ofw_node = node; regnode = regnode_create(dev, &axp209_regnode_class, &initdef); if (regnode == NULL) { device_printf(dev, "cannot create regulator\n"); return (NULL); } reg_sc = regnode_get_softc(regnode); reg_sc->regnode = regnode; reg_sc->base_dev = dev; reg_sc->def = def; reg_sc->xref = OF_xref_from_node(node); reg_sc->param = regnode_get_stdparam(regnode); regnode_register(regnode); return (reg_sc); } static int axp209_regdev_map(device_t dev, phandle_t xref, int ncells, pcell_t *cells, intptr_t *num) { struct axp209_softc *sc; int i; sc = device_get_softc(dev); for (i = 0; i < sc->nregs; i++) { if (sc->regs[i] == NULL) continue; if (sc->regs[i]->xref == xref) { *num = sc->regs[i]->def->id; return (0); } } return (ENXIO); } static void axp209_start(void *pdev) { device_t dev; struct axp209_softc *sc; const char *pwr_name[] = {"Battery", "AC", "USB", "AC and USB"}; uint8_t data; uint8_t pwr_src; dev = pdev; sc = device_get_softc(dev); sc->addr = iicbus_get_addr(dev); sc->dev = dev; if (bootverbose) { /* * Read the Power State register. * Shift the AC presence into bit 0. * Shift the Battery presence into bit 1. */ axp209_read(dev, AXP209_PSR, &data, 1); pwr_src = ((data & AXP209_PSR_ACIN) >> AXP209_PSR_ACIN_SHIFT) | ((data & AXP209_PSR_VBUS) >> (AXP209_PSR_VBUS_SHIFT - 1)); device_printf(dev, "AXP209 Powered by %s\n", pwr_name[pwr_src]); } /* Only enable interrupts that we are interested in */ axp209_write(dev, AXP209_IRQ1_ENABLE, AXP209_IRQ1_AC_OVERVOLT | AXP209_IRQ1_AC_DISCONN | AXP209_IRQ1_AC_CONN | AXP209_IRQ1_VBUS_OVERVOLT | AXP209_IRQ1_VBUS_DISCONN | AXP209_IRQ1_VBUS_CONN); axp209_write(dev, AXP209_IRQ2_ENABLE, AXP209_IRQ2_BATT_CONN | AXP209_IRQ2_BATT_DISCONN | AXP209_IRQ2_BATT_CHARGE_ACCT_ON | AXP209_IRQ2_BATT_CHARGE_ACCT_OFF | AXP209_IRQ2_BATT_CHARGING | AXP209_IRQ2_BATT_CHARGED | AXP209_IRQ2_BATT_TEMP_OVER | AXP209_IRQ2_BATT_TEMP_LOW); axp209_write(dev, AXP209_IRQ3_ENABLE, AXP209_IRQ3_PEK_SHORT | AXP209_IRQ3_PEK_LONG); axp209_write(dev, AXP209_IRQ4_ENABLE, AXP209_IRQ4_APS_LOW_2); axp209_write(dev, AXP209_IRQ5_ENABLE, 0x0); EVENTHANDLER_REGISTER(shutdown_final, axp209_shutdown, dev, SHUTDOWN_PRI_LAST); /* Enable ADC sensors */ if (axp209_write(dev, AXP209_ADC_ENABLE1, AXP209_ADC1_BATVOLT | AXP209_ADC1_BATCURRENT | AXP209_ADC1_ACVOLT | AXP209_ADC1_ACCURRENT | AXP209_ADC1_VBUSVOLT | AXP209_ADC1_VBUSCURRENT) != -1) { SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "acvolt", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_ACVOLT, axp209_sysctl, "I", "AC Voltage (microVolt)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "accurrent", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_ACCURRENT, axp209_sysctl, "I", "AC Current (microAmpere)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "vbusvolt", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_VBUSVOLT, axp209_sysctl, "I", "VBUS Voltage (microVolt)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "vbuscurrent", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_VBUSCURRENT, axp209_sysctl, "I", "VBUS Current (microAmpere)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "batvolt", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_BATVOLT, axp209_sysctl, "I", "Battery Voltage (microVolt)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "batchargecurrent", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_BATCHARGECURRENT, axp209_sysctl, "I", "Battery Charging Current (microAmpere)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "batdischargecurrent", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_BATDISCHARGECURRENT, axp209_sysctl, "I", "Battery Discharging Current (microAmpere)"); } else { device_printf(dev, "Couldn't enable ADC sensors\n"); } SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "temp", CTLTYPE_INT | CTLFLAG_RD, dev, AXP209_TEMP, axp209_sysctl, "IK", "Internal temperature"); if ((bus_setup_intr(dev, sc->res[0], INTR_TYPE_MISC | INTR_MPSAFE, NULL, axp_intr, sc, &sc->intrcookie))) device_printf(dev, "unable to register interrupt handler\n"); config_intrhook_disestablish(&sc->intr_hook); } static int axp209_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "x-powers,axp209")) return (ENXIO); device_set_desc(dev, "X-Powers AXP209 Power Management Unit"); return (BUS_PROBE_DEFAULT); } static int axp209_attach(device_t dev) { struct axp209_softc *sc; struct axp209_reg_sc *reg; phandle_t rnode, child; int i; sc = device_get_softc(dev); mtx_init(&sc->mtx, device_get_nameunit(dev), NULL, MTX_DEF); if (bus_alloc_resources(dev, axp_res_spec, sc->res) != 0) { device_printf(dev, "can't allocate device resources\n"); return (ENXIO); } sc->intr_hook.ich_func = axp209_start; sc->intr_hook.ich_arg = dev; if (config_intrhook_establish(&sc->intr_hook) != 0) return (ENOMEM); sc->nregs = nitems(axp209_regdefs); sc->regs = malloc(sizeof(struct axp209_reg_sc *) * sc->nregs, M_AXP209_REG, M_WAITOK | M_ZERO); /* Attach known regulators that exist in the DT */ rnode = ofw_bus_find_child(ofw_bus_get_node(dev), "regulators"); if (rnode > 0) { for (i = 0; i < sc->nregs; i++) { child = ofw_bus_find_child(rnode, axp209_regdefs[i].name); if (child == 0) continue; reg = axp209_reg_attach(dev, child, &axp209_regdefs[i]); if (reg == NULL) { device_printf(dev, "cannot attach regulator %s\n", axp209_regdefs[i].name); continue; } sc->regs[i] = reg; } } sc->gpiodev = gpiobus_attach_bus(dev); return (0); } static device_method_t axp209_methods[] = { DEVMETHOD(device_probe, axp209_probe), DEVMETHOD(device_attach, axp209_attach), /* GPIO interface */ DEVMETHOD(gpio_get_bus, axp209_gpio_get_bus), DEVMETHOD(gpio_pin_max, axp209_gpio_pin_max), DEVMETHOD(gpio_pin_getname, axp209_gpio_pin_getname), DEVMETHOD(gpio_pin_getcaps, axp209_gpio_pin_getcaps), DEVMETHOD(gpio_pin_getflags, axp209_gpio_pin_getflags), DEVMETHOD(gpio_pin_setflags, axp209_gpio_pin_setflags), DEVMETHOD(gpio_pin_get, axp209_gpio_pin_get), DEVMETHOD(gpio_pin_set, axp209_gpio_pin_set), DEVMETHOD(gpio_pin_toggle, axp209_gpio_pin_toggle), DEVMETHOD(gpio_map_gpios, axp209_gpio_map_gpios), /* Regdev interface */ DEVMETHOD(regdev_map, axp209_regdev_map), /* OFW bus interface */ DEVMETHOD(ofw_bus_get_node, axp209_get_node), DEVMETHOD_END }; static driver_t axp209_driver = { "axp209_pmu", axp209_methods, sizeof(struct axp209_softc), }; static devclass_t axp209_devclass; extern devclass_t ofwgpiobus_devclass, gpioc_devclass; extern driver_t ofw_gpiobus_driver, gpioc_driver; EARLY_DRIVER_MODULE(axp209, iicbus, axp209_driver, axp209_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE); EARLY_DRIVER_MODULE(ofw_gpiobus, axp209_pmu, ofw_gpiobus_driver, ofwgpiobus_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LATE); DRIVER_MODULE(gpioc, axp209_pmu, gpioc_driver, gpioc_devclass, 0, 0); MODULE_VERSION(axp209, 1); MODULE_DEPEND(axp209, iicbus, 1, 1, 1);