/*- * Copyright (c) 2019 Emmanuel Vadot * Copyright (c) 2016 Vladimir Belian * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clock_if.h" #define LOSC_CTRL_REG 0x00 #define A10_RTC_DATE_REG 0x04 #define A10_RTC_TIME_REG 0x08 #define A31_LOSC_AUTO_SWT_STA 0x04 #define A31_RTC_DATE_REG 0x10 #define A31_RTC_TIME_REG 0x14 #define TIME_MASK 0x001f3f3f #define LOSC_OSC_SRC (1 << 0) #define LOSC_GSM (1 << 3) #define LOSC_AUTO_SW_EN (1 << 14) #define LOSC_MAGIC 0x16aa0000 #define LOSC_BUSY_MASK 0x00000380 #define IS_SUN7I (sc->conf->is_a20 == true) #define YEAR_MIN (IS_SUN7I ? 1970 : 2010) #define YEAR_MAX (IS_SUN7I ? 2100 : 2073) #define YEAR_OFFSET (IS_SUN7I ? 1900 : 2010) #define YEAR_MASK (IS_SUN7I ? 0xff : 0x3f) #define LEAP_BIT (IS_SUN7I ? 24 : 22) #define GET_SEC_VALUE(x) ((x) & 0x0000003f) #define GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8) #define GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16) #define GET_DAY_VALUE(x) ((x) & 0x0000001f) #define GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8) #define GET_YEAR_VALUE(x) (((x) >> 16) & YEAR_MASK) #define SET_DAY_VALUE(x) GET_DAY_VALUE(x) #define SET_MON_VALUE(x) (((x) & 0x0000000f) << 8) #define SET_YEAR_VALUE(x) (((x) & YEAR_MASK) << 16) #define SET_LEAP_VALUE(x) (((x) & 0x00000001) << LEAP_BIT) #define SET_SEC_VALUE(x) GET_SEC_VALUE(x) #define SET_MIN_VALUE(x) (((x) & 0x0000003f) << 8) #define SET_HOUR_VALUE(x) (((x) & 0x0000001f) << 16) #define HALF_OF_SEC_NS 500000000 #define RTC_RES_US 1000000 #define RTC_TIMEOUT 70 #define RTC_READ(sc, reg) bus_read_4((sc)->res, (reg)) #define RTC_WRITE(sc, reg, val) bus_write_4((sc)->res, (reg), (val)) #define IS_LEAP_YEAR(y) (((y) % 400) == 0 || (((y) % 100) != 0 && ((y) % 4) == 0)) struct aw_rtc_conf { uint64_t iosc_freq; bus_size_t rtc_date; bus_size_t rtc_time; bus_size_t rtc_losc_sta; bool is_a20; }; struct aw_rtc_conf a10_conf = { .rtc_date = A10_RTC_DATE_REG, .rtc_time = A10_RTC_TIME_REG, .rtc_losc_sta = LOSC_CTRL_REG, }; struct aw_rtc_conf a20_conf = { .rtc_date = A10_RTC_DATE_REG, .rtc_time = A10_RTC_TIME_REG, .rtc_losc_sta = LOSC_CTRL_REG, .is_a20 = true, }; struct aw_rtc_conf a31_conf = { .iosc_freq = 650000, /* between 600 and 700 Khz */ .rtc_date = A31_RTC_DATE_REG, .rtc_time = A31_RTC_TIME_REG, .rtc_losc_sta = A31_LOSC_AUTO_SWT_STA, }; struct aw_rtc_conf h3_conf = { .iosc_freq = 16000000, .rtc_date = A31_RTC_DATE_REG, .rtc_time = A31_RTC_TIME_REG, .rtc_losc_sta = A31_LOSC_AUTO_SWT_STA, }; static struct ofw_compat_data compat_data[] = { { "allwinner,sun4i-a10-rtc", (uintptr_t) &a10_conf }, { "allwinner,sun7i-a20-rtc", (uintptr_t) &a20_conf }, { "allwinner,sun6i-a31-rtc", (uintptr_t) &a31_conf }, { "allwinner,sun8i-h3-rtc", (uintptr_t) &h3_conf }, { NULL, 0 } }; struct aw_rtc_softc { struct resource *res; struct aw_rtc_conf *conf; int type; }; static struct clk_fixed_def aw_rtc_osc32k = { .clkdef.id = 0, .freq = 32768, }; static struct clk_fixed_def aw_rtc_iosc = { .clkdef.id = 2, }; static void aw_rtc_install_clocks(struct aw_rtc_softc *sc, device_t dev); static int aw_rtc_probe(device_t dev); static int aw_rtc_attach(device_t dev); static int aw_rtc_detach(device_t dev); static int aw_rtc_gettime(device_t dev, struct timespec *ts); static int aw_rtc_settime(device_t dev, struct timespec *ts); static device_method_t aw_rtc_methods[] = { DEVMETHOD(device_probe, aw_rtc_probe), DEVMETHOD(device_attach, aw_rtc_attach), DEVMETHOD(device_detach, aw_rtc_detach), DEVMETHOD(clock_gettime, aw_rtc_gettime), DEVMETHOD(clock_settime, aw_rtc_settime), DEVMETHOD_END }; static driver_t aw_rtc_driver = { "rtc", aw_rtc_methods, sizeof(struct aw_rtc_softc), }; static devclass_t aw_rtc_devclass; EARLY_DRIVER_MODULE(aw_rtc, simplebus, aw_rtc_driver, aw_rtc_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); static int aw_rtc_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data) return (ENXIO); device_set_desc(dev, "Allwinner RTC"); return (BUS_PROBE_DEFAULT); } static int aw_rtc_attach(device_t dev) { struct aw_rtc_softc *sc = device_get_softc(dev); uint32_t val; int rid = 0; sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->res) { device_printf(dev, "could not allocate resources\n"); return (ENXIO); } sc->conf = (struct aw_rtc_conf *)ofw_bus_search_compatible(dev, compat_data)->ocd_data; val = RTC_READ(sc, LOSC_CTRL_REG); val |= LOSC_AUTO_SW_EN; val |= LOSC_MAGIC | LOSC_GSM | LOSC_OSC_SRC; RTC_WRITE(sc, LOSC_CTRL_REG, val); DELAY(100); if (bootverbose) { val = RTC_READ(sc, sc->conf->rtc_losc_sta); if ((val & LOSC_OSC_SRC) == 0) device_printf(dev, "Using internal oscillator\n"); else device_printf(dev, "Using external oscillator\n"); } aw_rtc_install_clocks(sc, dev); clock_register(dev, RTC_RES_US); return (0); } static int aw_rtc_detach(device_t dev) { /* can't support detach, since there's no clock_unregister function */ return (EBUSY); } static void aw_rtc_install_clocks(struct aw_rtc_softc *sc, device_t dev) { struct clkdom *clkdom; const char **clknames; phandle_t node; int nclocks; node = ofw_bus_get_node(dev); nclocks = ofw_bus_string_list_to_array(node, "clock-output-names", &clknames); /* No clocks to export */ if (nclocks <= 0) return; if (nclocks != 3) { device_printf(dev, "Having only %d clocks instead of 3, aborting\n", nclocks); return; } clkdom = clkdom_create(dev); aw_rtc_osc32k.clkdef.name = clknames[0]; if (clknode_fixed_register(clkdom, &aw_rtc_osc32k) != 0) device_printf(dev, "Cannot register osc32k clock\n"); aw_rtc_iosc.clkdef.name = clknames[2]; aw_rtc_iosc.freq = sc->conf->iosc_freq; if (clknode_fixed_register(clkdom, &aw_rtc_iosc) != 0) device_printf(dev, "Cannot register iosc clock\n"); clkdom_finit(clkdom); if (bootverbose) clkdom_dump(clkdom); } static int aw_rtc_gettime(device_t dev, struct timespec *ts) { struct aw_rtc_softc *sc = device_get_softc(dev); struct clocktime ct; uint32_t rdate, rtime; rdate = RTC_READ(sc, sc->conf->rtc_date); rtime = RTC_READ(sc, sc->conf->rtc_time); if ((rtime & TIME_MASK) == 0) rdate = RTC_READ(sc, sc->conf->rtc_date); ct.sec = GET_SEC_VALUE(rtime); ct.min = GET_MIN_VALUE(rtime); ct.hour = GET_HOUR_VALUE(rtime); ct.day = GET_DAY_VALUE(rdate); ct.mon = GET_MON_VALUE(rdate); ct.year = GET_YEAR_VALUE(rdate) + YEAR_OFFSET; ct.dow = -1; /* RTC resolution is 1 sec */ ct.nsec = 0; return (clock_ct_to_ts(&ct, ts)); } static int aw_rtc_settime(device_t dev, struct timespec *ts) { struct aw_rtc_softc *sc = device_get_softc(dev); struct clocktime ct; uint32_t clk, rdate, rtime; /* RTC resolution is 1 sec */ if (ts->tv_nsec >= HALF_OF_SEC_NS) ts->tv_sec++; ts->tv_nsec = 0; clock_ts_to_ct(ts, &ct); if ((ct.year < YEAR_MIN) || (ct.year > YEAR_MAX)) { device_printf(dev, "could not set time, year out of range\n"); return (EINVAL); } for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) { if (clk > RTC_TIMEOUT) { device_printf(dev, "could not set time, RTC busy\n"); return (EINVAL); } DELAY(1); } /* reset time register to avoid unexpected date increment */ RTC_WRITE(sc, sc->conf->rtc_time, 0); rdate = SET_DAY_VALUE(ct.day) | SET_MON_VALUE(ct.mon) | SET_YEAR_VALUE(ct.year - YEAR_OFFSET) | SET_LEAP_VALUE(IS_LEAP_YEAR(ct.year)); rtime = SET_SEC_VALUE(ct.sec) | SET_MIN_VALUE(ct.min) | SET_HOUR_VALUE(ct.hour); for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) { if (clk > RTC_TIMEOUT) { device_printf(dev, "could not set date, RTC busy\n"); return (EINVAL); } DELAY(1); } RTC_WRITE(sc, sc->conf->rtc_date, rdate); for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) { if (clk > RTC_TIMEOUT) { device_printf(dev, "could not set time, RTC busy\n"); return (EINVAL); } DELAY(1); } RTC_WRITE(sc, sc->conf->rtc_time, rtime); DELAY(RTC_TIMEOUT); return (0); }