/*- * Copyright (c) 2016 Ganbold Tsagaankhuu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Allwinner Consumer IR controller */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define READ(_sc, _r) bus_read_4((_sc)->res[0], (_r)) #define WRITE(_sc, _r, _v) bus_write_4((_sc)->res[0], (_r), (_v)) /* IR Control */ #define AW_IR_CTL 0x00 /* Global Enable */ #define AW_IR_CTL_GEN (1 << 0) /* RX enable */ #define AW_IR_CTL_RXEN (1 << 1) /* CIR mode enable */ #define AW_IR_CTL_MD (1 << 4) | (1 << 5) /* RX Config Reg */ #define AW_IR_RXCTL 0x10 /* Pulse Polarity Invert flag */ #define AW_IR_RXCTL_RPPI (1 << 2) /* RX Data */ #define AW_IR_RXFIFO 0x20 /* RX Interrupt Control */ #define AW_IR_RXINT 0x2C /* RX FIFO Overflow */ #define AW_IR_RXINT_ROI_EN (1 << 0) /* RX Packet End */ #define AW_IR_RXINT_RPEI_EN (1 << 1) /* RX FIFO Data Available */ #define AW_IR_RXINT_RAI_EN (1 << 4) /* RX FIFO available byte level */ #define AW_IR_RXINT_RAL(val) ((val) << 8) /* RX Interrupt Status Reg */ #define AW_IR_RXSTA 0x30 /* RX FIFO Get Available Counter */ #define AW_IR_RXSTA_COUNTER(val) (((val) >> 8) & (sc->fifo_size * 2 - 1)) /* Clear all interrupt status */ #define AW_IR_RXSTA_CLEARALL 0xff /* IR Sample Configure Reg */ #define AW_IR_CIR 0x34 /* Filter Threshold = 8 * 21.3 = ~128us < 200us */ #define AW_IR_RXFILT_VAL (((8) & 0x3f) << 2) /* Idle Threshold = (2 + 1) * 128 * 42.7 = ~16.4ms > 9ms */ #define AW_IR_RXIDLE_VAL (((2) & 0xff) << 8) /* Bit 15 - value (pulse/space) */ #define VAL_MASK 0x80 /* Bits 0:14 - sample duration */ #define PERIOD_MASK 0x7f /* Clock rate for IR0 or IR1 clock in CIR mode */ #define AW_IR_BASE_CLK 3000000 /* Frequency sample 3MHz/64 = 46875Hz (21.3us) */ #define AW_IR_SAMPLE_64 (0 << 0) /* Frequency sample 3MHz/128 = 23437.5Hz (42.7us) */ #define AW_IR_SAMPLE_128 (1 << 0) #define AW_IR_ERROR_CODE 0xffffffff #define AW_IR_REPEAT_CODE 0x0 /* 80 * 42.7 = ~3.4ms, Lead1(4.5ms) > AW_IR_L1_MIN */ #define AW_IR_L1_MIN 80 /* 40 * 42.7 = ~1.7ms, Lead0(4.5ms) Lead0R(2.25ms) > AW_IR_L0_MIN */ #define AW_IR_L0_MIN 40 /* 26 * 42.7 = ~1109us ~= 561 * 2, Pulse < AW_IR_PMAX */ #define AW_IR_PMAX 26 /* 26 * 42.7 = ~1109us ~= 561 * 2, D1 > AW_IR_DMID, D0 <= AW_IR_DMID */ #define AW_IR_DMID 26 /* 53 * 42.7 = ~2263us ~= 561 * 4, D < AW_IR_DMAX */ #define AW_IR_DMAX 53 /* Active Thresholds */ #define AW_IR_ACTIVE_T ((0 & 0xff) << 16) #define AW_IR_ACTIVE_T_C ((1 & 0xff) << 23) /* Code masks */ #define CODE_MASK 0x00ff00ff #define INV_CODE_MASK 0xff00ff00 #define VALID_CODE_MASK 0x00ff0000 #define A10_IR 1 #define A13_IR 2 #define AW_IR_RAW_BUF_SIZE 128 struct aw_ir_softc { device_t dev; struct resource *res[2]; void * intrhand; int fifo_size; int dcnt; /* Packet Count */ unsigned char buf[AW_IR_RAW_BUF_SIZE]; struct evdev_dev *sc_evdev; }; static struct resource_spec aw_ir_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0 } }; static struct ofw_compat_data compat_data[] = { { "allwinner,sun4i-a10-ir", A10_IR }, { "allwinner,sun5i-a13-ir", A13_IR }, { NULL, 0 } }; static void aw_ir_buf_reset(struct aw_ir_softc *sc) { sc->dcnt = 0; } static void aw_ir_buf_write(struct aw_ir_softc *sc, unsigned char data) { if (sc->dcnt < AW_IR_RAW_BUF_SIZE) sc->buf[sc->dcnt++] = data; else if (bootverbose) device_printf(sc->dev, "IR RX Buffer Full!\n"); } static int aw_ir_buf_full(struct aw_ir_softc *sc) { return (sc->dcnt >= AW_IR_RAW_BUF_SIZE); } static unsigned char aw_ir_read_data(struct aw_ir_softc *sc) { return (unsigned char)(READ(sc, AW_IR_RXFIFO) & 0xff); } static unsigned long aw_ir_decode_packets(struct aw_ir_softc *sc) { unsigned long len, code; unsigned char val, last; unsigned int active_delay; int i, bitcount; if (bootverbose) device_printf(sc->dev, "sc->dcnt = %d\n", sc->dcnt); /* Find Lead 1 (bit separator) */ active_delay = (AW_IR_ACTIVE_T + 1) * (AW_IR_ACTIVE_T_C ? 128 : 1); len = 0; len += (active_delay >> 1); if (bootverbose) device_printf(sc->dev, "Initial len: %ld\n", len); for (i = 0; i < sc->dcnt; i++) { val = sc->buf[i]; if (val & VAL_MASK) len += val & PERIOD_MASK; else { if (len > AW_IR_L1_MIN) break; len = 0; } } if (bootverbose) device_printf(sc->dev, "len = %ld\n", len); if ((val & VAL_MASK) || (len <= AW_IR_L1_MIN)) { if (bootverbose) device_printf(sc->dev, "Bit separator error\n"); goto error_code; } /* Find Lead 0 (bit length) */ len = 0; for (; i < sc->dcnt; i++) { val = sc->buf[i]; if (val & VAL_MASK) { if(len > AW_IR_L0_MIN) break; len = 0; } else len += val & PERIOD_MASK; } if ((!(val & VAL_MASK)) || (len <= AW_IR_L0_MIN)) { if (bootverbose) device_printf(sc->dev, "Bit length error\n"); goto error_code; } /* Start decoding */ code = 0; bitcount = 0; last = 1; len = 0; for (; i < sc->dcnt; i++) { val = sc->buf[i]; if (last) { if (val & VAL_MASK) len += val & PERIOD_MASK; else { if (len > AW_IR_PMAX) { if (bootverbose) device_printf(sc->dev, "Pulse error\n"); goto error_code; } last = 0; len = val & PERIOD_MASK; } } else { if (val & VAL_MASK) { if (len > AW_IR_DMAX) { if (bootverbose) device_printf(sc->dev, "Distant error\n"); goto error_code; } else { if (len > AW_IR_DMID) { /* Decode */ code |= 1 << bitcount; } bitcount++; if (bitcount == 32) break; /* Finish decoding */ } last = 1; len = val & PERIOD_MASK; } else len += val & PERIOD_MASK; } } return (code); error_code: return (AW_IR_ERROR_CODE); } static int aw_ir_validate_code(unsigned long code) { unsigned long v1, v2; /* Don't check address */ v1 = code & CODE_MASK; v2 = (code & INV_CODE_MASK) >> 8; if (((v1 ^ v2) & VALID_CODE_MASK) == VALID_CODE_MASK) return (0); /* valid */ else return (1); /* invalid */ } static void aw_ir_intr(void *arg) { struct aw_ir_softc *sc; uint32_t val; int i, dcnt; unsigned long ir_code; int stat; sc = (struct aw_ir_softc *)arg; /* Read RX interrupt status */ val = READ(sc, AW_IR_RXSTA); /* Clean all pending interrupt statuses */ WRITE(sc, AW_IR_RXSTA, val | AW_IR_RXSTA_CLEARALL); /* When Rx FIFO Data available or Packet end */ if (val & (AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RPEI_EN)) { /* Get available message count in RX FIFO */ dcnt = AW_IR_RXSTA_COUNTER(val); /* Read FIFO */ for (i = 0; i < dcnt; i++) { if (aw_ir_buf_full(sc)) { if (bootverbose) device_printf(sc->dev, "raw buffer full\n"); break; } else aw_ir_buf_write(sc, aw_ir_read_data(sc)); } } if (val & AW_IR_RXINT_RPEI_EN) { /* RX Packet end */ if (bootverbose) device_printf(sc->dev, "RX Packet end\n"); ir_code = aw_ir_decode_packets(sc); stat = aw_ir_validate_code(ir_code); if (stat == 0) { evdev_push_event(sc->sc_evdev, EV_MSC, MSC_SCAN, ir_code); evdev_sync(sc->sc_evdev); } if (bootverbose) { device_printf(sc->dev, "Final IR code: %lx\n", ir_code); device_printf(sc->dev, "IR code status: %d\n", stat); } sc->dcnt = 0; } if (val & AW_IR_RXINT_ROI_EN) { /* RX FIFO overflow */ if (bootverbose) device_printf(sc->dev, "RX FIFO overflow\n"); /* Flush raw buffer */ aw_ir_buf_reset(sc); } } static int aw_ir_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "Allwinner CIR controller"); return (BUS_PROBE_DEFAULT); } static int aw_ir_attach(device_t dev) { struct aw_ir_softc *sc; hwreset_t rst_apb; clk_t clk_ir, clk_gate; int err; uint32_t val = 0; clk_ir = clk_gate = NULL; rst_apb = NULL; sc = device_get_softc(dev); sc->dev = dev; if (bus_alloc_resources(dev, aw_ir_spec, sc->res) != 0) { device_printf(dev, "could not allocate memory resource\n"); return (ENXIO); } switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) { case A10_IR: sc->fifo_size = 16; break; case A13_IR: sc->fifo_size = 64; break; } /* De-assert reset */ if (hwreset_get_by_ofw_name(dev, 0, "apb", &rst_apb) == 0) { err = hwreset_deassert(rst_apb); if (err != 0) { device_printf(dev, "cannot de-assert reset\n"); goto error; } } /* Reset buffer */ aw_ir_buf_reset(sc); /* Get clocks and enable them */ err = clk_get_by_ofw_name(dev, 0, "apb", &clk_gate); if (err != 0) { device_printf(dev, "Cannot get gate clock\n"); goto error; } err = clk_get_by_ofw_name(dev, 0, "ir", &clk_ir); if (err != 0) { device_printf(dev, "Cannot get IR clock\n"); goto error; } /* Set clock rate */ err = clk_set_freq(clk_ir, AW_IR_BASE_CLK, 0); if (err != 0) { device_printf(dev, "cannot set IR clock rate\n"); goto error; } /* Enable clocks */ err = clk_enable(clk_gate); if (err != 0) { device_printf(dev, "Cannot enable clk gate\n"); goto error; } err = clk_enable(clk_ir); if (err != 0) { device_printf(dev, "Cannot enable IR clock\n"); goto error; } if (bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE, NULL, aw_ir_intr, sc, &sc->intrhand)) { bus_release_resources(dev, aw_ir_spec, sc->res); device_printf(dev, "cannot setup interrupt handler\n"); return (ENXIO); } /* Enable CIR Mode */ WRITE(sc, AW_IR_CTL, AW_IR_CTL_MD); /* * Set clock sample, filter, idle thresholds. * Frequency sample = 3MHz/128 = 23437.5Hz (42.7us) */ val = AW_IR_SAMPLE_128; val |= (AW_IR_RXFILT_VAL | AW_IR_RXIDLE_VAL); val |= (AW_IR_ACTIVE_T | AW_IR_ACTIVE_T_C); WRITE(sc, AW_IR_CIR, val); /* Invert Input Signal */ WRITE(sc, AW_IR_RXCTL, AW_IR_RXCTL_RPPI); /* Clear All RX Interrupt Status */ WRITE(sc, AW_IR_RXSTA, AW_IR_RXSTA_CLEARALL); /* * Enable RX interrupt in case of overflow, packet end * and FIFO available. * RX FIFO Threshold = FIFO size / 2 */ WRITE(sc, AW_IR_RXINT, AW_IR_RXINT_ROI_EN | AW_IR_RXINT_RPEI_EN | AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RAL((sc->fifo_size >> 1) - 1)); /* Enable IR Module */ val = READ(sc, AW_IR_CTL); WRITE(sc, AW_IR_CTL, val | AW_IR_CTL_GEN | AW_IR_CTL_RXEN); sc->sc_evdev = evdev_alloc(); evdev_set_name(sc->sc_evdev, device_get_desc(sc->dev)); evdev_set_phys(sc->sc_evdev, device_get_nameunit(sc->dev)); evdev_set_id(sc->sc_evdev, BUS_HOST, 0, 0, 0); evdev_support_event(sc->sc_evdev, EV_SYN); evdev_support_event(sc->sc_evdev, EV_MSC); evdev_support_msc(sc->sc_evdev, MSC_SCAN); err = evdev_register(sc->sc_evdev); if (err) { device_printf(dev, "failed to register evdev: error=%d\n", err); goto error; } return (0); error: if (clk_gate != NULL) clk_release(clk_gate); if (clk_ir != NULL) clk_release(clk_ir); if (rst_apb != NULL) hwreset_release(rst_apb); evdev_free(sc->sc_evdev); sc->sc_evdev = NULL; /* Avoid double free */ bus_release_resources(dev, aw_ir_spec, sc->res); return (ENXIO); } static device_method_t aw_ir_methods[] = { DEVMETHOD(device_probe, aw_ir_probe), DEVMETHOD(device_attach, aw_ir_attach), DEVMETHOD_END }; static driver_t aw_ir_driver = { "aw_ir", aw_ir_methods, sizeof(struct aw_ir_softc), }; static devclass_t aw_ir_devclass; DRIVER_MODULE(aw_ir, simplebus, aw_ir_driver, aw_ir_devclass, 0, 0); MODULE_DEPEND(aw_ir, evdev, 1, 1, 1);