/*- * Copyright (c) 2014-2016 Jared D. McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Allwinner A10/A20 and H3 Audio Codec */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sunxi_dma_if.h" #include "mixer_if.h" struct a10codec_info; struct a10codec_config { /* mixer class */ struct kobj_class *mixer_class; /* toggle DAC/ADC mute */ void (*mute)(struct a10codec_info *, int, int); /* DRQ types */ u_int drqtype_codec; u_int drqtype_sdram; /* register map */ bus_size_t DPC, DAC_FIFOC, DAC_FIFOS, DAC_TXDATA, ADC_FIFOC, ADC_FIFOS, ADC_RXDATA, DAC_CNT, ADC_CNT; }; #define TX_TRIG_LEVEL 0xf #define RX_TRIG_LEVEL 0x7 #define DRQ_CLR_CNT 0x3 #define AC_DAC_DPC(_sc) ((_sc)->cfg->DPC) #define DAC_DPC_EN_DA 0x80000000 #define AC_DAC_FIFOC(_sc) ((_sc)->cfg->DAC_FIFOC) #define DAC_FIFOC_FS_SHIFT 29 #define DAC_FIFOC_FS_MASK (7U << DAC_FIFOC_FS_SHIFT) #define DAC_FS_48KHZ 0 #define DAC_FS_32KHZ 1 #define DAC_FS_24KHZ 2 #define DAC_FS_16KHZ 3 #define DAC_FS_12KHZ 4 #define DAC_FS_8KHZ 5 #define DAC_FS_192KHZ 6 #define DAC_FS_96KHZ 7 #define DAC_FIFOC_FIFO_MODE_SHIFT 24 #define DAC_FIFOC_FIFO_MODE_MASK (3U << DAC_FIFOC_FIFO_MODE_SHIFT) #define FIFO_MODE_24_31_8 0 #define FIFO_MODE_16_31_16 0 #define FIFO_MODE_16_15_0 1 #define DAC_FIFOC_DRQ_CLR_CNT_SHIFT 21 #define DAC_FIFOC_DRQ_CLR_CNT_MASK (3U << DAC_FIFOC_DRQ_CLR_CNT_SHIFT) #define DAC_FIFOC_TX_TRIG_LEVEL_SHIFT 8 #define DAC_FIFOC_TX_TRIG_LEVEL_MASK (0x7f << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT) #define DAC_FIFOC_MONO_EN (1U << 6) #define DAC_FIFOC_TX_BITS (1U << 5) #define DAC_FIFOC_DRQ_EN (1U << 4) #define DAC_FIFOC_FIFO_FLUSH (1U << 0) #define AC_DAC_FIFOS(_sc) ((_sc)->cfg->DAC_FIFOS) #define AC_DAC_TXDATA(_sc) ((_sc)->cfg->DAC_TXDATA) #define AC_ADC_FIFOC(_sc) ((_sc)->cfg->ADC_FIFOC) #define ADC_FIFOC_FS_SHIFT 29 #define ADC_FIFOC_FS_MASK (7U << ADC_FIFOC_FS_SHIFT) #define ADC_FS_48KHZ 0 #define ADC_FIFOC_EN_AD (1U << 28) #define ADC_FIFOC_RX_FIFO_MODE (1U << 24) #define ADC_FIFOC_RX_TRIG_LEVEL_SHIFT 8 #define ADC_FIFOC_RX_TRIG_LEVEL_MASK (0x1f << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT) #define ADC_FIFOC_MONO_EN (1U << 7) #define ADC_FIFOC_RX_BITS (1U << 6) #define ADC_FIFOC_DRQ_EN (1U << 4) #define ADC_FIFOC_FIFO_FLUSH (1U << 1) #define AC_ADC_FIFOS(_sc) ((_sc)->cfg->ADC_FIFOS) #define AC_ADC_RXDATA(_sc) ((_sc)->cfg->ADC_RXDATA) #define AC_DAC_CNT(_sc) ((_sc)->cfg->DAC_CNT) #define AC_ADC_CNT(_sc) ((_sc)->cfg->ADC_CNT) static uint32_t a10codec_fmt[] = { SND_FORMAT(AFMT_S16_LE, 1, 0), SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps a10codec_pcaps = { 8000, 192000, a10codec_fmt, 0 }; static struct pcmchan_caps a10codec_rcaps = { 8000, 48000, a10codec_fmt, 0 }; struct a10codec_info; struct a10codec_chinfo { struct snd_dbuf *buffer; struct pcm_channel *channel; struct a10codec_info *parent; bus_dmamap_t dmamap; void *dmaaddr; bus_addr_t physaddr; bus_size_t fifo; device_t dmac; void *dmachan; int dir; int run; uint32_t pos; uint32_t format; uint32_t blocksize; uint32_t speed; }; struct a10codec_info { device_t dev; struct resource *res[2]; struct mtx *lock; bus_dma_tag_t dmat; unsigned dmasize; void *ih; struct a10codec_config *cfg; struct a10codec_chinfo play; struct a10codec_chinfo rec; }; static struct resource_spec a10codec_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { -1, 0 } }; #define CODEC_ANALOG_READ(sc, reg) bus_read_4((sc)->res[1], (reg)) #define CODEC_ANALOG_WRITE(sc, reg, val) bus_write_4((sc)->res[1], (reg), (val)) #define CODEC_READ(sc, reg) bus_read_4((sc)->res[0], (reg)) #define CODEC_WRITE(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val)) /* * A10/A20 mixer interface */ #define A10_DAC_ACTL 0x10 #define A10_DACAREN (1U << 31) #define A10_DACALEN (1U << 30) #define A10_MIXEN (1U << 29) #define A10_DACPAS (1U << 8) #define A10_PAMUTE (1U << 6) #define A10_PAVOL_SHIFT 0 #define A10_PAVOL_MASK (0x3f << A10_PAVOL_SHIFT) #define A10_ADC_ACTL 0x28 #define A10_ADCREN (1U << 31) #define A10_ADCLEN (1U << 30) #define A10_PREG1EN (1U << 29) #define A10_PREG2EN (1U << 28) #define A10_VMICEN (1U << 27) #define A10_ADCG_SHIFT 20 #define A10_ADCG_MASK (7U << A10_ADCG_SHIFT) #define A10_ADCIS_SHIFT 17 #define A10_ADCIS_MASK (7U << A10_ADCIS_SHIFT) #define A10_ADC_IS_LINEIN 0 #define A10_ADC_IS_FMIN 1 #define A10_ADC_IS_MIC1 2 #define A10_ADC_IS_MIC2 3 #define A10_ADC_IS_MIC1_L_MIC2_R 4 #define A10_ADC_IS_MIC1_LR_MIC2_LR 5 #define A10_ADC_IS_OMIX 6 #define A10_ADC_IS_LINEIN_L_MIC1_R 7 #define A10_LNRDF (1U << 16) #define A10_LNPREG_SHIFT 13 #define A10_LNPREG_MASK (7U << A10_LNPREG_SHIFT) #define A10_PA_EN (1U << 4) #define A10_DDE (1U << 3) static int a10_mixer_init(struct snd_mixer *m) { struct a10codec_info *sc = mix_getdevinfo(m); uint32_t val; mix_setdevs(m, SOUND_MASK_VOLUME | SOUND_MASK_LINE | SOUND_MASK_RECLEV); mix_setrecdevs(m, SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC); /* Unmute input source to PA */ val = CODEC_READ(sc, A10_DAC_ACTL); val |= A10_PAMUTE; CODEC_WRITE(sc, A10_DAC_ACTL, val); /* Enable PA */ val = CODEC_READ(sc, A10_ADC_ACTL); val |= A10_PA_EN; CODEC_WRITE(sc, A10_ADC_ACTL, val); return (0); } static const struct a10_mixer { unsigned reg; unsigned mask; unsigned shift; } a10_mixers[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_VOLUME] = { A10_DAC_ACTL, A10_PAVOL_MASK, A10_PAVOL_SHIFT }, [SOUND_MIXER_LINE] = { A10_ADC_ACTL, A10_LNPREG_MASK, A10_LNPREG_SHIFT }, [SOUND_MIXER_RECLEV] = { A10_ADC_ACTL, A10_ADCG_MASK, A10_ADCG_SHIFT }, }; static int a10_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct a10codec_info *sc = mix_getdevinfo(m); uint32_t val; unsigned nvol, max; max = a10_mixers[dev].mask >> a10_mixers[dev].shift; nvol = (left * max) / 100; val = CODEC_READ(sc, a10_mixers[dev].reg); val &= ~a10_mixers[dev].mask; val |= (nvol << a10_mixers[dev].shift); CODEC_WRITE(sc, a10_mixers[dev].reg, val); left = right = (left * 100) / max; return (left | (right << 8)); } static uint32_t a10_mixer_setrecsrc(struct snd_mixer *m, uint32_t src) { struct a10codec_info *sc = mix_getdevinfo(m); uint32_t val; val = CODEC_READ(sc, A10_ADC_ACTL); switch (src) { case SOUND_MASK_LINE: /* line-in */ val &= ~A10_ADCIS_MASK; val |= (A10_ADC_IS_LINEIN << A10_ADCIS_SHIFT); break; case SOUND_MASK_MIC: /* MIC1 */ val &= ~A10_ADCIS_MASK; val |= (A10_ADC_IS_MIC1 << A10_ADCIS_SHIFT); break; case SOUND_MASK_LINE1: /* MIC2 */ val &= ~A10_ADCIS_MASK; val |= (A10_ADC_IS_MIC2 << A10_ADCIS_SHIFT); break; default: break; } CODEC_WRITE(sc, A10_ADC_ACTL, val); switch ((val & A10_ADCIS_MASK) >> A10_ADCIS_SHIFT) { case A10_ADC_IS_LINEIN: return (SOUND_MASK_LINE); case A10_ADC_IS_MIC1: return (SOUND_MASK_MIC); case A10_ADC_IS_MIC2: return (SOUND_MASK_LINE1); default: return (0); } } static void a10_mute(struct a10codec_info *sc, int mute, int dir) { uint32_t val; if (dir == PCMDIR_PLAY) { val = CODEC_READ(sc, A10_DAC_ACTL); if (mute) { /* Disable DAC analog l/r channels and output mixer */ val &= ~A10_DACAREN; val &= ~A10_DACALEN; val &= ~A10_DACPAS; } else { /* Enable DAC analog l/r channels and output mixer */ val |= A10_DACAREN; val |= A10_DACALEN; val |= A10_DACPAS; } CODEC_WRITE(sc, A10_DAC_ACTL, val); } else { val = CODEC_READ(sc, A10_ADC_ACTL); if (mute) { /* Disable ADC analog l/r channels, MIC1 preamp, * and VMIC pin voltage */ val &= ~A10_ADCREN; val &= ~A10_ADCLEN; val &= ~A10_PREG1EN; val &= ~A10_VMICEN; } else { /* Enable ADC analog l/r channels, MIC1 preamp, * and VMIC pin voltage */ val |= A10_ADCREN; val |= A10_ADCLEN; val |= A10_PREG1EN; val |= A10_VMICEN; } CODEC_WRITE(sc, A10_ADC_ACTL, val); } } static kobj_method_t a10_mixer_methods[] = { KOBJMETHOD(mixer_init, a10_mixer_init), KOBJMETHOD(mixer_set, a10_mixer_set), KOBJMETHOD(mixer_setrecsrc, a10_mixer_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(a10_mixer); /* * H3 mixer interface */ #define H3_PR_CFG 0x00 #define H3_AC_PR_RST (1 << 28) #define H3_AC_PR_RW (1 << 24) #define H3_AC_PR_ADDR_SHIFT 16 #define H3_AC_PR_ADDR_MASK (0x1f << H3_AC_PR_ADDR_SHIFT) #define H3_ACDA_PR_WDAT_SHIFT 8 #define H3_ACDA_PR_WDAT_MASK (0xff << H3_ACDA_PR_WDAT_SHIFT) #define H3_ACDA_PR_RDAT_SHIFT 0 #define H3_ACDA_PR_RDAT_MASK (0xff << H3_ACDA_PR_RDAT_SHIFT) #define H3_LOMIXSC 0x01 #define H3_LOMIXSC_LDAC (1 << 1) #define H3_ROMIXSC 0x02 #define H3_ROMIXSC_RDAC (1 << 1) #define H3_DAC_PA_SRC 0x03 #define H3_DACAREN (1 << 7) #define H3_DACALEN (1 << 6) #define H3_RMIXEN (1 << 5) #define H3_LMIXEN (1 << 4) #define H3_LINEIN_GCTR 0x05 #define H3_LINEING_SHIFT 4 #define H3_LINEING_MASK (0x7 << H3_LINEING_SHIFT) #define H3_MIC_GCTR 0x06 #define H3_MIC1_GAIN_SHIFT 4 #define H3_MIC1_GAIN_MASK (0x7 << H3_MIC1_GAIN_SHIFT) #define H3_MIC2_GAIN_SHIFT 0 #define H3_MIC2_GAIN_MASK (0x7 << H3_MIC2_GAIN_SHIFT) #define H3_PAEN_CTR 0x07 #define H3_LINEOUTEN (1 << 7) #define H3_LINEOUT_VOLC 0x09 #define H3_LINEOUTVOL_SHIFT 3 #define H3_LINEOUTVOL_MASK (0x1f << H3_LINEOUTVOL_SHIFT) #define H3_MIC2G_LINEOUT_CTR 0x0a #define H3_LINEOUT_LSEL (1 << 3) #define H3_LINEOUT_RSEL (1 << 2) #define H3_LADCMIXSC 0x0c #define H3_RADCMIXSC 0x0d #define H3_ADCMIXSC_MIC1 (1 << 6) #define H3_ADCMIXSC_MIC2 (1 << 5) #define H3_ADCMIXSC_LINEIN (1 << 2) #define H3_ADCMIXSC_OMIXER (3 << 0) #define H3_ADC_AP_EN 0x0f #define H3_ADCREN (1 << 7) #define H3_ADCLEN (1 << 6) #define H3_ADCG_SHIFT 0 #define H3_ADCG_MASK (0x7 << H3_ADCG_SHIFT) static u_int h3_pr_read(struct a10codec_info *sc, u_int addr) { uint32_t val; /* Read current value */ val = CODEC_ANALOG_READ(sc, H3_PR_CFG); /* De-assert reset */ val |= H3_AC_PR_RST; CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Read mode */ val &= ~H3_AC_PR_RW; CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Set address */ val &= ~H3_AC_PR_ADDR_MASK; val |= (addr << H3_AC_PR_ADDR_SHIFT); CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Read data */ return (CODEC_ANALOG_READ(sc , H3_PR_CFG) & H3_ACDA_PR_RDAT_MASK); } static void h3_pr_write(struct a10codec_info *sc, u_int addr, u_int data) { uint32_t val; /* Read current value */ val = CODEC_ANALOG_READ(sc, H3_PR_CFG); /* De-assert reset */ val |= H3_AC_PR_RST; CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Set address */ val &= ~H3_AC_PR_ADDR_MASK; val |= (addr << H3_AC_PR_ADDR_SHIFT); CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Write data */ val &= ~H3_ACDA_PR_WDAT_MASK; val |= (data << H3_ACDA_PR_WDAT_SHIFT); CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); /* Write mode */ val |= H3_AC_PR_RW; CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val); } static void h3_pr_set_clear(struct a10codec_info *sc, u_int addr, u_int set, u_int clr) { u_int old, new; old = h3_pr_read(sc, addr); new = set | (old & ~clr); h3_pr_write(sc, addr, new); } static int h3_mixer_init(struct snd_mixer *m) { int rid=1; pcell_t reg[2]; phandle_t analogref; struct a10codec_info *sc = mix_getdevinfo(m); if (OF_getencprop(ofw_bus_get_node(sc->dev), "allwinner,codec-analog-controls", &analogref, sizeof(analogref)) <= 0) { return (ENXIO); } if (OF_getencprop(OF_node_from_xref(analogref), "reg", reg, sizeof(reg)) <= 0) { return (ENXIO); } sc->res[1] = bus_alloc_resource(sc->dev, SYS_RES_MEMORY, &rid, reg[0], reg[0]+reg[1], reg[1], RF_ACTIVE ); if (sc->res[1] == NULL) { return (ENXIO); } mix_setdevs(m, SOUND_MASK_PCM | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV | SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1); mix_setrecdevs(m, SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_IMIX); pcm_setflags(sc->dev, pcm_getflags(sc->dev) | SD_F_SOFTPCMVOL); /* Right & Left LINEOUT enable */ h3_pr_set_clear(sc, H3_PAEN_CTR, H3_LINEOUTEN, 0); h3_pr_set_clear(sc, H3_MIC2G_LINEOUT_CTR, H3_LINEOUT_LSEL | H3_LINEOUT_RSEL, 0); return (0); } static const struct h3_mixer { unsigned reg; unsigned mask; unsigned shift; } h3_mixers[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_VOLUME] = { H3_LINEOUT_VOLC, H3_LINEOUTVOL_MASK, H3_LINEOUTVOL_SHIFT }, [SOUND_MIXER_RECLEV] = { H3_ADC_AP_EN, H3_ADCG_MASK, H3_ADCG_SHIFT }, [SOUND_MIXER_LINE] = { H3_LINEIN_GCTR, H3_LINEING_MASK, H3_LINEING_SHIFT }, [SOUND_MIXER_MIC] = { H3_MIC_GCTR, H3_MIC1_GAIN_MASK, H3_MIC1_GAIN_SHIFT }, [SOUND_MIXER_LINE1] = { H3_MIC_GCTR, H3_MIC2_GAIN_MASK, H3_MIC2_GAIN_SHIFT }, }; static int h3_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct a10codec_info *sc = mix_getdevinfo(m); unsigned nvol, max; max = h3_mixers[dev].mask >> h3_mixers[dev].shift; nvol = (left * max) / 100; h3_pr_set_clear(sc, h3_mixers[dev].reg, nvol << h3_mixers[dev].shift, h3_mixers[dev].mask); left = right = (left * 100) / max; return (left | (right << 8)); } static uint32_t h3_mixer_setrecsrc(struct snd_mixer *m, uint32_t src) { struct a10codec_info *sc = mix_getdevinfo(m); uint32_t val; val = 0; src &= (SOUND_MASK_LINE | SOUND_MASK_MIC | SOUND_MASK_LINE1 | SOUND_MASK_IMIX); if ((src & SOUND_MASK_LINE) != 0) /* line-in */ val |= H3_ADCMIXSC_LINEIN; if ((src & SOUND_MASK_MIC) != 0) /* MIC1 */ val |= H3_ADCMIXSC_MIC1; if ((src & SOUND_MASK_LINE1) != 0) /* MIC2 */ val |= H3_ADCMIXSC_MIC2; if ((src & SOUND_MASK_IMIX) != 0) /* l/r output mixer */ val |= H3_ADCMIXSC_OMIXER; h3_pr_write(sc, H3_LADCMIXSC, val); h3_pr_write(sc, H3_RADCMIXSC, val); return (src); } static void h3_mute(struct a10codec_info *sc, int mute, int dir) { if (dir == PCMDIR_PLAY) { if (mute) { /* Mute DAC l/r channels to output mixer */ h3_pr_set_clear(sc, H3_LOMIXSC, 0, H3_LOMIXSC_LDAC); h3_pr_set_clear(sc, H3_ROMIXSC, 0, H3_ROMIXSC_RDAC); /* Disable DAC analog l/r channels and output mixer */ h3_pr_set_clear(sc, H3_DAC_PA_SRC, 0, H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN); } else { /* Enable DAC analog l/r channels and output mixer */ h3_pr_set_clear(sc, H3_DAC_PA_SRC, H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN, 0); /* Unmute DAC l/r channels to output mixer */ h3_pr_set_clear(sc, H3_LOMIXSC, H3_LOMIXSC_LDAC, 0); h3_pr_set_clear(sc, H3_ROMIXSC, H3_ROMIXSC_RDAC, 0); } } else { if (mute) { /* Disable ADC analog l/r channels */ h3_pr_set_clear(sc, H3_ADC_AP_EN, 0, H3_ADCREN | H3_ADCLEN); } else { /* Enable ADC analog l/r channels */ h3_pr_set_clear(sc, H3_ADC_AP_EN, H3_ADCREN | H3_ADCLEN, 0); } } } static kobj_method_t h3_mixer_methods[] = { KOBJMETHOD(mixer_init, h3_mixer_init), KOBJMETHOD(mixer_set, h3_mixer_set), KOBJMETHOD(mixer_setrecsrc, h3_mixer_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(h3_mixer); /* * Channel interface */ static void a10codec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct a10codec_chinfo *ch = arg; if (error != 0) return; ch->physaddr = segs[0].ds_addr; } static void a10codec_transfer(struct a10codec_chinfo *ch) { bus_addr_t src, dst; int error; if (ch->dir == PCMDIR_PLAY) { src = ch->physaddr + ch->pos; dst = ch->fifo; } else { src = ch->fifo; dst = ch->physaddr + ch->pos; } error = SUNXI_DMA_TRANSFER(ch->dmac, ch->dmachan, src, dst, ch->blocksize); if (error) { ch->run = 0; device_printf(ch->parent->dev, "DMA transfer failed: %d\n", error); } } static void a10codec_dmaconfig(struct a10codec_chinfo *ch) { struct a10codec_info *sc = ch->parent; struct sunxi_dma_config conf; memset(&conf, 0, sizeof(conf)); conf.src_width = conf.dst_width = 16; conf.src_burst_len = conf.dst_burst_len = 4; if (ch->dir == PCMDIR_PLAY) { conf.dst_noincr = true; conf.src_drqtype = sc->cfg->drqtype_sdram; conf.dst_drqtype = sc->cfg->drqtype_codec; } else { conf.src_noincr = true; conf.src_drqtype = sc->cfg->drqtype_codec; conf.dst_drqtype = sc->cfg->drqtype_sdram; } SUNXI_DMA_SET_CONFIG(ch->dmac, ch->dmachan, &conf); } static void a10codec_dmaintr(void *priv) { struct a10codec_chinfo *ch = priv; unsigned bufsize; bufsize = sndbuf_getsize(ch->buffer); ch->pos += ch->blocksize; if (ch->pos >= bufsize) ch->pos -= bufsize; if (ch->run) { chn_intr(ch->channel); a10codec_transfer(ch); } } static unsigned a10codec_fs(struct a10codec_chinfo *ch) { switch (ch->speed) { case 48000: return (DAC_FS_48KHZ); case 24000: return (DAC_FS_24KHZ); case 12000: return (DAC_FS_12KHZ); case 192000: return (DAC_FS_192KHZ); case 32000: return (DAC_FS_32KHZ); case 16000: return (DAC_FS_16KHZ); case 8000: return (DAC_FS_8KHZ); case 96000: return (DAC_FS_96KHZ); default: return (DAC_FS_48KHZ); } } static void a10codec_start(struct a10codec_chinfo *ch) { struct a10codec_info *sc = ch->parent; uint32_t val; ch->pos = 0; if (ch->dir == PCMDIR_PLAY) { /* Flush DAC FIFO */ CODEC_WRITE(sc, AC_DAC_FIFOC(sc), DAC_FIFOC_FIFO_FLUSH); /* Clear DAC FIFO status */ CODEC_WRITE(sc, AC_DAC_FIFOS(sc), CODEC_READ(sc, AC_DAC_FIFOS(sc))); /* Unmute output */ sc->cfg->mute(sc, 0, ch->dir); /* Configure DAC DMA channel */ a10codec_dmaconfig(ch); /* Configure DAC FIFO */ CODEC_WRITE(sc, AC_DAC_FIFOC(sc), (AFMT_CHANNEL(ch->format) == 1 ? DAC_FIFOC_MONO_EN : 0) | (a10codec_fs(ch) << DAC_FIFOC_FS_SHIFT) | (FIFO_MODE_16_15_0 << DAC_FIFOC_FIFO_MODE_SHIFT) | (DRQ_CLR_CNT << DAC_FIFOC_DRQ_CLR_CNT_SHIFT) | (TX_TRIG_LEVEL << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT)); /* Enable DAC DRQ */ val = CODEC_READ(sc, AC_DAC_FIFOC(sc)); val |= DAC_FIFOC_DRQ_EN; CODEC_WRITE(sc, AC_DAC_FIFOC(sc), val); } else { /* Flush ADC FIFO */ CODEC_WRITE(sc, AC_ADC_FIFOC(sc), ADC_FIFOC_FIFO_FLUSH); /* Clear ADC FIFO status */ CODEC_WRITE(sc, AC_ADC_FIFOS(sc), CODEC_READ(sc, AC_ADC_FIFOS(sc))); /* Unmute input */ sc->cfg->mute(sc, 0, ch->dir); /* Configure ADC DMA channel */ a10codec_dmaconfig(ch); /* Configure ADC FIFO */ CODEC_WRITE(sc, AC_ADC_FIFOC(sc), ADC_FIFOC_EN_AD | ADC_FIFOC_RX_FIFO_MODE | (AFMT_CHANNEL(ch->format) == 1 ? ADC_FIFOC_MONO_EN : 0) | (a10codec_fs(ch) << ADC_FIFOC_FS_SHIFT) | (RX_TRIG_LEVEL << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT)); /* Enable ADC DRQ */ val = CODEC_READ(sc, AC_ADC_FIFOC(sc)); val |= ADC_FIFOC_DRQ_EN; CODEC_WRITE(sc, AC_ADC_FIFOC(sc), val); } /* Start DMA transfer */ a10codec_transfer(ch); } static void a10codec_stop(struct a10codec_chinfo *ch) { struct a10codec_info *sc = ch->parent; /* Disable DMA channel */ SUNXI_DMA_HALT(ch->dmac, ch->dmachan); sc->cfg->mute(sc, 1, ch->dir); if (ch->dir == PCMDIR_PLAY) { /* Disable DAC DRQ */ CODEC_WRITE(sc, AC_DAC_FIFOC(sc), 0); } else { /* Disable ADC DRQ */ CODEC_WRITE(sc, AC_ADC_FIFOC(sc), 0); } } static void * a10codec_chan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct a10codec_info *sc = devinfo; struct a10codec_chinfo *ch = dir == PCMDIR_PLAY ? &sc->play : &sc->rec; phandle_t xref; pcell_t *cells; int ncells, error; error = ofw_bus_parse_xref_list_alloc(ofw_bus_get_node(sc->dev), "dmas", "#dma-cells", dir == PCMDIR_PLAY ? 1 : 0, &xref, &ncells, &cells); if (error != 0) { device_printf(sc->dev, "cannot parse 'dmas' property\n"); return (NULL); } OF_prop_free(cells); ch->parent = sc; ch->channel = c; ch->buffer = b; ch->dir = dir; ch->fifo = rman_get_start(sc->res[0]) + (dir == PCMDIR_REC ? AC_ADC_RXDATA(sc) : AC_DAC_TXDATA(sc)); ch->dmac = OF_device_from_xref(xref); if (ch->dmac == NULL) { device_printf(sc->dev, "cannot find DMA controller\n"); device_printf(sc->dev, "xref = 0x%x\n", (u_int)xref); return (NULL); } ch->dmachan = SUNXI_DMA_ALLOC(ch->dmac, false, a10codec_dmaintr, ch); if (ch->dmachan == NULL) { device_printf(sc->dev, "cannot allocate DMA channel\n"); return (NULL); } error = bus_dmamem_alloc(sc->dmat, &ch->dmaaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &ch->dmamap); if (error != 0) { device_printf(sc->dev, "cannot allocate channel buffer\n"); return (NULL); } error = bus_dmamap_load(sc->dmat, ch->dmamap, ch->dmaaddr, sc->dmasize, a10codec_dmamap_cb, ch, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->dev, "cannot load DMA map\n"); return (NULL); } memset(ch->dmaaddr, 0, sc->dmasize); if (sndbuf_setup(ch->buffer, ch->dmaaddr, sc->dmasize) != 0) { device_printf(sc->dev, "cannot setup sndbuf\n"); return (NULL); } return (ch); } static int a10codec_chan_free(kobj_t obj, void *data) { struct a10codec_chinfo *ch = data; struct a10codec_info *sc = ch->parent; SUNXI_DMA_FREE(ch->dmac, ch->dmachan); bus_dmamap_unload(sc->dmat, ch->dmamap); bus_dmamem_free(sc->dmat, ch->dmaaddr, ch->dmamap); return (0); } static int a10codec_chan_setformat(kobj_t obj, void *data, uint32_t format) { struct a10codec_chinfo *ch = data; ch->format = format; return (0); } static uint32_t a10codec_chan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct a10codec_chinfo *ch = data; /* * The codec supports full duplex operation but both DAC and ADC * use the same source clock (PLL2). Limit the available speeds to * those supported by a 24576000 Hz input. */ switch (speed) { case 8000: case 12000: case 16000: case 24000: case 32000: case 48000: ch->speed = speed; break; case 96000: case 192000: /* 96 KHz / 192 KHz mode only supported for playback */ if (ch->dir == PCMDIR_PLAY) { ch->speed = speed; } else { ch->speed = 48000; } break; case 44100: ch->speed = 48000; break; case 22050: ch->speed = 24000; break; case 11025: ch->speed = 12000; break; default: ch->speed = 48000; break; } return (ch->speed); } static uint32_t a10codec_chan_setblocksize(kobj_t obj, void *data, uint32_t blocksize) { struct a10codec_chinfo *ch = data; ch->blocksize = blocksize & ~3; return (ch->blocksize); } static int a10codec_chan_trigger(kobj_t obj, void *data, int go) { struct a10codec_chinfo *ch = data; struct a10codec_info *sc = ch->parent; if (!PCMTRIG_COMMON(go)) return (0); snd_mtxlock(sc->lock); switch (go) { case PCMTRIG_START: ch->run = 1; a10codec_stop(ch); a10codec_start(ch); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: ch->run = 0; a10codec_stop(ch); break; default: break; } snd_mtxunlock(sc->lock); return (0); } static uint32_t a10codec_chan_getptr(kobj_t obj, void *data) { struct a10codec_chinfo *ch = data; return (ch->pos); } static struct pcmchan_caps * a10codec_chan_getcaps(kobj_t obj, void *data) { struct a10codec_chinfo *ch = data; if (ch->dir == PCMDIR_PLAY) { return (&a10codec_pcaps); } else { return (&a10codec_rcaps); } } static kobj_method_t a10codec_chan_methods[] = { KOBJMETHOD(channel_init, a10codec_chan_init), KOBJMETHOD(channel_free, a10codec_chan_free), KOBJMETHOD(channel_setformat, a10codec_chan_setformat), KOBJMETHOD(channel_setspeed, a10codec_chan_setspeed), KOBJMETHOD(channel_setblocksize, a10codec_chan_setblocksize), KOBJMETHOD(channel_trigger, a10codec_chan_trigger), KOBJMETHOD(channel_getptr, a10codec_chan_getptr), KOBJMETHOD(channel_getcaps, a10codec_chan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(a10codec_chan); /* * Device interface */ static const struct a10codec_config a10_config = { .mixer_class = &a10_mixer_class, .mute = a10_mute, .drqtype_codec = 19, .drqtype_sdram = 22, .DPC = 0x00, .DAC_FIFOC = 0x04, .DAC_FIFOS = 0x08, .DAC_TXDATA = 0x0c, .ADC_FIFOC = 0x1c, .ADC_FIFOS = 0x20, .ADC_RXDATA = 0x24, .DAC_CNT = 0x30, .ADC_CNT = 0x34, }; static const struct a10codec_config h3_config = { .mixer_class = &h3_mixer_class, .mute = h3_mute, .drqtype_codec = 15, .drqtype_sdram = 1, .DPC = 0x00, .DAC_FIFOC = 0x04, .DAC_FIFOS = 0x08, .DAC_TXDATA = 0x20, .ADC_FIFOC = 0x10, .ADC_FIFOS = 0x14, .ADC_RXDATA = 0x18, .DAC_CNT = 0x40, .ADC_CNT = 0x44, }; static struct ofw_compat_data compat_data[] = { { "allwinner,sun4i-a10-codec", (uintptr_t)&a10_config }, { "allwinner,sun7i-a20-codec", (uintptr_t)&a10_config }, { "allwinner,sun8i-h3-codec", (uintptr_t)&h3_config }, { NULL, 0 } }; static int a10codec_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "Allwinner Audio Codec"); return (BUS_PROBE_DEFAULT); } static int a10codec_attach(device_t dev) { struct a10codec_info *sc; char status[SND_STATUSLEN]; struct gpiobus_pin *pa_pin; phandle_t node; clk_t clk_bus, clk_codec; hwreset_t rst; uint32_t val; int error; node = ofw_bus_get_node(dev); sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO); sc->cfg = (void *)ofw_bus_search_compatible(dev, compat_data)->ocd_data; sc->dev = dev; sc->lock = snd_mtxcreate(device_get_nameunit(dev), "a10codec softc"); if (bus_alloc_resources(dev, a10codec_spec, sc->res)) { device_printf(dev, "cannot allocate resources for device\n"); error = ENXIO; goto fail; } sc->dmasize = 131072; error = bus_dma_tag_create( bus_get_dma_tag(dev), 4, sc->dmasize, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->dmasize, 1, /* maxsize, nsegs */ sc->dmasize, 0, /* maxsegsize, flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->dmat); if (error != 0) { device_printf(dev, "cannot create DMA tag\n"); goto fail; } /* Get clocks */ if (clk_get_by_ofw_name(dev, 0, "apb", &clk_bus) != 0 && clk_get_by_ofw_name(dev, 0, "ahb", &clk_bus) != 0) { device_printf(dev, "cannot find bus clock\n"); goto fail; } if (clk_get_by_ofw_name(dev, 0, "codec", &clk_codec) != 0) { device_printf(dev, "cannot find codec clock\n"); goto fail; } /* Gating bus clock for codec */ if (clk_enable(clk_bus) != 0) { device_printf(dev, "cannot enable bus clock\n"); goto fail; } /* Activate audio codec clock. According to the A10 and A20 user * manuals, Audio_pll can be either 24.576MHz or 22.5792MHz. Most * audio sampling rates require an 24.576MHz input clock with the * exception of 44.1kHz, 22.05kHz, and 11.025kHz. Unfortunately, * both capture and playback use the same clock source so to * safely support independent full duplex operation, we use a fixed * 24.576MHz clock source and don't advertise native support for * the three sampling rates that require a 22.5792MHz input. */ error = clk_set_freq(clk_codec, 24576000, CLK_SET_ROUND_DOWN); if (error != 0) { device_printf(dev, "cannot set codec clock frequency\n"); goto fail; } /* Enable audio codec clock */ error = clk_enable(clk_codec); if (error != 0) { device_printf(dev, "cannot enable codec clock\n"); goto fail; } /* De-assert hwreset */ if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) { error = hwreset_deassert(rst); if (error != 0) { device_printf(dev, "cannot de-assert reset\n"); goto fail; } } /* Enable DAC */ val = CODEC_READ(sc, AC_DAC_DPC(sc)); val |= DAC_DPC_EN_DA; CODEC_WRITE(sc, AC_DAC_DPC(sc), val); if (mixer_init(dev, sc->cfg->mixer_class, sc)) { device_printf(dev, "mixer_init failed\n"); goto fail; } /* Unmute PA */ if (gpio_pin_get_by_ofw_property(dev, node, "allwinner,pa-gpios", &pa_pin) == 0) { error = gpio_pin_set_active(pa_pin, 1); if (error != 0) device_printf(dev, "failed to unmute PA\n"); } pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE); if (pcm_register(dev, sc, 1, 1)) { device_printf(dev, "pcm_register failed\n"); goto fail; } pcm_addchan(dev, PCMDIR_PLAY, &a10codec_chan_class, sc); pcm_addchan(dev, PCMDIR_REC, &a10codec_chan_class, sc); snprintf(status, SND_STATUSLEN, "at %s", ofw_bus_get_name(dev)); pcm_setstatus(dev, status); return (0); fail: bus_release_resources(dev, a10codec_spec, sc->res); snd_mtxfree(sc->lock); free(sc, M_DEVBUF); return (ENXIO); } static device_method_t a10codec_pcm_methods[] = { /* Device interface */ DEVMETHOD(device_probe, a10codec_probe), DEVMETHOD(device_attach, a10codec_attach), DEVMETHOD_END }; static driver_t a10codec_pcm_driver = { "pcm", a10codec_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(a10codec, simplebus, a10codec_pcm_driver, 0, 0); MODULE_DEPEND(a10codec, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(a10codec, 1);