/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "vmm_host.h" #include "vmm_ktr.h" #include "vmm_util.h" #include "x86.h" SYSCTL_DECL(_hw_vmm); static SYSCTL_NODE(_hw_vmm, OID_AUTO, topology, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, NULL); #define CPUID_VM_HIGH 0x40000000 static const char bhyve_id[12] = "bhyve bhyve "; static uint64_t bhyve_xcpuids; SYSCTL_ULONG(_hw_vmm, OID_AUTO, bhyve_xcpuids, CTLFLAG_RW, &bhyve_xcpuids, 0, "Number of times an unknown cpuid leaf was accessed"); static int cpuid_leaf_b = 1; SYSCTL_INT(_hw_vmm_topology, OID_AUTO, cpuid_leaf_b, CTLFLAG_RDTUN, &cpuid_leaf_b, 0, NULL); /* * Compute ceil(log2(x)). Returns -1 if x is zero. */ static __inline int log2(u_int x) { return (x == 0 ? -1 : order_base_2(x)); } int x86_emulate_cpuid(struct vcpu *vcpu, uint64_t *rax, uint64_t *rbx, uint64_t *rcx, uint64_t *rdx) { struct vm *vm = vcpu_vm(vcpu); int vcpu_id = vcpu_vcpuid(vcpu); const struct xsave_limits *limits; uint64_t cr4; int error, enable_invpcid, enable_rdpid, enable_rdtscp, level, width, x2apic_id; unsigned int func, regs[4], logical_cpus, param; enum x2apic_state x2apic_state; uint16_t cores, maxcpus, sockets, threads; /* * The function of CPUID is controlled through the provided value of * %eax (and secondarily %ecx, for certain leaf data). */ func = (uint32_t)*rax; param = (uint32_t)*rcx; VCPU_CTR2(vm, vcpu_id, "cpuid %#x,%#x", func, param); /* * Requests for invalid CPUID levels should map to the highest * available level instead. */ if (cpu_exthigh != 0 && func >= 0x80000000) { if (func > cpu_exthigh) func = cpu_exthigh; } else if (func >= 0x40000000) { if (func > CPUID_VM_HIGH) func = CPUID_VM_HIGH; } else if (func > cpu_high) { func = cpu_high; } /* * In general the approach used for CPU topology is to * advertise a flat topology where all CPUs are packages with * no multi-core or SMT. */ switch (func) { /* * Pass these through to the guest */ case CPUID_0000_0000: case CPUID_0000_0002: case CPUID_0000_0003: case CPUID_8000_0000: case CPUID_8000_0002: case CPUID_8000_0003: case CPUID_8000_0004: case CPUID_8000_0006: cpuid_count(func, param, regs); break; case CPUID_8000_0008: cpuid_count(func, param, regs); if (vmm_is_svm()) { /* * As on Intel (0000_0007:0, EDX), mask out * unsupported or unsafe AMD extended features * (8000_0008 EBX). */ regs[1] &= (AMDFEID_CLZERO | AMDFEID_IRPERF | AMDFEID_XSAVEERPTR); vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); /* * Here, width is ApicIdCoreIdSize, present on * at least Family 15h and newer. It * represents the "number of bits in the * initial apicid that indicate thread id * within a package." * * Our topo_probe_amd() uses it for * pkg_id_shift and other OSes may rely on it. */ width = MIN(0xF, log2(threads * cores)); if (width < 0x4) width = 0; logical_cpus = MIN(0xFF, threads * cores - 1); regs[2] = (width << AMDID_COREID_SIZE_SHIFT) | logical_cpus; } break; case CPUID_8000_0001: cpuid_count(func, param, regs); /* * Hide SVM from guest. */ regs[2] &= ~AMDID2_SVM; /* * Don't advertise extended performance counter MSRs * to the guest. */ regs[2] &= ~AMDID2_PCXC; regs[2] &= ~AMDID2_PNXC; regs[2] &= ~AMDID2_PTSCEL2I; /* * Don't advertise Instruction Based Sampling feature. */ regs[2] &= ~AMDID2_IBS; /* NodeID MSR not available */ regs[2] &= ~AMDID2_NODE_ID; /* Don't advertise the OS visible workaround feature */ regs[2] &= ~AMDID2_OSVW; /* Hide mwaitx/monitorx capability from the guest */ regs[2] &= ~AMDID2_MWAITX; /* Advertise RDTSCP if it is enabled. */ error = vm_get_capability(vcpu, VM_CAP_RDTSCP, &enable_rdtscp); if (error == 0 && enable_rdtscp) regs[3] |= AMDID_RDTSCP; else regs[3] &= ~AMDID_RDTSCP; break; case CPUID_8000_0007: /* * AMD uses this leaf to advertise the processor's * power monitoring and RAS capabilities. These * features are hardware-specific and exposing * them to a guest doesn't make a lot of sense. * * Intel uses this leaf only to advertise the * "Invariant TSC" feature with all other bits * being reserved (set to zero). */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; /* * "Invariant TSC" can be advertised to the guest if: * - host TSC frequency is invariant * - host TSCs are synchronized across physical cpus * * XXX This still falls short because the vcpu * can observe the TSC moving backwards as it * migrates across physical cpus. But at least * it should discourage the guest from using the * TSC to keep track of time. */ if (tsc_is_invariant && smp_tsc) regs[3] |= AMDPM_TSC_INVARIANT; break; case CPUID_8000_001D: /* AMD Cache topology, like 0000_0004 for Intel. */ if (!vmm_is_svm()) goto default_leaf; /* * Similar to Intel, generate a fictitious cache * topology for the guest with L3 shared by the * package, and L1 and L2 local to a core. */ vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); switch (param) { case 0: logical_cpus = threads; level = 1; func = 1; /* data cache */ break; case 1: logical_cpus = threads; level = 2; func = 3; /* unified cache */ break; case 2: logical_cpus = threads * cores; level = 3; func = 3; /* unified cache */ break; default: logical_cpus = 0; level = 0; func = 0; break; } logical_cpus = MIN(0xfff, logical_cpus - 1); regs[0] = (logical_cpus << 14) | (1 << 8) | (level << 5) | func; regs[1] = (func > 0) ? (CACHE_LINE_SIZE - 1) : 0; regs[2] = 0; regs[3] = 0; break; case CPUID_8000_001E: /* * AMD Family 16h+ and Hygon Family 18h additional * identifiers. */ if (!vmm_is_svm() || CPUID_TO_FAMILY(cpu_id) < 0x16) goto default_leaf; vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); regs[0] = vcpu_id; threads = MIN(0xFF, threads - 1); regs[1] = (threads << 8) | (vcpu_id >> log2(threads + 1)); /* * XXX Bhyve topology cannot yet represent >1 node per * processor. */ regs[2] = 0; regs[3] = 0; break; case CPUID_0000_0001: do_cpuid(1, regs); error = vm_get_x2apic_state(vcpu, &x2apic_state); if (error) { panic("x86_emulate_cpuid: error %d " "fetching x2apic state", error); } /* * Override the APIC ID only in ebx */ regs[1] &= ~(CPUID_LOCAL_APIC_ID); regs[1] |= (vcpu_id << CPUID_0000_0001_APICID_SHIFT); /* * Don't expose VMX, SpeedStep, TME or SMX capability. * Advertise x2APIC capability and Hypervisor guest. */ regs[2] &= ~(CPUID2_VMX | CPUID2_EST | CPUID2_TM2); regs[2] &= ~(CPUID2_SMX); regs[2] |= CPUID2_HV; if (x2apic_state != X2APIC_DISABLED) regs[2] |= CPUID2_X2APIC; else regs[2] &= ~CPUID2_X2APIC; /* * Only advertise CPUID2_XSAVE in the guest if * the host is using XSAVE. */ if (!(regs[2] & CPUID2_OSXSAVE)) regs[2] &= ~CPUID2_XSAVE; /* * If CPUID2_XSAVE is being advertised and the * guest has set CR4_XSAVE, set * CPUID2_OSXSAVE. */ regs[2] &= ~CPUID2_OSXSAVE; if (regs[2] & CPUID2_XSAVE) { error = vm_get_register(vcpu, VM_REG_GUEST_CR4, &cr4); if (error) panic("x86_emulate_cpuid: error %d " "fetching %%cr4", error); if (cr4 & CR4_XSAVE) regs[2] |= CPUID2_OSXSAVE; } /* * Hide monitor/mwait until we know how to deal with * these instructions. */ regs[2] &= ~CPUID2_MON; /* * Hide the performance and debug features. */ regs[2] &= ~CPUID2_PDCM; /* * No TSC deadline support in the APIC yet */ regs[2] &= ~CPUID2_TSCDLT; /* * Hide thermal monitoring */ regs[3] &= ~(CPUID_ACPI | CPUID_TM); /* * Hide the debug store capability. */ regs[3] &= ~CPUID_DS; /* * Advertise the Machine Check and MTRR capability. * * Some guest OSes (e.g. Windows) will not boot if * these features are absent. */ regs[3] |= (CPUID_MCA | CPUID_MCE | CPUID_MTRR); vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); logical_cpus = threads * cores; regs[1] &= ~CPUID_HTT_CORES; regs[1] |= (logical_cpus & 0xff) << 16; regs[3] |= CPUID_HTT; break; case CPUID_0000_0004: cpuid_count(func, param, regs); if (regs[0] || regs[1] || regs[2] || regs[3]) { vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); regs[0] &= 0x3ff; regs[0] |= (cores - 1) << 26; /* * Cache topology: * - L1 and L2 are shared only by the logical * processors in a single core. * - L3 and above are shared by all logical * processors in the package. */ logical_cpus = threads; level = (regs[0] >> 5) & 0x7; if (level >= 3) logical_cpus *= cores; regs[0] |= (logical_cpus - 1) << 14; } break; case CPUID_0000_0007: regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; /* leaf 0 */ if (param == 0) { cpuid_count(func, param, regs); /* Only leaf 0 is supported */ regs[0] = 0; /* * Expose known-safe features. */ regs[1] &= CPUID_STDEXT_FSGSBASE | CPUID_STDEXT_BMI1 | CPUID_STDEXT_HLE | CPUID_STDEXT_AVX2 | CPUID_STDEXT_SMEP | CPUID_STDEXT_BMI2 | CPUID_STDEXT_ERMS | CPUID_STDEXT_RTM | CPUID_STDEXT_AVX512F | CPUID_STDEXT_AVX512DQ | CPUID_STDEXT_RDSEED | CPUID_STDEXT_SMAP | CPUID_STDEXT_AVX512PF | CPUID_STDEXT_AVX512ER | CPUID_STDEXT_AVX512CD | CPUID_STDEXT_SHA | CPUID_STDEXT_AVX512BW | CPUID_STDEXT_AVX512VL; regs[2] &= CPUID_STDEXT2_VAES | CPUID_STDEXT2_VPCLMULQDQ; regs[3] &= CPUID_STDEXT3_MD_CLEAR; /* Advertise RDPID if it is enabled. */ error = vm_get_capability(vcpu, VM_CAP_RDPID, &enable_rdpid); if (error == 0 && enable_rdpid) regs[2] |= CPUID_STDEXT2_RDPID; /* Advertise INVPCID if it is enabled. */ error = vm_get_capability(vcpu, VM_CAP_ENABLE_INVPCID, &enable_invpcid); if (error == 0 && enable_invpcid) regs[1] |= CPUID_STDEXT_INVPCID; } break; case CPUID_0000_0006: regs[0] = CPUTPM1_ARAT; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case CPUID_0000_000A: /* * Handle the access, but report 0 for * all options */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case CPUID_0000_000B: /* * Intel processor topology enumeration */ if (vmm_is_intel()) { vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); if (param == 0) { logical_cpus = threads; width = log2(logical_cpus); level = CPUID_TYPE_SMT; x2apic_id = vcpu_id; } if (param == 1) { logical_cpus = threads * cores; width = log2(logical_cpus); level = CPUID_TYPE_CORE; x2apic_id = vcpu_id; } if (!cpuid_leaf_b || param >= 2) { width = 0; logical_cpus = 0; level = 0; x2apic_id = 0; } regs[0] = width & 0x1f; regs[1] = logical_cpus & 0xffff; regs[2] = (level << 8) | (param & 0xff); regs[3] = x2apic_id; } else { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; } break; case CPUID_0000_000D: limits = vmm_get_xsave_limits(); if (!limits->xsave_enabled) { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; } cpuid_count(func, param, regs); switch (param) { case 0: /* * Only permit the guest to use bits * that are active in the host in * %xcr0. Also, claim that the * maximum save area size is * equivalent to the host's current * save area size. Since this runs * "inside" of vmrun(), it runs with * the guest's xcr0, so the current * save area size is correct as-is. */ regs[0] &= limits->xcr0_allowed; regs[2] = limits->xsave_max_size; regs[3] &= (limits->xcr0_allowed >> 32); break; case 1: /* Only permit XSAVEOPT. */ regs[0] &= CPUID_EXTSTATE_XSAVEOPT; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; default: /* * If the leaf is for a permitted feature, * pass through as-is, otherwise return * all zeroes. */ if (!(limits->xcr0_allowed & (1ul << param))) { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; } break; } break; case CPUID_0000_000F: case CPUID_0000_0010: /* * Do not report any Resource Director Technology * capabilities. Exposing control of cache or memory * controller resource partitioning to the guest is not * at all sensible. * * This is already hidden at a high level by masking of * leaf 0x7. Even still, a guest may look here for * detailed capability information. */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case CPUID_0000_0015: /* * Don't report CPU TSC/Crystal ratio and clock * values since guests may use these to derive the * local APIC frequency.. */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case 0x40000000: regs[0] = CPUID_VM_HIGH; bcopy(bhyve_id, ®s[1], 4); bcopy(bhyve_id + 4, ®s[2], 4); bcopy(bhyve_id + 8, ®s[3], 4); break; default: default_leaf: /* * The leaf value has already been clamped so * simply pass this through, keeping count of * how many unhandled leaf values have been seen. */ atomic_add_long(&bhyve_xcpuids, 1); cpuid_count(func, param, regs); break; } /* * CPUID clears the upper 32-bits of the long-mode registers. */ *rax = regs[0]; *rbx = regs[1]; *rcx = regs[2]; *rdx = regs[3]; return (1); } bool vm_cpuid_capability(struct vcpu *vcpu, enum vm_cpuid_capability cap) { bool rv; KASSERT(cap > 0 && cap < VCC_LAST, ("%s: invalid vm_cpu_capability %d", __func__, cap)); /* * Simply passthrough the capabilities of the host cpu for now. */ rv = false; switch (cap) { case VCC_NO_EXECUTE: if (amd_feature & AMDID_NX) rv = true; break; case VCC_FFXSR: if (amd_feature & AMDID_FFXSR) rv = true; break; case VCC_TCE: if (amd_feature2 & AMDID2_TCE) rv = true; break; default: panic("%s: unknown vm_cpu_capability %d", __func__, cap); } return (rv); } int vm_rdmtrr(struct vm_mtrr *mtrr, u_int num, uint64_t *val) { switch (num) { case MSR_MTRRcap: *val = MTRR_CAP_WC | MTRR_CAP_FIXED | VMM_MTRR_VAR_MAX; break; case MSR_MTRRdefType: *val = mtrr->def_type; break; case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: *val = mtrr->fixed4k[num - MSR_MTRR4kBase]; break; case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: *val = mtrr->fixed16k[num - MSR_MTRR16kBase]; break; case MSR_MTRR64kBase: *val = mtrr->fixed64k; break; case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: { u_int offset = num - MSR_MTRRVarBase; if (offset % 2 == 0) { *val = mtrr->var[offset / 2].base; } else { *val = mtrr->var[offset / 2].mask; } break; } default: return (-1); } return (0); } int vm_wrmtrr(struct vm_mtrr *mtrr, u_int num, uint64_t val) { switch (num) { case MSR_MTRRcap: /* MTRRCAP is read only */ return (-1); case MSR_MTRRdefType: if (val & ~VMM_MTRR_DEF_MASK) { /* generate #GP on writes to reserved fields */ return (-1); } mtrr->def_type = val; break; case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7: mtrr->fixed4k[num - MSR_MTRR4kBase] = val; break; case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1: mtrr->fixed16k[num - MSR_MTRR16kBase] = val; break; case MSR_MTRR64kBase: mtrr->fixed64k = val; break; case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1: { u_int offset = num - MSR_MTRRVarBase; if (offset % 2 == 0) { if (val & ~VMM_MTRR_PHYSBASE_MASK) { /* generate #GP on writes to reserved fields */ return (-1); } mtrr->var[offset / 2].base = val; } else { if (val & ~VMM_MTRR_PHYSMASK_MASK) { /* generate #GP on writes to reserved fields */ return (-1); } mtrr->var[offset / 2].mask = val; } break; } default: return (-1); } return (0); }