/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_bhyve_snapshot.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_ioport.h" #include "vmm_ktr.h" #include "vmm_host.h" #include "vmm_mem.h" #include "vmm_util.h" #include "vatpic.h" #include "vatpit.h" #include "vhpet.h" #include "vioapic.h" #include "vlapic.h" #include "vpmtmr.h" #include "vrtc.h" #include "vmm_stat.h" #include "vmm_lapic.h" #include "io/ppt.h" #include "io/iommu.h" struct vlapic; /* * Initialization: * (a) allocated when vcpu is created * (i) initialized when vcpu is created and when it is reinitialized * (o) initialized the first time the vcpu is created * (x) initialized before use */ struct vcpu { struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ enum vcpu_state state; /* (o) vcpu state */ int vcpuid; /* (o) */ int hostcpu; /* (o) vcpu's host cpu */ int reqidle; /* (i) request vcpu to idle */ struct vm *vm; /* (o) */ void *cookie; /* (i) cpu-specific data */ struct vlapic *vlapic; /* (i) APIC device model */ enum x2apic_state x2apic_state; /* (i) APIC mode */ uint64_t exitintinfo; /* (i) events pending at VM exit */ int nmi_pending; /* (i) NMI pending */ int extint_pending; /* (i) INTR pending */ int exception_pending; /* (i) exception pending */ int exc_vector; /* (x) exception collateral */ int exc_errcode_valid; uint32_t exc_errcode; struct savefpu *guestfpu; /* (a,i) guest fpu state */ uint64_t guest_xcr0; /* (i) guest %xcr0 register */ void *stats; /* (a,i) statistics */ struct vm_exit exitinfo; /* (x) exit reason and collateral */ cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ uint64_t nextrip; /* (x) next instruction to execute */ uint64_t tsc_offset; /* (o) TSC offsetting */ }; #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) struct mem_seg { size_t len; bool sysmem; struct vm_object *object; }; #define VM_MAX_MEMSEGS 4 struct mem_map { vm_paddr_t gpa; size_t len; vm_ooffset_t segoff; int segid; int prot; int flags; }; #define VM_MAX_MEMMAPS 8 /* * Initialization: * (o) initialized the first time the VM is created * (i) initialized when VM is created and when it is reinitialized * (x) initialized before use * * Locking: * [m] mem_segs_lock * [r] rendezvous_mtx * [v] reads require one frozen vcpu, writes require freezing all vcpus */ struct vm { void *cookie; /* (i) cpu-specific data */ void *iommu; /* (x) iommu-specific data */ struct vhpet *vhpet; /* (i) virtual HPET */ struct vioapic *vioapic; /* (i) virtual ioapic */ struct vatpic *vatpic; /* (i) virtual atpic */ struct vatpit *vatpit; /* (i) virtual atpit */ struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ struct vrtc *vrtc; /* (o) virtual RTC */ volatile cpuset_t active_cpus; /* (i) active vcpus */ volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ cpuset_t startup_cpus; /* (i) [r] waiting for startup */ int suspend; /* (i) stop VM execution */ bool dying; /* (o) is dying */ volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ vm_rendezvous_func_t rendezvous_func; struct mtx rendezvous_mtx; /* (o) rendezvous lock */ struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ struct vmspace *vmspace; /* (o) guest's address space */ char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ struct vcpu **vcpu; /* (o) guest vcpus */ /* The following describe the vm cpu topology */ uint16_t sockets; /* (o) num of sockets */ uint16_t cores; /* (o) num of cores/socket */ uint16_t threads; /* (o) num of threads/core */ uint16_t maxcpus; /* (o) max pluggable cpus */ struct sx mem_segs_lock; /* (o) */ struct sx vcpus_init_lock; /* (o) */ }; #define VMM_CTR0(vcpu, format) \ VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) #define VMM_CTR1(vcpu, format, p1) \ VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) #define VMM_CTR2(vcpu, format, p1, p2) \ VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) #define VMM_CTR3(vcpu, format, p1, p2, p3) \ VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) static int vmm_initialized; static void vmmops_panic(void); static void vmmops_panic(void) { panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); } #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ { \ if (vmm_is_intel()) \ return (vmm_ops_intel.opname); \ else if (vmm_is_svm()) \ return (vmm_ops_amd.opname); \ else \ return ((ret_type (*)args)vmmops_panic); \ } DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) DEFINE_VMMOPS_IFUNC(void, modresume, (void)) DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, struct vm_eventinfo *info)) DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, int vcpu_id)) DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, vm_offset_t max)) DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) #ifdef BHYVE_SNAPSHOT DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, struct vm_snapshot_meta *meta)) DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) #endif SDT_PROVIDER_DEFINE(vmm); static MALLOC_DEFINE(M_VM, "vm", "vm"); /* statistics */ static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); /* * Halt the guest if all vcpus are executing a HLT instruction with * interrupts disabled. */ static int halt_detection_enabled = 1; SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, &halt_detection_enabled, 0, "Halt VM if all vcpus execute HLT with interrupts disabled"); static int vmm_ipinum; SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, "IPI vector used for vcpu notifications"); static int trace_guest_exceptions; SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, &trace_guest_exceptions, 0, "Trap into hypervisor on all guest exceptions and reflect them back"); static int trap_wbinvd; SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, "WBINVD triggers a VM-exit"); u_int vm_maxcpu; SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &vm_maxcpu, 0, "Maximum number of vCPUs"); static void vm_free_memmap(struct vm *vm, int ident); static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); /* * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU * counts as well as range of vpid values for VT-x and by the capacity * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. */ #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) #ifdef KTR static const char * vcpu_state2str(enum vcpu_state state) { switch (state) { case VCPU_IDLE: return ("idle"); case VCPU_FROZEN: return ("frozen"); case VCPU_RUNNING: return ("running"); case VCPU_SLEEPING: return ("sleeping"); default: return ("unknown"); } } #endif static void vcpu_cleanup(struct vcpu *vcpu, bool destroy) { vmmops_vlapic_cleanup(vcpu->vlapic); vmmops_vcpu_cleanup(vcpu->cookie); vcpu->cookie = NULL; if (destroy) { vmm_stat_free(vcpu->stats); fpu_save_area_free(vcpu->guestfpu); vcpu_lock_destroy(vcpu); free(vcpu, M_VM); } } static struct vcpu * vcpu_alloc(struct vm *vm, int vcpu_id) { struct vcpu *vcpu; KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, ("vcpu_init: invalid vcpu %d", vcpu_id)); vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); vcpu_lock_init(vcpu); vcpu->state = VCPU_IDLE; vcpu->hostcpu = NOCPU; vcpu->vcpuid = vcpu_id; vcpu->vm = vm; vcpu->guestfpu = fpu_save_area_alloc(); vcpu->stats = vmm_stat_alloc(); vcpu->tsc_offset = 0; return (vcpu); } static void vcpu_init(struct vcpu *vcpu) { vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); vm_set_x2apic_state(vcpu, X2APIC_DISABLED); vcpu->reqidle = 0; vcpu->exitintinfo = 0; vcpu->nmi_pending = 0; vcpu->extint_pending = 0; vcpu->exception_pending = 0; vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; fpu_save_area_reset(vcpu->guestfpu); vmm_stat_init(vcpu->stats); } int vcpu_trace_exceptions(struct vcpu *vcpu) { return (trace_guest_exceptions); } int vcpu_trap_wbinvd(struct vcpu *vcpu) { return (trap_wbinvd); } struct vm_exit * vm_exitinfo(struct vcpu *vcpu) { return (&vcpu->exitinfo); } cpuset_t * vm_exitinfo_cpuset(struct vcpu *vcpu) { return (&vcpu->exitinfo_cpuset); } static int vmm_init(void) { int error; if (!vmm_is_hw_supported()) return (ENXIO); vm_maxcpu = mp_ncpus; TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); if (vm_maxcpu > VM_MAXCPU) { printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); vm_maxcpu = VM_MAXCPU; } if (vm_maxcpu == 0) vm_maxcpu = 1; vmm_host_state_init(); vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : &IDTVEC(justreturn)); if (vmm_ipinum < 0) vmm_ipinum = IPI_AST; error = vmm_mem_init(); if (error) return (error); vmm_resume_p = vmmops_modresume; return (vmmops_modinit(vmm_ipinum)); } static int vmm_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if (vmm_is_hw_supported()) { vmmdev_init(); error = vmm_init(); if (error == 0) vmm_initialized = 1; } else { error = ENXIO; } break; case MOD_UNLOAD: if (vmm_is_hw_supported()) { error = vmmdev_cleanup(); if (error == 0) { vmm_resume_p = NULL; iommu_cleanup(); if (vmm_ipinum != IPI_AST) lapic_ipi_free(vmm_ipinum); error = vmmops_modcleanup(); /* * Something bad happened - prevent new * VMs from being created */ if (error) vmm_initialized = 0; } } else { error = 0; } break; default: error = 0; break; } return (error); } static moduledata_t vmm_kmod = { "vmm", vmm_handler, NULL }; /* * vmm initialization has the following dependencies: * * - VT-x initialization requires smp_rendezvous() and therefore must happen * after SMP is fully functional (after SI_SUB_SMP). */ DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); MODULE_VERSION(vmm, 1); static void vm_init(struct vm *vm, bool create) { vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); vm->iommu = NULL; vm->vioapic = vioapic_init(vm); vm->vhpet = vhpet_init(vm); vm->vatpic = vatpic_init(vm); vm->vatpit = vatpit_init(vm); vm->vpmtmr = vpmtmr_init(vm); if (create) vm->vrtc = vrtc_init(vm); CPU_ZERO(&vm->active_cpus); CPU_ZERO(&vm->debug_cpus); CPU_ZERO(&vm->startup_cpus); vm->suspend = 0; CPU_ZERO(&vm->suspended_cpus); if (!create) { for (int i = 0; i < vm->maxcpus; i++) { if (vm->vcpu[i] != NULL) vcpu_init(vm->vcpu[i]); } } } void vm_disable_vcpu_creation(struct vm *vm) { sx_xlock(&vm->vcpus_init_lock); vm->dying = true; sx_xunlock(&vm->vcpus_init_lock); } struct vcpu * vm_alloc_vcpu(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) return (NULL); vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); if (__predict_true(vcpu != NULL)) return (vcpu); sx_xlock(&vm->vcpus_init_lock); vcpu = vm->vcpu[vcpuid]; if (vcpu == NULL && !vm->dying) { vcpu = vcpu_alloc(vm, vcpuid); vcpu_init(vcpu); /* * Ensure vCPU is fully created before updating pointer * to permit unlocked reads above. */ atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], (uintptr_t)vcpu); } sx_xunlock(&vm->vcpus_init_lock); return (vcpu); } void vm_slock_vcpus(struct vm *vm) { sx_slock(&vm->vcpus_init_lock); } void vm_unlock_vcpus(struct vm *vm) { sx_unlock(&vm->vcpus_init_lock); } /* * The default CPU topology is a single thread per package. */ u_int cores_per_package = 1; u_int threads_per_core = 1; int vm_create(const char *name, struct vm **retvm) { struct vm *vm; struct vmspace *vmspace; /* * If vmm.ko could not be successfully initialized then don't attempt * to create the virtual machine. */ if (!vmm_initialized) return (ENXIO); if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == VM_MAX_NAMELEN + 1) return (EINVAL); vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); if (vmspace == NULL) return (ENOMEM); vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); strcpy(vm->name, name); vm->vmspace = vmspace; mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); sx_init(&vm->mem_segs_lock, "vm mem_segs"); sx_init(&vm->vcpus_init_lock, "vm vcpus"); vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | M_ZERO); vm->sockets = 1; vm->cores = cores_per_package; /* XXX backwards compatibility */ vm->threads = threads_per_core; /* XXX backwards compatibility */ vm->maxcpus = vm_maxcpu; vm_init(vm, true); *retvm = vm; return (0); } void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) { *sockets = vm->sockets; *cores = vm->cores; *threads = vm->threads; *maxcpus = vm->maxcpus; } uint16_t vm_get_maxcpus(struct vm *vm) { return (vm->maxcpus); } int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus __unused) { /* Ignore maxcpus. */ if ((sockets * cores * threads) > vm->maxcpus) return (EINVAL); vm->sockets = sockets; vm->cores = cores; vm->threads = threads; return(0); } static void vm_cleanup(struct vm *vm, bool destroy) { struct mem_map *mm; int i; if (destroy) vm_xlock_memsegs(vm); ppt_unassign_all(vm); if (vm->iommu != NULL) iommu_destroy_domain(vm->iommu); if (destroy) vrtc_cleanup(vm->vrtc); else vrtc_reset(vm->vrtc); vpmtmr_cleanup(vm->vpmtmr); vatpit_cleanup(vm->vatpit); vhpet_cleanup(vm->vhpet); vatpic_cleanup(vm->vatpic); vioapic_cleanup(vm->vioapic); for (i = 0; i < vm->maxcpus; i++) { if (vm->vcpu[i] != NULL) vcpu_cleanup(vm->vcpu[i], destroy); } vmmops_cleanup(vm->cookie); /* * System memory is removed from the guest address space only when * the VM is destroyed. This is because the mapping remains the same * across VM reset. * * Device memory can be relocated by the guest (e.g. using PCI BARs) * so those mappings are removed on a VM reset. */ for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (destroy || !sysmem_mapping(vm, mm)) vm_free_memmap(vm, i); } if (destroy) { for (i = 0; i < VM_MAX_MEMSEGS; i++) vm_free_memseg(vm, i); vm_unlock_memsegs(vm); vmmops_vmspace_free(vm->vmspace); vm->vmspace = NULL; free(vm->vcpu, M_VM); sx_destroy(&vm->vcpus_init_lock); sx_destroy(&vm->mem_segs_lock); mtx_destroy(&vm->rendezvous_mtx); } } void vm_destroy(struct vm *vm) { vm_cleanup(vm, true); free(vm, M_VM); } int vm_reinit(struct vm *vm) { int error; /* * A virtual machine can be reset only if all vcpus are suspended. */ if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { vm_cleanup(vm, false); vm_init(vm, false); error = 0; } else { error = EBUSY; } return (error); } const char * vm_name(struct vm *vm) { return (vm->name); } void vm_slock_memsegs(struct vm *vm) { sx_slock(&vm->mem_segs_lock); } void vm_xlock_memsegs(struct vm *vm) { sx_xlock(&vm->mem_segs_lock); } void vm_unlock_memsegs(struct vm *vm) { sx_unlock(&vm->mem_segs_lock); } int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) { vm_object_t obj; if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) return (ENOMEM); else return (0); } int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) { vmm_mmio_free(vm->vmspace, gpa, len); return (0); } /* * Return 'true' if 'gpa' is allocated in the guest address space. * * This function is called in the context of a running vcpu which acts as * an implicit lock on 'vm->mem_maps[]'. */ bool vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) { struct vm *vm = vcpu->vm; struct mem_map *mm; int i; #ifdef INVARIANTS int hostcpu, state; state = vcpu_get_state(vcpu, &hostcpu); KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); #endif for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) return (true); /* 'gpa' is sysmem or devmem */ } if (ppt_is_mmio(vm, gpa)) return (true); /* 'gpa' is pci passthru mmio */ return (false); } int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) { struct mem_seg *seg; vm_object_t obj; sx_assert(&vm->mem_segs_lock, SX_XLOCKED); if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); if (len == 0 || (len & PAGE_MASK)) return (EINVAL); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { if (seg->len == len && seg->sysmem == sysmem) return (EEXIST); else return (EINVAL); } obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); if (obj == NULL) return (ENOMEM); seg->len = len; seg->object = obj; seg->sysmem = sysmem; return (0); } int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, vm_object_t *objptr) { struct mem_seg *seg; sx_assert(&vm->mem_segs_lock, SX_LOCKED); if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[ident]; if (len) *len = seg->len; if (sysmem) *sysmem = seg->sysmem; if (objptr) *objptr = seg->object; return (0); } void vm_free_memseg(struct vm *vm, int ident) { struct mem_seg *seg; KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, ("%s: invalid memseg ident %d", __func__, ident)); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { vm_object_deallocate(seg->object); bzero(seg, sizeof(struct mem_seg)); } } int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, size_t len, int prot, int flags) { struct mem_seg *seg; struct mem_map *m, *map; vm_ooffset_t last; int i, error; if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) return (EINVAL); if (flags & ~VM_MEMMAP_F_WIRED) return (EINVAL); if (segid < 0 || segid >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[segid]; if (seg->object == NULL) return (EINVAL); last = first + len; if (first < 0 || first >= last || last > seg->len) return (EINVAL); if ((gpa | first | last) & PAGE_MASK) return (EINVAL); map = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { m = &vm->mem_maps[i]; if (m->len == 0) { map = m; break; } } if (map == NULL) return (ENOSPC); error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, len, 0, VMFS_NO_SPACE, prot, prot, 0); if (error != KERN_SUCCESS) return (EFAULT); vm_object_reference(seg->object); if (flags & VM_MEMMAP_F_WIRED) { error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); if (error != KERN_SUCCESS) { vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : EFAULT); } } map->gpa = gpa; map->len = len; map->segoff = first; map->segid = segid; map->prot = prot; map->flags = flags; return (0); } int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) { struct mem_map *m; int i; for (i = 0; i < VM_MAX_MEMMAPS; i++) { m = &vm->mem_maps[i]; if (m->gpa == gpa && m->len == len && (m->flags & VM_MEMMAP_F_IOMMU) == 0) { vm_free_memmap(vm, i); return (0); } } return (EINVAL); } int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) { struct mem_map *mm, *mmnext; int i; mmnext = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len == 0 || mm->gpa < *gpa) continue; if (mmnext == NULL || mm->gpa < mmnext->gpa) mmnext = mm; } if (mmnext != NULL) { *gpa = mmnext->gpa; if (segid) *segid = mmnext->segid; if (segoff) *segoff = mmnext->segoff; if (len) *len = mmnext->len; if (prot) *prot = mmnext->prot; if (flags) *flags = mmnext->flags; return (0); } else { return (ENOENT); } } static void vm_free_memmap(struct vm *vm, int ident) { struct mem_map *mm; int error __diagused; mm = &vm->mem_maps[ident]; if (mm->len) { error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, mm->gpa + mm->len); KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", __func__, error)); bzero(mm, sizeof(struct mem_map)); } } static __inline bool sysmem_mapping(struct vm *vm, struct mem_map *mm) { if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) return (true); else return (false); } vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm) { struct mem_map *mm; vm_paddr_t maxaddr; int i; maxaddr = 0; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (sysmem_mapping(vm, mm)) { if (maxaddr < mm->gpa + mm->len) maxaddr = mm->gpa + mm->len; } } return (maxaddr); } static void vm_iommu_map(struct vm *vm) { vm_paddr_t gpa, hpa; struct mem_map *mm; int i; sx_assert(&vm->mem_segs_lock, SX_LOCKED); for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (!sysmem_mapping(vm, mm)) continue; KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, ("iommu map found invalid memmap %#lx/%#lx/%#x", mm->gpa, mm->len, mm->flags)); if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) continue; mm->flags |= VM_MEMMAP_F_IOMMU; for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); /* * All mappings in the vmm vmspace must be * present since they are managed by vmm in this way. * Because we are in pass-through mode, the * mappings must also be wired. This implies * that all pages must be mapped and wired, * allowing to use pmap_extract() and avoiding the * need to use vm_gpa_hold_global(). * * This could change if/when we start * supporting page faults on IOMMU maps. */ KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", vm, (uintmax_t)gpa, (uintmax_t)hpa)); iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); } } iommu_invalidate_tlb(iommu_host_domain()); } static void vm_iommu_unmap(struct vm *vm) { vm_paddr_t gpa; struct mem_map *mm; int i; sx_assert(&vm->mem_segs_lock, SX_LOCKED); for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (!sysmem_mapping(vm, mm)) continue; if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) continue; mm->flags &= ~VM_MEMMAP_F_IOMMU; KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, ("iommu unmap found invalid memmap %#lx/%#lx/%#x", mm->gpa, mm->len, mm->flags)); for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( vmspace_pmap(vm->vmspace), gpa))), ("vm_iommu_unmap: vm %p gpa %jx not wired", vm, (uintmax_t)gpa)); iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); } } /* * Invalidate the cached translations associated with the domain * from which pages were removed. */ iommu_invalidate_tlb(vm->iommu); } int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) { int error; error = ppt_unassign_device(vm, bus, slot, func); if (error) return (error); if (ppt_assigned_devices(vm) == 0) vm_iommu_unmap(vm); return (0); } int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) { int error; vm_paddr_t maxaddr; /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ if (ppt_assigned_devices(vm) == 0) { KASSERT(vm->iommu == NULL, ("vm_assign_pptdev: iommu must be NULL")); maxaddr = vmm_sysmem_maxaddr(vm); vm->iommu = iommu_create_domain(maxaddr); if (vm->iommu == NULL) return (ENXIO); vm_iommu_map(vm); } error = ppt_assign_device(vm, bus, slot, func); return (error); } static void * _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, void **cookie) { int i, count, pageoff; struct mem_map *mm; vm_page_t m; pageoff = gpa & PAGE_MASK; if (len > PAGE_SIZE - pageoff) panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); count = 0; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); break; } } if (count == 1) { *cookie = m; return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); } else { *cookie = NULL; return (NULL); } } void * vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, void **cookie) { #ifdef INVARIANTS /* * The current vcpu should be frozen to ensure 'vm_memmap[]' * stability. */ int state = vcpu_get_state(vcpu, NULL); KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", __func__, state)); #endif return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); } void * vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, void **cookie) { sx_assert(&vm->mem_segs_lock, SX_LOCKED); return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); } void vm_gpa_release(void *cookie) { vm_page_t m = cookie; vm_page_unwire(m, PQ_ACTIVE); } int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) { if (reg >= VM_REG_LAST) return (EINVAL); return (vmmops_getreg(vcpu->cookie, reg, retval)); } int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) { int error; if (reg >= VM_REG_LAST) return (EINVAL); error = vmmops_setreg(vcpu->cookie, reg, val); if (error || reg != VM_REG_GUEST_RIP) return (error); /* Set 'nextrip' to match the value of %rip */ VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); vcpu->nextrip = val; return (0); } static bool is_descriptor_table(int reg) { switch (reg) { case VM_REG_GUEST_IDTR: case VM_REG_GUEST_GDTR: return (true); default: return (false); } } static bool is_segment_register(int reg) { switch (reg) { case VM_REG_GUEST_ES: case VM_REG_GUEST_CS: case VM_REG_GUEST_SS: case VM_REG_GUEST_DS: case VM_REG_GUEST_FS: case VM_REG_GUEST_GS: case VM_REG_GUEST_TR: case VM_REG_GUEST_LDTR: return (true); default: return (false); } } int vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) { if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (vmmops_getdesc(vcpu->cookie, reg, desc)); } int vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) { if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (vmmops_setdesc(vcpu->cookie, reg, desc)); } static void restore_guest_fpustate(struct vcpu *vcpu) { /* flush host state to the pcb */ fpuexit(curthread); /* restore guest FPU state */ fpu_enable(); fpurestore(vcpu->guestfpu); /* restore guest XCR0 if XSAVE is enabled in the host */ if (rcr4() & CR4_XSAVE) load_xcr(0, vcpu->guest_xcr0); /* * The FPU is now "dirty" with the guest's state so disable * the FPU to trap any access by the host. */ fpu_disable(); } static void save_guest_fpustate(struct vcpu *vcpu) { if ((rcr0() & CR0_TS) == 0) panic("fpu emulation not enabled in host!"); /* save guest XCR0 and restore host XCR0 */ if (rcr4() & CR4_XSAVE) { vcpu->guest_xcr0 = rxcr(0); load_xcr(0, vmm_get_host_xcr0()); } /* save guest FPU state */ fpu_enable(); fpusave(vcpu->guestfpu); fpu_disable(); } static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); static int vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) { int error; vcpu_assert_locked(vcpu); /* * State transitions from the vmmdev_ioctl() must always begin from * the VCPU_IDLE state. This guarantees that there is only a single * ioctl() operating on a vcpu at any point. */ if (from_idle) { while (vcpu->state != VCPU_IDLE) { vcpu->reqidle = 1; vcpu_notify_event_locked(vcpu, false); VMM_CTR1(vcpu, "vcpu state change from %s to " "idle requested", vcpu_state2str(vcpu->state)); msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); } } else { KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " "vcpu idle state")); } if (vcpu->state == VCPU_RUNNING) { KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " "mismatch for running vcpu", curcpu, vcpu->hostcpu)); } else { KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " "vcpu that is not running", vcpu->hostcpu)); } /* * The following state transitions are allowed: * IDLE -> FROZEN -> IDLE * FROZEN -> RUNNING -> FROZEN * FROZEN -> SLEEPING -> FROZEN */ switch (vcpu->state) { case VCPU_IDLE: case VCPU_RUNNING: case VCPU_SLEEPING: error = (newstate != VCPU_FROZEN); break; case VCPU_FROZEN: error = (newstate == VCPU_FROZEN); break; default: error = 1; break; } if (error) return (EBUSY); VMM_CTR2(vcpu, "vcpu state changed from %s to %s", vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); vcpu->state = newstate; if (newstate == VCPU_RUNNING) vcpu->hostcpu = curcpu; else vcpu->hostcpu = NOCPU; if (newstate == VCPU_IDLE) wakeup(&vcpu->state); return (0); } static void vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) panic("Error %d setting state to %d\n", error, newstate); } static void vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) panic("Error %d setting state to %d", error, newstate); } static int vm_handle_rendezvous(struct vcpu *vcpu) { struct vm *vm = vcpu->vm; struct thread *td; int error, vcpuid; error = 0; vcpuid = vcpu->vcpuid; td = curthread; mtx_lock(&vm->rendezvous_mtx); while (vm->rendezvous_func != NULL) { /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { VMM_CTR0(vcpu, "Calling rendezvous func"); (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); CPU_SET(vcpuid, &vm->rendezvous_done_cpus); } if (CPU_CMP(&vm->rendezvous_req_cpus, &vm->rendezvous_done_cpus) == 0) { VMM_CTR0(vcpu, "Rendezvous completed"); CPU_ZERO(&vm->rendezvous_req_cpus); vm->rendezvous_func = NULL; wakeup(&vm->rendezvous_func); break; } VMM_CTR0(vcpu, "Wait for rendezvous completion"); mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, "vmrndv", hz); if (td_ast_pending(td, TDA_SUSPEND)) { mtx_unlock(&vm->rendezvous_mtx); error = thread_check_susp(td, true); if (error != 0) return (error); mtx_lock(&vm->rendezvous_mtx); } } mtx_unlock(&vm->rendezvous_mtx); return (0); } /* * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. */ static int vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) { struct vm *vm = vcpu->vm; const char *wmesg; struct thread *td; int error, t, vcpuid, vcpu_halted, vm_halted; vcpuid = vcpu->vcpuid; vcpu_halted = 0; vm_halted = 0; error = 0; td = curthread; KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); vcpu_lock(vcpu); while (1) { /* * Do a final check for pending NMI or interrupts before * really putting this thread to sleep. Also check for * software events that would cause this vcpu to wakeup. * * These interrupts/events could have happened after the * vcpu returned from vmmops_run() and before it acquired the * vcpu lock above. */ if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) break; if (vm_nmi_pending(vcpu)) break; if (!intr_disabled) { if (vm_extint_pending(vcpu) || vlapic_pending_intr(vcpu->vlapic, NULL)) { break; } } /* Don't go to sleep if the vcpu thread needs to yield */ if (vcpu_should_yield(vcpu)) break; if (vcpu_debugged(vcpu)) break; /* * Some Linux guests implement "halt" by having all vcpus * execute HLT with interrupts disabled. 'halted_cpus' keeps * track of the vcpus that have entered this state. When all * vcpus enter the halted state the virtual machine is halted. */ if (intr_disabled) { wmesg = "vmhalt"; VMM_CTR0(vcpu, "Halted"); if (!vcpu_halted && halt_detection_enabled) { vcpu_halted = 1; CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); } if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { vm_halted = 1; break; } } else { wmesg = "vmidle"; } t = ticks; vcpu_require_state_locked(vcpu, VCPU_SLEEPING); /* * XXX msleep_spin() cannot be interrupted by signals so * wake up periodically to check pending signals. */ msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); vcpu_require_state_locked(vcpu, VCPU_FROZEN); vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); if (td_ast_pending(td, TDA_SUSPEND)) { vcpu_unlock(vcpu); error = thread_check_susp(td, false); if (error != 0) { if (vcpu_halted) { CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); } return (error); } vcpu_lock(vcpu); } } if (vcpu_halted) CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); vcpu_unlock(vcpu); if (vm_halted) vm_suspend(vm, VM_SUSPEND_HALT); return (0); } static int vm_handle_paging(struct vcpu *vcpu, bool *retu) { struct vm *vm = vcpu->vm; int rv, ftype; struct vm_map *map; struct vm_exit *vme; vme = &vcpu->exitinfo; KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", __func__, vme->inst_length)); ftype = vme->u.paging.fault_type; KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, ("vm_handle_paging: invalid fault_type %d", ftype)); if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), vme->u.paging.gpa, ftype); if (rv == 0) { VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", ftype == VM_PROT_READ ? "accessed" : "dirty", vme->u.paging.gpa); goto done; } } map = &vm->vmspace->vm_map; rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " "ftype = %d", rv, vme->u.paging.gpa, ftype); if (rv != KERN_SUCCESS) return (EFAULT); done: return (0); } static int vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) { struct vie *vie; struct vm_exit *vme; uint64_t gla, gpa, cs_base; struct vm_guest_paging *paging; mem_region_read_t mread; mem_region_write_t mwrite; enum vm_cpu_mode cpu_mode; int cs_d, error, fault; vme = &vcpu->exitinfo; KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", __func__, vme->inst_length)); gla = vme->u.inst_emul.gla; gpa = vme->u.inst_emul.gpa; cs_base = vme->u.inst_emul.cs_base; cs_d = vme->u.inst_emul.cs_d; vie = &vme->u.inst_emul.vie; paging = &vme->u.inst_emul.paging; cpu_mode = paging->cpu_mode; VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); /* Fetch, decode and emulate the faulting instruction */ if (vie->num_valid == 0) { error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, VIE_INST_SIZE, vie, &fault); } else { /* * The instruction bytes have already been copied into 'vie' */ error = fault = 0; } if (error || fault) return (error); if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { VMM_CTR1(vcpu, "Error decoding instruction at %#lx", vme->rip + cs_base); *retu = true; /* dump instruction bytes in userspace */ return (0); } /* * Update 'nextrip' based on the length of the emulated instruction. */ vme->inst_length = vie->num_processed; vcpu->nextrip += vie->num_processed; VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", vcpu->nextrip); /* return to userland unless this is an in-kernel emulated device */ if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { mread = lapic_mmio_read; mwrite = lapic_mmio_write; } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { mread = vioapic_mmio_read; mwrite = vioapic_mmio_write; } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { mread = vhpet_mmio_read; mwrite = vhpet_mmio_write; } else { *retu = true; return (0); } error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, retu); return (error); } static int vm_handle_suspend(struct vcpu *vcpu, bool *retu) { struct vm *vm = vcpu->vm; int error, i; struct thread *td; error = 0; td = curthread; CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); /* * Wait until all 'active_cpus' have suspended themselves. * * Since a VM may be suspended at any time including when one or * more vcpus are doing a rendezvous we need to call the rendezvous * handler while we are waiting to prevent a deadlock. */ vcpu_lock(vcpu); while (error == 0) { if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { VMM_CTR0(vcpu, "All vcpus suspended"); break; } if (vm->rendezvous_func == NULL) { VMM_CTR0(vcpu, "Sleeping during suspend"); vcpu_require_state_locked(vcpu, VCPU_SLEEPING); msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); vcpu_require_state_locked(vcpu, VCPU_FROZEN); if (td_ast_pending(td, TDA_SUSPEND)) { vcpu_unlock(vcpu); error = thread_check_susp(td, false); vcpu_lock(vcpu); } } else { VMM_CTR0(vcpu, "Rendezvous during suspend"); vcpu_unlock(vcpu); error = vm_handle_rendezvous(vcpu); vcpu_lock(vcpu); } } vcpu_unlock(vcpu); /* * Wakeup the other sleeping vcpus and return to userspace. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->suspended_cpus)) { vcpu_notify_event(vm_vcpu(vm, i), false); } } *retu = true; return (error); } static int vm_handle_reqidle(struct vcpu *vcpu, bool *retu) { vcpu_lock(vcpu); KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); vcpu->reqidle = 0; vcpu_unlock(vcpu); *retu = true; return (0); } static int vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) { int error, fault; uint64_t rsp; uint64_t rflags; struct vm_copyinfo copyinfo; *retu = true; if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { return (0); } vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), VM_PROT_RW, ©info, 1, &fault); if (error != 0 || fault != 0) { *retu = false; return (EINVAL); } /* Read pushed rflags value from top of stack. */ vm_copyin(©info, &rflags, sizeof(uint64_t)); /* Clear TF bit. */ rflags &= ~(PSL_T); /* Write updated value back to memory. */ vm_copyout(&rflags, ©info, sizeof(uint64_t)); vm_copy_teardown(©info, 1); return (0); } int vm_suspend(struct vm *vm, enum vm_suspend_how how) { int i; if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) return (EINVAL); if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { VM_CTR2(vm, "virtual machine already suspended %d/%d", vm->suspend, how); return (EALREADY); } VM_CTR1(vm, "virtual machine successfully suspended %d", how); /* * Notify all active vcpus that they are now suspended. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->active_cpus)) vcpu_notify_event(vm_vcpu(vm, i), false); } return (0); } void vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) { struct vm *vm = vcpu->vm; struct vm_exit *vmexit; KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); vmexit = vm_exitinfo(vcpu); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_SUSPENDED; vmexit->u.suspended.how = vm->suspend; } void vm_exit_debug(struct vcpu *vcpu, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vcpu); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_DEBUG; } void vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vcpu); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); } void vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vcpu); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_REQIDLE; vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); } void vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vcpu); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); } int vm_run(struct vcpu *vcpu) { struct vm *vm = vcpu->vm; struct vm_eventinfo evinfo; int error, vcpuid; struct pcb *pcb; uint64_t tscval; struct vm_exit *vme; bool retu, intr_disabled; pmap_t pmap; vcpuid = vcpu->vcpuid; if (!CPU_ISSET(vcpuid, &vm->active_cpus)) return (EINVAL); if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) return (EINVAL); pmap = vmspace_pmap(vm->vmspace); vme = &vcpu->exitinfo; evinfo.rptr = &vm->rendezvous_req_cpus; evinfo.sptr = &vm->suspend; evinfo.iptr = &vcpu->reqidle; restart: critical_enter(); KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), ("vm_run: absurd pm_active")); tscval = rdtsc(); pcb = PCPU_GET(curpcb); set_pcb_flags(pcb, PCB_FULL_IRET); restore_guest_fpustate(vcpu); vcpu_require_state(vcpu, VCPU_RUNNING); error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); vcpu_require_state(vcpu, VCPU_FROZEN); save_guest_fpustate(vcpu); vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); critical_exit(); if (error == 0) { retu = false; vcpu->nextrip = vme->rip + vme->inst_length; switch (vme->exitcode) { case VM_EXITCODE_REQIDLE: error = vm_handle_reqidle(vcpu, &retu); break; case VM_EXITCODE_SUSPENDED: error = vm_handle_suspend(vcpu, &retu); break; case VM_EXITCODE_IOAPIC_EOI: vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); break; case VM_EXITCODE_RENDEZVOUS: error = vm_handle_rendezvous(vcpu); break; case VM_EXITCODE_HLT: intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); error = vm_handle_hlt(vcpu, intr_disabled, &retu); break; case VM_EXITCODE_PAGING: error = vm_handle_paging(vcpu, &retu); break; case VM_EXITCODE_INST_EMUL: error = vm_handle_inst_emul(vcpu, &retu); break; case VM_EXITCODE_INOUT: case VM_EXITCODE_INOUT_STR: error = vm_handle_inout(vcpu, vme, &retu); break; case VM_EXITCODE_DB: error = vm_handle_db(vcpu, vme, &retu); break; case VM_EXITCODE_MONITOR: case VM_EXITCODE_MWAIT: case VM_EXITCODE_VMINSN: vm_inject_ud(vcpu); break; default: retu = true; /* handled in userland */ break; } } /* * VM_EXITCODE_INST_EMUL could access the apic which could transform the * exit code into VM_EXITCODE_IPI. */ if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) error = vm_handle_ipi(vcpu, vme, &retu); if (error == 0 && retu == false) goto restart; vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); return (error); } int vm_restart_instruction(struct vcpu *vcpu) { enum vcpu_state state; uint64_t rip; int error __diagused; state = vcpu_get_state(vcpu, NULL); if (state == VCPU_RUNNING) { /* * When a vcpu is "running" the next instruction is determined * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. * Thus setting 'inst_length' to zero will cause the current * instruction to be restarted. */ vcpu->exitinfo.inst_length = 0; VMM_CTR1(vcpu, "restarting instruction at %#lx by " "setting inst_length to zero", vcpu->exitinfo.rip); } else if (state == VCPU_FROZEN) { /* * When a vcpu is "frozen" it is outside the critical section * around vmmops_run() and 'nextrip' points to the next * instruction. Thus instruction restart is achieved by setting * 'nextrip' to the vcpu's %rip. */ error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); KASSERT(!error, ("%s: error %d getting rip", __func__, error)); VMM_CTR2(vcpu, "restarting instruction by updating " "nextrip from %#lx to %#lx", vcpu->nextrip, rip); vcpu->nextrip = rip; } else { panic("%s: invalid state %d", __func__, state); } return (0); } int vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) { int type, vector; if (info & VM_INTINFO_VALID) { type = info & VM_INTINFO_TYPE; vector = info & 0xff; if (type == VM_INTINFO_NMI && vector != IDT_NMI) return (EINVAL); if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) return (EINVAL); if (info & VM_INTINFO_RSVD) return (EINVAL); } else { info = 0; } VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); vcpu->exitintinfo = info; return (0); } enum exc_class { EXC_BENIGN, EXC_CONTRIBUTORY, EXC_PAGEFAULT }; #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ static enum exc_class exception_class(uint64_t info) { int type, vector; KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); type = info & VM_INTINFO_TYPE; vector = info & 0xff; /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ switch (type) { case VM_INTINFO_HWINTR: case VM_INTINFO_SWINTR: case VM_INTINFO_NMI: return (EXC_BENIGN); default: /* * Hardware exception. * * SVM and VT-x use identical type values to represent NMI, * hardware interrupt and software interrupt. * * SVM uses type '3' for all exceptions. VT-x uses type '3' * for exceptions except #BP and #OF. #BP and #OF use a type * value of '5' or '6'. Therefore we don't check for explicit * values of 'type' to classify 'intinfo' into a hardware * exception. */ break; } switch (vector) { case IDT_PF: case IDT_VE: return (EXC_PAGEFAULT); case IDT_DE: case IDT_TS: case IDT_NP: case IDT_SS: case IDT_GP: return (EXC_CONTRIBUTORY); default: return (EXC_BENIGN); } } static int nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, uint64_t *retinfo) { enum exc_class exc1, exc2; int type1, vector1; KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); /* * If an exception occurs while attempting to call the double-fault * handler the processor enters shutdown mode (aka triple fault). */ type1 = info1 & VM_INTINFO_TYPE; vector1 = info1 & 0xff; if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", info1, info2); vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); *retinfo = 0; return (0); } /* * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 */ exc1 = exception_class(info1); exc2 = exception_class(info2); if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { /* Convert nested fault into a double fault. */ *retinfo = IDT_DF; *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; *retinfo |= VM_INTINFO_DEL_ERRCODE; } else { /* Handle exceptions serially */ *retinfo = info2; } return (1); } static uint64_t vcpu_exception_intinfo(struct vcpu *vcpu) { uint64_t info = 0; if (vcpu->exception_pending) { info = vcpu->exc_vector & 0xff; info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; if (vcpu->exc_errcode_valid) { info |= VM_INTINFO_DEL_ERRCODE; info |= (uint64_t)vcpu->exc_errcode << 32; } } return (info); } int vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) { uint64_t info1, info2; int valid; info1 = vcpu->exitintinfo; vcpu->exitintinfo = 0; info2 = 0; if (vcpu->exception_pending) { info2 = vcpu_exception_intinfo(vcpu); vcpu->exception_pending = 0; VMM_CTR2(vcpu, "Exception %d delivered: %#lx", vcpu->exc_vector, info2); } if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { valid = nested_fault(vcpu, info1, info2, retinfo); } else if (info1 & VM_INTINFO_VALID) { *retinfo = info1; valid = 1; } else if (info2 & VM_INTINFO_VALID) { *retinfo = info2; valid = 1; } else { valid = 0; } if (valid) { VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " "retinfo(%#lx)", __func__, info1, info2, *retinfo); } return (valid); } int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) { *info1 = vcpu->exitintinfo; *info2 = vcpu_exception_intinfo(vcpu); return (0); } int vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, uint32_t errcode, int restart_instruction) { uint64_t regval; int error __diagused; if (vector < 0 || vector >= 32) return (EINVAL); /* * A double fault exception should never be injected directly into * the guest. It is a derived exception that results from specific * combinations of nested faults. */ if (vector == IDT_DF) return (EINVAL); if (vcpu->exception_pending) { VMM_CTR2(vcpu, "Unable to inject exception %d due to " "pending exception %d", vector, vcpu->exc_vector); return (EBUSY); } if (errcode_valid) { /* * Exceptions don't deliver an error code in real mode. */ error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); if (!(regval & CR0_PE)) errcode_valid = 0; } /* * From section 26.6.1 "Interruptibility State" in Intel SDM: * * Event blocking by "STI" or "MOV SS" is cleared after guest executes * one instruction or incurs an exception. */ error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", __func__, error)); if (restart_instruction) vm_restart_instruction(vcpu); vcpu->exception_pending = 1; vcpu->exc_vector = vector; vcpu->exc_errcode = errcode; vcpu->exc_errcode_valid = errcode_valid; VMM_CTR1(vcpu, "Exception %d pending", vector); return (0); } void vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) { int error __diagused, restart_instruction; restart_instruction = 1; error = vm_inject_exception(vcpu, vector, errcode_valid, errcode, restart_instruction); KASSERT(error == 0, ("vm_inject_exception error %d", error)); } void vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) { int error __diagused; VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", error_code, cr2); error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); vm_inject_fault(vcpu, IDT_PF, 1, error_code); } static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); int vm_inject_nmi(struct vcpu *vcpu) { vcpu->nmi_pending = 1; vcpu_notify_event(vcpu, false); return (0); } int vm_nmi_pending(struct vcpu *vcpu) { return (vcpu->nmi_pending); } void vm_nmi_clear(struct vcpu *vcpu) { if (vcpu->nmi_pending == 0) panic("vm_nmi_clear: inconsistent nmi_pending state"); vcpu->nmi_pending = 0; vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); } static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); int vm_inject_extint(struct vcpu *vcpu) { vcpu->extint_pending = 1; vcpu_notify_event(vcpu, false); return (0); } int vm_extint_pending(struct vcpu *vcpu) { return (vcpu->extint_pending); } void vm_extint_clear(struct vcpu *vcpu) { if (vcpu->extint_pending == 0) panic("vm_extint_clear: inconsistent extint_pending state"); vcpu->extint_pending = 0; vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); } int vm_get_capability(struct vcpu *vcpu, int type, int *retval) { if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (vmmops_getcap(vcpu->cookie, type, retval)); } int vm_set_capability(struct vcpu *vcpu, int type, int val) { if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (vmmops_setcap(vcpu->cookie, type, val)); } struct vm * vcpu_vm(struct vcpu *vcpu) { return (vcpu->vm); } int vcpu_vcpuid(struct vcpu *vcpu) { return (vcpu->vcpuid); } struct vcpu * vm_vcpu(struct vm *vm, int vcpuid) { return (vm->vcpu[vcpuid]); } struct vlapic * vm_lapic(struct vcpu *vcpu) { return (vcpu->vlapic); } struct vioapic * vm_ioapic(struct vm *vm) { return (vm->vioapic); } struct vhpet * vm_hpet(struct vm *vm) { return (vm->vhpet); } bool vmm_is_pptdev(int bus, int slot, int func) { int b, f, i, n, s; char *val, *cp, *cp2; bool found; /* * XXX * The length of an environment variable is limited to 128 bytes which * puts an upper limit on the number of passthru devices that may be * specified using a single environment variable. * * Work around this by scanning multiple environment variable * names instead of a single one - yuck! */ const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ found = false; for (i = 0; names[i] != NULL && !found; i++) { cp = val = kern_getenv(names[i]); while (cp != NULL && *cp != '\0') { if ((cp2 = strchr(cp, ' ')) != NULL) *cp2 = '\0'; n = sscanf(cp, "%d/%d/%d", &b, &s, &f); if (n == 3 && bus == b && slot == s && func == f) { found = true; break; } if (cp2 != NULL) *cp2++ = ' '; cp = cp2; } freeenv(val); } return (found); } void * vm_iommu_domain(struct vm *vm) { return (vm->iommu); } int vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) { int error; vcpu_lock(vcpu); error = vcpu_set_state_locked(vcpu, newstate, from_idle); vcpu_unlock(vcpu); return (error); } enum vcpu_state vcpu_get_state(struct vcpu *vcpu, int *hostcpu) { enum vcpu_state state; vcpu_lock(vcpu); state = vcpu->state; if (hostcpu != NULL) *hostcpu = vcpu->hostcpu; vcpu_unlock(vcpu); return (state); } int vm_activate_cpu(struct vcpu *vcpu) { struct vm *vm = vcpu->vm; if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) return (EBUSY); VMM_CTR0(vcpu, "activated"); CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); return (0); } int vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) { if (vcpu == NULL) { vm->debug_cpus = vm->active_cpus; for (int i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->active_cpus)) vcpu_notify_event(vm_vcpu(vm, i), false); } } else { if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) return (EINVAL); CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); vcpu_notify_event(vcpu, false); } return (0); } int vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) { if (vcpu == NULL) { CPU_ZERO(&vm->debug_cpus); } else { if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) return (EINVAL); CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); } return (0); } int vcpu_debugged(struct vcpu *vcpu) { return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); } cpuset_t vm_active_cpus(struct vm *vm) { return (vm->active_cpus); } cpuset_t vm_debug_cpus(struct vm *vm) { return (vm->debug_cpus); } cpuset_t vm_suspended_cpus(struct vm *vm) { return (vm->suspended_cpus); } /* * Returns the subset of vCPUs in tostart that are awaiting startup. * These vCPUs are also marked as no longer awaiting startup. */ cpuset_t vm_start_cpus(struct vm *vm, const cpuset_t *tostart) { cpuset_t set; mtx_lock(&vm->rendezvous_mtx); CPU_AND(&set, &vm->startup_cpus, tostart); CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); mtx_unlock(&vm->rendezvous_mtx); return (set); } void vm_await_start(struct vm *vm, const cpuset_t *waiting) { mtx_lock(&vm->rendezvous_mtx); CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); mtx_unlock(&vm->rendezvous_mtx); } void * vcpu_stats(struct vcpu *vcpu) { return (vcpu->stats); } int vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) { *state = vcpu->x2apic_state; return (0); } int vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) { if (state >= X2APIC_STATE_LAST) return (EINVAL); vcpu->x2apic_state = state; vlapic_set_x2apic_state(vcpu, state); return (0); } /* * This function is called to ensure that a vcpu "sees" a pending event * as soon as possible: * - If the vcpu thread is sleeping then it is woken up. * - If the vcpu is running on a different host_cpu then an IPI will be directed * to the host_cpu to cause the vcpu to trap into the hypervisor. */ static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) { int hostcpu; hostcpu = vcpu->hostcpu; if (vcpu->state == VCPU_RUNNING) { KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); if (hostcpu != curcpu) { if (lapic_intr) { vlapic_post_intr(vcpu->vlapic, hostcpu, vmm_ipinum); } else { ipi_cpu(hostcpu, vmm_ipinum); } } else { /* * If the 'vcpu' is running on 'curcpu' then it must * be sending a notification to itself (e.g. SELF_IPI). * The pending event will be picked up when the vcpu * transitions back to guest context. */ } } else { KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " "with hostcpu %d", vcpu->state, hostcpu)); if (vcpu->state == VCPU_SLEEPING) wakeup_one(vcpu); } } void vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) { vcpu_lock(vcpu); vcpu_notify_event_locked(vcpu, lapic_intr); vcpu_unlock(vcpu); } struct vmspace * vm_get_vmspace(struct vm *vm) { return (vm->vmspace); } int vm_apicid2vcpuid(struct vm *vm, int apicid) { /* * XXX apic id is assumed to be numerically identical to vcpu id */ return (apicid); } int vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, vm_rendezvous_func_t func, void *arg) { struct vm *vm = vcpu->vm; int error, i; /* * Enforce that this function is called without any locks */ WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); restart: mtx_lock(&vm->rendezvous_mtx); if (vm->rendezvous_func != NULL) { /* * If a rendezvous is already in progress then we need to * call the rendezvous handler in case this 'vcpu' is one * of the targets of the rendezvous. */ VMM_CTR0(vcpu, "Rendezvous already in progress"); mtx_unlock(&vm->rendezvous_mtx); error = vm_handle_rendezvous(vcpu); if (error != 0) return (error); goto restart; } KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " "rendezvous is still in progress")); VMM_CTR0(vcpu, "Initiating rendezvous"); vm->rendezvous_req_cpus = dest; CPU_ZERO(&vm->rendezvous_done_cpus); vm->rendezvous_arg = arg; vm->rendezvous_func = func; mtx_unlock(&vm->rendezvous_mtx); /* * Wake up any sleeping vcpus and trigger a VM-exit in any running * vcpus so they handle the rendezvous as soon as possible. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &dest)) vcpu_notify_event(vm_vcpu(vm, i), false); } return (vm_handle_rendezvous(vcpu)); } struct vatpic * vm_atpic(struct vm *vm) { return (vm->vatpic); } struct vatpit * vm_atpit(struct vm *vm) { return (vm->vatpit); } struct vpmtmr * vm_pmtmr(struct vm *vm) { return (vm->vpmtmr); } struct vrtc * vm_rtc(struct vm *vm) { return (vm->vrtc); } enum vm_reg_name vm_segment_name(int seg) { static enum vm_reg_name seg_names[] = { VM_REG_GUEST_ES, VM_REG_GUEST_CS, VM_REG_GUEST_SS, VM_REG_GUEST_DS, VM_REG_GUEST_FS, VM_REG_GUEST_GS }; KASSERT(seg >= 0 && seg < nitems(seg_names), ("%s: invalid segment encoding %d", __func__, seg)); return (seg_names[seg]); } void vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) { int idx; for (idx = 0; idx < num_copyinfo; idx++) { if (copyinfo[idx].cookie != NULL) vm_gpa_release(copyinfo[idx].cookie); } bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); } int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, int num_copyinfo, int *fault) { int error, idx, nused; size_t n, off, remaining; void *hva, *cookie; uint64_t gpa; bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); nused = 0; remaining = len; while (remaining > 0) { KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); if (error || *fault) return (error); off = gpa & PAGE_MASK; n = min(remaining, PAGE_SIZE - off); copyinfo[nused].gpa = gpa; copyinfo[nused].len = n; remaining -= n; gla += n; nused++; } for (idx = 0; idx < nused; idx++) { hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, copyinfo[idx].len, prot, &cookie); if (hva == NULL) break; copyinfo[idx].hva = hva; copyinfo[idx].cookie = cookie; } if (idx != nused) { vm_copy_teardown(copyinfo, num_copyinfo); return (EFAULT); } else { *fault = 0; return (0); } } void vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) { char *dst; int idx; dst = kaddr; idx = 0; while (len > 0) { bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); len -= copyinfo[idx].len; dst += copyinfo[idx].len; idx++; } } void vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) { const char *src; int idx; src = kaddr; idx = 0; while (len > 0) { bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); len -= copyinfo[idx].len; src += copyinfo[idx].len; idx++; } } /* * Return the amount of in-use and wired memory for the VM. Since * these are global stats, only return the values with for vCPU 0 */ VMM_STAT_DECLARE(VMM_MEM_RESIDENT); VMM_STAT_DECLARE(VMM_MEM_WIRED); static void vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) { if (vcpu->vcpuid == 0) { vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * vmspace_resident_count(vcpu->vm->vmspace)); } } static void vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) { if (vcpu->vcpuid == 0) { vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); } } VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); #ifdef BHYVE_SNAPSHOT static int vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) { uint64_t tsc, now; int ret; struct vcpu *vcpu; uint16_t i, maxcpus; now = rdtsc(); maxcpus = vm_get_maxcpus(vm); for (i = 0; i < maxcpus; i++) { vcpu = vm->vcpu[i]; if (vcpu == NULL) continue; SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); /* * Save the absolute TSC value by adding now to tsc_offset. * * It will be turned turned back into an actual offset when the * TSC restore function is called */ tsc = now + vcpu->tsc_offset; SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); if (meta->op == VM_SNAPSHOT_RESTORE) vcpu->tsc_offset = tsc; } done: return (ret); } static int vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) { int ret; ret = vm_snapshot_vcpus(vm, meta); if (ret != 0) goto done; SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); done: return (ret); } static int vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) { int error; struct vcpu *vcpu; uint16_t i, maxcpus; error = 0; maxcpus = vm_get_maxcpus(vm); for (i = 0; i < maxcpus; i++) { vcpu = vm->vcpu[i]; if (vcpu == NULL) continue; error = vmmops_vcpu_snapshot(vcpu->cookie, meta); if (error != 0) { printf("%s: failed to snapshot vmcs/vmcb data for " "vCPU: %d; error: %d\n", __func__, i, error); goto done; } } done: return (error); } /* * Save kernel-side structures to user-space for snapshotting. */ int vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) { int ret = 0; switch (meta->dev_req) { case STRUCT_VMCX: ret = vm_snapshot_vcpu(vm, meta); break; case STRUCT_VM: ret = vm_snapshot_vm(vm, meta); break; case STRUCT_VIOAPIC: ret = vioapic_snapshot(vm_ioapic(vm), meta); break; case STRUCT_VLAPIC: ret = vlapic_snapshot(vm, meta); break; case STRUCT_VHPET: ret = vhpet_snapshot(vm_hpet(vm), meta); break; case STRUCT_VATPIC: ret = vatpic_snapshot(vm_atpic(vm), meta); break; case STRUCT_VATPIT: ret = vatpit_snapshot(vm_atpit(vm), meta); break; case STRUCT_VPMTMR: ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); break; case STRUCT_VRTC: ret = vrtc_snapshot(vm_rtc(vm), meta); break; default: printf("%s: failed to find the requested type %#x\n", __func__, meta->dev_req); ret = (EINVAL); } return (ret); } void vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) { vcpu->tsc_offset = offset; } int vm_restore_time(struct vm *vm) { int error; uint64_t now; struct vcpu *vcpu; uint16_t i, maxcpus; now = rdtsc(); error = vhpet_restore_time(vm_hpet(vm)); if (error) return (error); maxcpus = vm_get_maxcpus(vm); for (i = 0; i < maxcpus; i++) { vcpu = vm->vcpu[i]; if (vcpu == NULL) continue; error = vmmops_restore_tsc(vcpu->cookie, vcpu->tsc_offset - now); if (error) return (error); } return (0); } #endif