/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_lapic.h" #include "vmm_stat.h" #include "vmm_ktr.h" #include "vmm_ioport.h" #include "vatpic.h" #include "vlapic.h" #include "vlapic_priv.h" #include "x86.h" #include "vmcb.h" #include "svm.h" #include "svm_softc.h" #include "svm_msr.h" #include "npt.h" SYSCTL_DECL(_hw_vmm); SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW, NULL, NULL); /* * SVM CPUID function 0x8000_000A, edx bit decoding. */ #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ VMCB_CACHE_IOPM | \ VMCB_CACHE_I | \ VMCB_CACHE_TPR | \ VMCB_CACHE_CR2 | \ VMCB_CACHE_CR | \ VMCB_CACHE_DR | \ VMCB_CACHE_DT | \ VMCB_CACHE_SEG | \ VMCB_CACHE_NP) static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 0, NULL); static MALLOC_DEFINE(M_SVM, "svm", "svm"); static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); /* Per-CPU context area. */ extern struct pcpu __pcpu[]; static uint32_t svm_feature = ~0U; /* AMD SVM features. */ SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0, "SVM features advertised by CPUID.8000000AH:EDX"); static int disable_npf_assist; SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN, &disable_npf_assist, 0, NULL); /* Maximum ASIDs supported by the processor */ static uint32_t nasid; SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0, "Number of ASIDs supported by this processor"); /* Current ASID generation for each host cpu */ static struct asid asid[MAXCPU]; /* * SVM host state saved area of size 4KB for each core. */ static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); static __inline int flush_by_asid(void) { return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); } static __inline int decode_assist(void) { return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST); } static void svm_disable(void *arg __unused) { uint64_t efer; efer = rdmsr(MSR_EFER); efer &= ~EFER_SVM; wrmsr(MSR_EFER, efer); } /* * Disable SVM on all CPUs. */ static int svm_cleanup(void) { smp_rendezvous(NULL, svm_disable, NULL, NULL); return (0); } /* * Verify that all the features required by bhyve are available. */ static int check_svm_features(void) { u_int regs[4]; /* CPUID Fn8000_000A is for SVM */ do_cpuid(0x8000000A, regs); svm_feature &= regs[3]; /* * The number of ASIDs can be configured to be less than what is * supported by the hardware but not more. */ if (nasid == 0 || nasid > regs[1]) nasid = regs[1]; KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); /* bhyve requires the Nested Paging feature */ if (!(svm_feature & AMD_CPUID_SVM_NP)) { printf("SVM: Nested Paging feature not available.\n"); return (ENXIO); } /* bhyve requires the NRIP Save feature */ if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) { printf("SVM: NRIP Save feature not available.\n"); return (ENXIO); } return (0); } static void svm_enable(void *arg __unused) { uint64_t efer; efer = rdmsr(MSR_EFER); efer |= EFER_SVM; wrmsr(MSR_EFER, efer); wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu])); } /* * Return 1 if SVM is enabled on this processor and 0 otherwise. */ static int svm_available(void) { uint64_t msr; /* Section 15.4 Enabling SVM from APM2. */ if ((amd_feature2 & AMDID2_SVM) == 0) { printf("SVM: not available.\n"); return (0); } msr = rdmsr(MSR_VM_CR); if ((msr & VM_CR_SVMDIS) != 0) { printf("SVM: disabled by BIOS.\n"); return (0); } return (1); } static int svm_init(int ipinum) { int error, cpu; if (!svm_available()) return (ENXIO); error = check_svm_features(); if (error) return (error); vmcb_clean &= VMCB_CACHE_DEFAULT; for (cpu = 0; cpu < MAXCPU; cpu++) { /* * Initialize the host ASIDs to their "highest" valid values. * * The next ASID allocation will rollover both 'gen' and 'num' * and start off the sequence at {1,1}. */ asid[cpu].gen = ~0UL; asid[cpu].num = nasid - 1; } svm_msr_init(); svm_npt_init(ipinum); /* Enable SVM on all CPUs */ smp_rendezvous(NULL, svm_enable, NULL, NULL); return (0); } static void svm_restore(void) { svm_enable(NULL); } /* Pentium compatible MSRs */ #define MSR_PENTIUM_START 0 #define MSR_PENTIUM_END 0x1FFF /* AMD 6th generation and Intel compatible MSRs */ #define MSR_AMD6TH_START 0xC0000000UL #define MSR_AMD6TH_END 0xC0001FFFUL /* AMD 7th and 8th generation compatible MSRs */ #define MSR_AMD7TH_START 0xC0010000UL #define MSR_AMD7TH_END 0xC0011FFFUL /* * Get the index and bit position for a MSR in permission bitmap. * Two bits are used for each MSR: lower bit for read and higher bit for write. */ static int svm_msr_index(uint64_t msr, int *index, int *bit) { uint32_t base, off; *index = -1; *bit = (msr % 4) * 2; base = 0; if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { *index = msr / 4; return (0); } base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { off = (msr - MSR_AMD6TH_START); *index = (off + base) / 4; return (0); } base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { off = (msr - MSR_AMD7TH_START); *index = (off + base) / 4; return (0); } return (EINVAL); } /* * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. */ static void svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) { int index, bit, error; error = svm_msr_index(msr, &index, &bit); KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr)); KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, ("%s: invalid index %d for msr %#lx", __func__, index, msr)); KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " "msr %#lx", __func__, bit, msr)); if (read) perm_bitmap[index] &= ~(1UL << bit); if (write) perm_bitmap[index] &= ~(2UL << bit); } static void svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) { svm_msr_perm(perm_bitmap, msr, true, true); } static void svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) { svm_msr_perm(perm_bitmap, msr, true, false); } static __inline int svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) { struct vmcb_ctrl *ctrl; KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); ctrl = svm_get_vmcb_ctrl(sc, vcpu); return (ctrl->intercept[idx] & bitmask ? 1 : 0); } static __inline void svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, int enabled) { struct vmcb_ctrl *ctrl; uint32_t oldval; KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); ctrl = svm_get_vmcb_ctrl(sc, vcpu); oldval = ctrl->intercept[idx]; if (enabled) ctrl->intercept[idx] |= bitmask; else ctrl->intercept[idx] &= ~bitmask; if (ctrl->intercept[idx] != oldval) { svm_set_dirty(sc, vcpu, VMCB_CACHE_I); VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); } } static __inline void svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) { svm_set_intercept(sc, vcpu, off, bitmask, 0); } static __inline void svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) { svm_set_intercept(sc, vcpu, off, bitmask, 1); } static void vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, uint64_t msrpm_base_pa, uint64_t np_pml4) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; uint32_t mask; int n; ctrl = svm_get_vmcb_ctrl(sc, vcpu); state = svm_get_vmcb_state(sc, vcpu); ctrl->iopm_base_pa = iopm_base_pa; ctrl->msrpm_base_pa = msrpm_base_pa; /* Enable nested paging */ ctrl->np_enable = 1; ctrl->n_cr3 = np_pml4; /* * Intercept accesses to the control registers that are not shadowed * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. */ for (n = 0; n < 16; n++) { mask = (BIT(n) << 16) | BIT(n); if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); else svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); } /* * Intercept everything when tracing guest exceptions otherwise * just intercept machine check exception. */ if (vcpu_trace_exceptions(sc->vm, vcpu)) { for (n = 0; n < 32; n++) { /* * Skip unimplemented vectors in the exception bitmap. */ if (n == 2 || n == 9) { continue; } svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); } } else { svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); } /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE); svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); /* * From section "Canonicalization and Consistency Checks" in APMv2 * the VMRUN intercept bit must be set to pass the consistency check. */ svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); /* * The ASID will be set to a non-zero value just before VMRUN. */ ctrl->asid = 0; /* * Section 15.21.1, Interrupt Masking in EFLAGS * Section 15.21.2, Virtualizing APIC.TPR * * This must be set for %rflag and %cr8 isolation of guest and host. */ ctrl->v_intr_masking = 1; /* Enable Last Branch Record aka LBR for debugging */ ctrl->lbr_virt_en = 1; state->dbgctl = BIT(0); /* EFER_SVM must always be set when the guest is executing */ state->efer = EFER_SVM; /* Set up the PAT to power-on state */ state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | PAT_VALUE(1, PAT_WRITE_THROUGH) | PAT_VALUE(2, PAT_UNCACHED) | PAT_VALUE(3, PAT_UNCACHEABLE) | PAT_VALUE(4, PAT_WRITE_BACK) | PAT_VALUE(5, PAT_WRITE_THROUGH) | PAT_VALUE(6, PAT_UNCACHED) | PAT_VALUE(7, PAT_UNCACHEABLE); /* Set up DR6/7 to power-on state */ state->dr6 = DBREG_DR6_RESERVED1; state->dr7 = DBREG_DR7_RESERVED1; } /* * Initialize a virtual machine. */ static void * svm_vminit(struct vm *vm, pmap_t pmap) { struct svm_softc *svm_sc; struct svm_vcpu *vcpu; vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; int i; svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO); if (((uintptr_t)svm_sc & PAGE_MASK) != 0) panic("malloc of svm_softc not aligned on page boundary"); svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM, M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); if (svm_sc->msr_bitmap == NULL) panic("contigmalloc of SVM MSR bitmap failed"); svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM, M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0); if (svm_sc->iopm_bitmap == NULL) panic("contigmalloc of SVM IO bitmap failed"); svm_sc->vm = vm; svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); /* * Intercept read and write accesses to all MSRs. */ memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); /* * Access to the following MSRs is redirected to the VMCB when the * guest is executing. Therefore it is safe to allow the guest to * read/write these MSRs directly without hypervisor involvement. */ svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); /* * Intercept writes to make sure that the EFER_SVM bit is not cleared. */ svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); /* Intercept access to all I/O ports. */ memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); iopm_pa = vtophys(svm_sc->iopm_bitmap); msrpm_pa = vtophys(svm_sc->msr_bitmap); pml4_pa = svm_sc->nptp; for (i = 0; i < VM_MAXCPU; i++) { vcpu = svm_get_vcpu(svm_sc, i); vcpu->nextrip = ~0; vcpu->lastcpu = NOCPU; vcpu->vmcb_pa = vtophys(&vcpu->vmcb); vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); svm_msr_guest_init(svm_sc, i); } return (svm_sc); } /* * Collateral for a generic SVM VM-exit. */ static void vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) { vme->exitcode = VM_EXITCODE_SVM; vme->u.svm.exitcode = code; vme->u.svm.exitinfo1 = info1; vme->u.svm.exitinfo2 = info2; } static int svm_cpl(struct vmcb_state *state) { /* * From APMv2: * "Retrieve the CPL from the CPL field in the VMCB, not * from any segment DPL" */ return (state->cpl); } static enum vm_cpu_mode svm_vcpu_mode(struct vmcb *vmcb) { struct vmcb_segment seg; struct vmcb_state *state; int error; state = &vmcb->state; if (state->efer & EFER_LMA) { error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__, error)); /* * Section 4.8.1 for APM2, check if Code Segment has * Long attribute set in descriptor. */ if (seg.attrib & VMCB_CS_ATTRIB_L) return (CPU_MODE_64BIT); else return (CPU_MODE_COMPATIBILITY); } else if (state->cr0 & CR0_PE) { return (CPU_MODE_PROTECTED); } else { return (CPU_MODE_REAL); } } static enum vm_paging_mode svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) { if ((cr0 & CR0_PG) == 0) return (PAGING_MODE_FLAT); if ((cr4 & CR4_PAE) == 0) return (PAGING_MODE_32); if (efer & EFER_LME) return (PAGING_MODE_64); else return (PAGING_MODE_PAE); } /* * ins/outs utility routines */ static uint64_t svm_inout_str_index(struct svm_regctx *regs, int in) { uint64_t val; val = in ? regs->sctx_rdi : regs->sctx_rsi; return (val); } static uint64_t svm_inout_str_count(struct svm_regctx *regs, int rep) { uint64_t val; val = rep ? regs->sctx_rcx : 1; return (val); } static void svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, int in, struct vm_inout_str *vis) { int error, s; if (in) { vis->seg_name = VM_REG_GUEST_ES; } else { /* The segment field has standard encoding */ s = (info1 >> 10) & 0x7; vis->seg_name = vm_segment_name(s); } error = vmcb_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); } static int svm_inout_str_addrsize(uint64_t info1) { uint32_t size; size = (info1 >> 7) & 0x7; switch (size) { case 1: return (2); /* 16 bit */ case 2: return (4); /* 32 bit */ case 4: return (8); /* 64 bit */ default: panic("%s: invalid size encoding %d", __func__, size); } } static void svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) { struct vmcb_state *state; state = &vmcb->state; paging->cr3 = state->cr3; paging->cpl = svm_cpl(state); paging->cpu_mode = svm_vcpu_mode(vmcb); paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, state->efer); } #define UNHANDLED 0 /* * Handle guest I/O intercept. */ static int svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; struct svm_regctx *regs; struct vm_inout_str *vis; uint64_t info1; int inout_string; state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); regs = svm_get_guest_regctx(svm_sc, vcpu); info1 = ctrl->exitinfo1; inout_string = info1 & BIT(2) ? 1 : 0; /* * The effective segment number in EXITINFO1[12:10] is populated * only if the processor has the DecodeAssist capability. * * XXX this is not specified explicitly in APMv2 but can be verified * empirically. */ if (inout_string && !decode_assist()) return (UNHANDLED); vmexit->exitcode = VM_EXITCODE_INOUT; vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; vmexit->u.inout.string = inout_string; vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; vmexit->u.inout.bytes = (info1 >> 4) & 0x7; vmexit->u.inout.port = (uint16_t)(info1 >> 16); vmexit->u.inout.eax = (uint32_t)(state->rax); if (inout_string) { vmexit->exitcode = VM_EXITCODE_INOUT_STR; vis = &vmexit->u.inout_str; svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); vis->rflags = state->rflags; vis->cr0 = state->cr0; vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); vis->addrsize = svm_inout_str_addrsize(info1); svm_inout_str_seginfo(svm_sc, vcpu, info1, vmexit->u.inout.in, vis); } return (UNHANDLED); } static int npf_fault_type(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_W) return (VM_PROT_WRITE); else if (exitinfo1 & VMCB_NPF_INFO1_ID) return (VM_PROT_EXECUTE); else return (VM_PROT_READ); } static bool svm_npf_emul_fault(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_ID) { return (false); } if (exitinfo1 & VMCB_NPF_INFO1_GPT) { return (false); } if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { return (false); } return (true); } static void svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) { struct vm_guest_paging *paging; struct vmcb_segment seg; struct vmcb_ctrl *ctrl; char *inst_bytes; int error, inst_len; ctrl = &vmcb->ctrl; paging = &vmexit->u.inst_emul.paging; vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->u.inst_emul.gpa = gpa; vmexit->u.inst_emul.gla = VIE_INVALID_GLA; svm_paging_info(vmcb, paging); error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg); KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error)); switch(paging->cpu_mode) { case CPU_MODE_REAL: vmexit->u.inst_emul.cs_base = seg.base; vmexit->u.inst_emul.cs_d = 0; break; case CPU_MODE_PROTECTED: case CPU_MODE_COMPATIBILITY: vmexit->u.inst_emul.cs_base = seg.base; /* * Section 4.8.1 of APM2, Default Operand Size or D bit. */ vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ? 1 : 0; break; default: vmexit->u.inst_emul.cs_base = 0; vmexit->u.inst_emul.cs_d = 0; break; } /* * Copy the instruction bytes into 'vie' if available. */ if (decode_assist() && !disable_npf_assist) { inst_len = ctrl->inst_len; inst_bytes = ctrl->inst_bytes; } else { inst_len = 0; inst_bytes = NULL; } vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len); } #ifdef KTR static const char * intrtype_to_str(int intr_type) { switch (intr_type) { case VMCB_EVENTINJ_TYPE_INTR: return ("hwintr"); case VMCB_EVENTINJ_TYPE_NMI: return ("nmi"); case VMCB_EVENTINJ_TYPE_INTn: return ("swintr"); case VMCB_EVENTINJ_TYPE_EXCEPTION: return ("exception"); default: panic("%s: unknown intr_type %d", __func__, intr_type); } } #endif /* * Inject an event to vcpu as described in section 15.20, "Event injection". */ static void svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, uint32_t error, bool ec_valid) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event already pending %#lx", __func__, ctrl->eventinj)); KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", __func__, vector)); switch (intr_type) { case VMCB_EVENTINJ_TYPE_INTR: case VMCB_EVENTINJ_TYPE_NMI: case VMCB_EVENTINJ_TYPE_INTn: break; case VMCB_EVENTINJ_TYPE_EXCEPTION: if (vector >= 0 && vector <= 31 && vector != 2) break; /* FALLTHROUGH */ default: panic("%s: invalid intr_type/vector: %d/%d", __func__, intr_type, vector); } ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; if (ec_valid) { ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; ctrl->eventinj |= (uint64_t)error << 32; VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", intrtype_to_str(intr_type), vector, error); } else { VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", intrtype_to_str(intr_type), vector); } } static void svm_update_virqinfo(struct svm_softc *sc, int vcpu) { struct vm *vm; struct vlapic *vlapic; struct vmcb_ctrl *ctrl; vm = sc->vm; vlapic = vm_lapic(vm, vcpu); ctrl = svm_get_vmcb_ctrl(sc, vcpu); /* Update %cr8 in the emulated vlapic */ vlapic_set_cr8(vlapic, ctrl->v_tpr); /* Virtual interrupt injection is not used. */ KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid " "v_intr_vector %d", __func__, ctrl->v_intr_vector)); } static void svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) { struct vmcb_ctrl *ctrl; uint64_t intinfo; ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); intinfo = ctrl->exitintinfo; if (!VMCB_EXITINTINFO_VALID(intinfo)) return; /* * From APMv2, Section "Intercepts during IDT interrupt delivery" * * If a #VMEXIT happened during event delivery then record the event * that was being delivered. */ VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); } #ifdef INVARIANTS static __inline int vintr_intercept_enabled(struct svm_softc *sc, int vcpu) { return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR)); } #endif static __inline void enable_intr_window_exiting(struct svm_softc *sc, int vcpu) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); if (ctrl->v_irq && ctrl->v_intr_vector == 0) { KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__)); KASSERT(vintr_intercept_enabled(sc, vcpu), ("%s: vintr intercept should be enabled", __func__)); return; } VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); ctrl->v_irq = 1; ctrl->v_ign_tpr = 1; ctrl->v_intr_vector = 0; svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); } static __inline void disable_intr_window_exiting(struct svm_softc *sc, int vcpu) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); if (!ctrl->v_irq && ctrl->v_intr_vector == 0) { KASSERT(!vintr_intercept_enabled(sc, vcpu), ("%s: vintr intercept should be disabled", __func__)); return; } VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); ctrl->v_irq = 0; ctrl->v_intr_vector = 0; svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); } static int svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val) { struct vmcb_ctrl *ctrl; int oldval, newval; ctrl = svm_get_vmcb_ctrl(sc, vcpu); oldval = ctrl->intr_shadow; newval = val ? 1 : 0; if (newval != oldval) { ctrl->intr_shadow = newval; VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval); } return (0); } static int svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); *val = ctrl->intr_shadow; return (0); } /* * Once an NMI is injected it blocks delivery of further NMIs until the handler * executes an IRET. The IRET intercept is enabled when an NMI is injected to * to track when the vcpu is done handling the NMI. */ static int nmi_blocked(struct svm_softc *sc, int vcpu) { int blocked; blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); return (blocked); } static void enable_nmi_blocking(struct svm_softc *sc, int vcpu) { KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked")); VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled"); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); } static void clear_nmi_blocking(struct svm_softc *sc, int vcpu) { int error; KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked")); VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared"); /* * When the IRET intercept is cleared the vcpu will attempt to execute * the "iret" when it runs next. However, it is possible to inject * another NMI into the vcpu before the "iret" has actually executed. * * For e.g. if the "iret" encounters a #NPF when accessing the stack * it will trap back into the hypervisor. If an NMI is pending for * the vcpu it will be injected into the guest. * * XXX this needs to be fixed */ svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); /* * Set 'intr_shadow' to prevent an NMI from being injected on the * immediate VMRUN. */ error = svm_modify_intr_shadow(sc, vcpu, 1); KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error)); } #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL static int svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu) { struct vm_exit *vme; struct vmcb_state *state; uint64_t changed, lma, oldval; int error; state = svm_get_vmcb_state(sc, vcpu); oldval = state->efer; VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval); newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ changed = oldval ^ newval; if (newval & EFER_MBZ_BITS) goto gpf; /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ if (changed & EFER_LME) { if (state->cr0 & CR0_PG) goto gpf; } /* EFER.LMA = EFER.LME & CR0.PG */ if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) lma = EFER_LMA; else lma = 0; if ((newval & EFER_LMA) != lma) goto gpf; if (newval & EFER_NXE) { if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) goto gpf; } /* * XXX bhyve does not enforce segment limits in 64-bit mode. Until * this is fixed flag guest attempt to set EFER_LMSLE as an error. */ if (newval & EFER_LMSLE) { vme = vm_exitinfo(sc->vm, vcpu); vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0); *retu = true; return (0); } if (newval & EFER_FFXSR) { if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) goto gpf; } if (newval & EFER_TCE) { if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) goto gpf; } error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); KASSERT(error == 0, ("%s: error %d updating efer", __func__, error)); return (0); gpf: vm_inject_gp(sc->vm, vcpu); return (0); } static int emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val, bool *retu) { int error; if (lapic_msr(num)) error = lapic_wrmsr(sc->vm, vcpu, num, val, retu); else if (num == MSR_EFER) error = svm_write_efer(sc, vcpu, val, retu); else error = svm_wrmsr(sc, vcpu, num, val, retu); return (error); } static int emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu) { struct vmcb_state *state; struct svm_regctx *ctx; uint64_t result; int error; if (lapic_msr(num)) error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu); else error = svm_rdmsr(sc, vcpu, num, &result, retu); if (error == 0) { state = svm_get_vmcb_state(sc, vcpu); ctx = svm_get_guest_regctx(sc, vcpu); state->rax = result & 0xffffffff; ctx->sctx_rdx = result >> 32; } return (error); } #ifdef KTR static const char * exit_reason_to_str(uint64_t reason) { static char reasonbuf[32]; switch (reason) { case VMCB_EXIT_INVALID: return ("invalvmcb"); case VMCB_EXIT_SHUTDOWN: return ("shutdown"); case VMCB_EXIT_NPF: return ("nptfault"); case VMCB_EXIT_PAUSE: return ("pause"); case VMCB_EXIT_HLT: return ("hlt"); case VMCB_EXIT_CPUID: return ("cpuid"); case VMCB_EXIT_IO: return ("inout"); case VMCB_EXIT_MC: return ("mchk"); case VMCB_EXIT_INTR: return ("extintr"); case VMCB_EXIT_NMI: return ("nmi"); case VMCB_EXIT_VINTR: return ("vintr"); case VMCB_EXIT_MSR: return ("msr"); case VMCB_EXIT_IRET: return ("iret"); case VMCB_EXIT_MONITOR: return ("monitor"); case VMCB_EXIT_MWAIT: return ("mwait"); default: snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); return (reasonbuf); } } #endif /* KTR */ /* * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs * that are due to instruction intercepts as well as MSR and IOIO intercepts * and exceptions caused by INT3, INTO and BOUND instructions. * * Return 1 if the nRIP is valid and 0 otherwise. */ static int nrip_valid(uint64_t exitcode) { switch (exitcode) { case 0x00 ... 0x0F: /* read of CR0 through CR15 */ case 0x10 ... 0x1F: /* write of CR0 through CR15 */ case 0x20 ... 0x2F: /* read of DR0 through DR15 */ case 0x30 ... 0x3F: /* write of DR0 through DR15 */ case 0x43: /* INT3 */ case 0x44: /* INTO */ case 0x45: /* BOUND */ case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ return (1); default: return (0); } } static int svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb *vmcb; struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct svm_regctx *ctx; uint64_t code, info1, info2, val; uint32_t eax, ecx, edx; int error, errcode_valid, handled, idtvec, reflect; bool retu; ctx = svm_get_guest_regctx(svm_sc, vcpu); vmcb = svm_get_vmcb(svm_sc, vcpu); state = &vmcb->state; ctrl = &vmcb->ctrl; handled = 0; code = ctrl->exitcode; info1 = ctrl->exitinfo1; info2 = ctrl->exitinfo2; vmexit->exitcode = VM_EXITCODE_BOGUS; vmexit->rip = state->rip; vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); /* * #VMEXIT(INVALID) needs to be handled early because the VMCB is * in an inconsistent state and can trigger assertions that would * never happen otherwise. */ if (code == VMCB_EXIT_INVALID) { vm_exit_svm(vmexit, code, info1, info2); return (0); } KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " "injection valid bit is set %#lx", __func__, ctrl->eventinj)); KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)", vmexit->inst_length, code, info1, info2)); svm_update_virqinfo(svm_sc, vcpu); svm_save_intinfo(svm_sc, vcpu); switch (code) { case VMCB_EXIT_IRET: /* * Restart execution at "iret" but with the intercept cleared. */ vmexit->inst_length = 0; clear_nmi_blocking(svm_sc, vcpu); handled = 1; break; case VMCB_EXIT_VINTR: /* interrupt window exiting */ vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); handled = 1; break; case VMCB_EXIT_INTR: /* external interrupt */ vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); handled = 1; break; case VMCB_EXIT_NMI: /* external NMI */ handled = 1; break; case 0x40 ... 0x5F: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); reflect = 1; idtvec = code - 0x40; switch (idtvec) { case IDT_MC: /* * Call the machine check handler by hand. Also don't * reflect the machine check back into the guest. */ reflect = 0; VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler"); __asm __volatile("int $18"); break; case IDT_PF: error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, info2); KASSERT(error == 0, ("%s: error %d updating cr2", __func__, error)); /* fallthru */ case IDT_NP: case IDT_SS: case IDT_GP: case IDT_AC: case IDT_TS: errcode_valid = 1; break; case IDT_DF: errcode_valid = 1; info1 = 0; break; case IDT_BP: case IDT_OF: case IDT_BR: /* * The 'nrip' field is populated for INT3, INTO and * BOUND exceptions and this also implies that * 'inst_length' is non-zero. * * Reset 'inst_length' to zero so the guest %rip at * event injection is identical to what it was when * the exception originally happened. */ VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d " "to zero before injecting exception %d", vmexit->inst_length, idtvec); vmexit->inst_length = 0; /* fallthru */ default: errcode_valid = 0; info1 = 0; break; } KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) " "when reflecting exception %d into guest", vmexit->inst_length, idtvec)); if (reflect) { /* Reflect the exception back into the guest */ VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception " "%d/%#x into the guest", idtvec, (int)info1); error = vm_inject_exception(svm_sc->vm, vcpu, idtvec, errcode_valid, info1, 0); KASSERT(error == 0, ("%s: vm_inject_exception error %d", __func__, error)); } handled = 1; break; case VMCB_EXIT_MSR: /* MSR access. */ eax = state->rax; ecx = ctx->sctx_rcx; edx = ctx->sctx_rdx; retu = false; if (info1) { vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); val = (uint64_t)edx << 32 | eax; VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx", ecx, val); if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) { vmexit->exitcode = VM_EXITCODE_WRMSR; vmexit->u.msr.code = ecx; vmexit->u.msr.wval = val; } else if (!retu) { handled = 1; } else { KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_wrmsr retu with bogus exitcode")); } } else { VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) { vmexit->exitcode = VM_EXITCODE_RDMSR; vmexit->u.msr.code = ecx; } else if (!retu) { handled = 1; } else { KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_rdmsr retu with bogus exitcode")); } } break; case VMCB_EXIT_IO: handled = svm_handle_io(svm_sc, vcpu, vmexit); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); break; case VMCB_EXIT_CPUID: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); handled = x86_emulate_cpuid(svm_sc->vm, vcpu, (uint32_t *)&state->rax, (uint32_t *)&ctx->sctx_rbx, (uint32_t *)&ctx->sctx_rcx, (uint32_t *)&ctx->sctx_rdx); break; case VMCB_EXIT_HLT: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); vmexit->exitcode = VM_EXITCODE_HLT; vmexit->u.hlt.rflags = state->rflags; break; case VMCB_EXIT_PAUSE: vmexit->exitcode = VM_EXITCODE_PAUSE; vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); break; case VMCB_EXIT_NPF: /* EXITINFO2 contains the faulting guest physical address */ if (info1 & VMCB_NPF_INFO1_RSV) { VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " "reserved bits set: info1(%#lx) info2(%#lx)", info1, info2); } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { vmexit->exitcode = VM_EXITCODE_PAGING; vmexit->u.paging.gpa = info2; vmexit->u.paging.fault_type = npf_fault_type(info1); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " "on gpa %#lx/%#lx at rip %#lx", info2, info1, state->rip); } else if (svm_npf_emul_fault(info1)) { svm_handle_inst_emul(vmcb, info2, vmexit); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " "for gpa %#lx/%#lx at rip %#lx", info2, info1, state->rip); } break; case VMCB_EXIT_MONITOR: vmexit->exitcode = VM_EXITCODE_MONITOR; break; case VMCB_EXIT_MWAIT: vmexit->exitcode = VM_EXITCODE_MWAIT; break; default: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); break; } VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d", handled ? "handled" : "unhandled", exit_reason_to_str(code), vmexit->rip, vmexit->inst_length); if (handled) { vmexit->rip += vmexit->inst_length; vmexit->inst_length = 0; state->rip = vmexit->rip; } else { if (vmexit->exitcode == VM_EXITCODE_BOGUS) { /* * If this VM exit was not claimed by anybody then * treat it as a generic SVM exit. */ vm_exit_svm(vmexit, code, info1, info2); } else { /* * The exitcode and collateral have been populated. * The VM exit will be processed further in userland. */ } } return (handled); } static void svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) { uint64_t intinfo; if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) return; KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " "valid: %#lx", __func__, intinfo)); svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), VMCB_EXITINTINFO_VECTOR(intinfo), VMCB_EXITINTINFO_EC(intinfo), VMCB_EXITINTINFO_EC_VALID(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); } /* * Inject event to virtual cpu. */ static void svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; struct svm_vcpu *vcpustate; uint8_t v_tpr; int vector, need_intr_window; int extint_pending; state = svm_get_vmcb_state(sc, vcpu); ctrl = svm_get_vmcb_ctrl(sc, vcpu); vcpustate = svm_get_vcpu(sc, vcpu); need_intr_window = 0; if (vcpustate->nextrip != state->rip) { ctrl->intr_shadow = 0; VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking " "cleared due to rip change: %#lx/%#lx", vcpustate->nextrip, state->rip); } /* * Inject pending events or exceptions for this vcpu. * * An event might be pending because the previous #VMEXIT happened * during event delivery (i.e. ctrl->exitintinfo). * * An event might also be pending because an exception was injected * by the hypervisor (e.g. #PF during instruction emulation). */ svm_inj_intinfo(sc, vcpu); /* NMI event has priority over interrupts. */ if (vm_nmi_pending(sc->vm, vcpu)) { if (nmi_blocked(sc, vcpu)) { /* * Can't inject another NMI if the guest has not * yet executed an "iret" after the last NMI. */ VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " "to NMI-blocking"); } else if (ctrl->intr_shadow) { /* * Can't inject an NMI if the vcpu is in an intr_shadow. */ VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to " "interrupt shadow"); need_intr_window = 1; goto done; } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { /* * If there is already an exception/interrupt pending * then defer the NMI until after that. */ VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " "eventinj %#lx", ctrl->eventinj); /* * Use self-IPI to trigger a VM-exit as soon as * possible after the event injection is completed. * * This works only if the external interrupt exiting * is at a lower priority than the event injection. * * Although not explicitly specified in APMv2 the * relative priorities were verified empirically. */ ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ } else { vm_nmi_clear(sc->vm, vcpu); /* Inject NMI, vector number is not used */ svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, IDT_NMI, 0, false); /* virtual NMI blocking is now in effect */ enable_nmi_blocking(sc, vcpu); VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); } } extint_pending = vm_extint_pending(sc->vm, vcpu); if (!extint_pending) { if (!vlapic_pending_intr(vlapic, &vector)) goto done; KASSERT(vector >= 16 && vector <= 255, ("invalid vector %d from local APIC", vector)); } else { /* Ask the legacy pic for a vector to inject */ vatpic_pending_intr(sc->vm, &vector); KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from INTR", vector)); } /* * If the guest has disabled interrupts or is in an interrupt shadow * then we cannot inject the pending interrupt. */ if ((state->rflags & PSL_I) == 0) { VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " "rflags %#lx", vector, state->rflags); need_intr_window = 1; goto done; } if (ctrl->intr_shadow) { VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " "interrupt shadow", vector); need_intr_window = 1; goto done; } if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " "eventinj %#lx", vector, ctrl->eventinj); need_intr_window = 1; goto done; } svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); if (!extint_pending) { vlapic_intr_accepted(vlapic, vector); } else { vm_extint_clear(sc->vm, vcpu); vatpic_intr_accepted(sc->vm, vector); } /* * Force a VM-exit as soon as the vcpu is ready to accept another * interrupt. This is done because the PIC might have another vector * that it wants to inject. Also, if the APIC has a pending interrupt * that was preempted by the ExtInt then it allows us to inject the * APIC vector as soon as possible. */ need_intr_window = 1; done: /* * The guest can modify the TPR by writing to %CR8. In guest mode * the processor reflects this write to V_TPR without hypervisor * intervention. * * The guest can also modify the TPR by writing to it via the memory * mapped APIC page. In this case, the write will be emulated by the * hypervisor. For this reason V_TPR must be updated before every * VMRUN. */ v_tpr = vlapic_get_cr8(vlapic); KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr)); if (ctrl->v_tpr != v_tpr) { VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x", ctrl->v_tpr, v_tpr); ctrl->v_tpr = v_tpr; svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); } if (need_intr_window) { /* * We use V_IRQ in conjunction with the VINTR intercept to * trap into the hypervisor as soon as a virtual interrupt * can be delivered. * * Since injected events are not subject to intercept checks * we need to ensure that the V_IRQ is not actually going to * be delivered on VM entry. The KASSERT below enforces this. */ KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, ("Bogus intr_window_exiting: eventinj (%#lx), " "intr_shadow (%u), rflags (%#lx)", ctrl->eventinj, ctrl->intr_shadow, state->rflags)); enable_intr_window_exiting(sc, vcpu); } else { disable_intr_window_exiting(sc, vcpu); } } static __inline void restore_host_tss(void) { struct system_segment_descriptor *tss_sd; /* * The TSS descriptor was in use prior to launching the guest so it * has been marked busy. * * 'ltr' requires the descriptor to be marked available so change the * type to "64-bit available TSS". */ tss_sd = PCPU_GET(tss); tss_sd->sd_type = SDT_SYSTSS; ltr(GSEL(GPROC0_SEL, SEL_KPL)); } static void check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu) { struct svm_vcpu *vcpustate; struct vmcb_ctrl *ctrl; long eptgen; bool alloc_asid; KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not " "active on cpu %u", __func__, thiscpu)); vcpustate = svm_get_vcpu(sc, vcpuid); ctrl = svm_get_vmcb_ctrl(sc, vcpuid); /* * The TLB entries associated with the vcpu's ASID are not valid * if either of the following conditions is true: * * 1. The vcpu's ASID generation is different than the host cpu's * ASID generation. This happens when the vcpu migrates to a new * host cpu. It can also happen when the number of vcpus executing * on a host cpu is greater than the number of ASIDs available. * * 2. The pmap generation number is different than the value cached in * the 'vcpustate'. This happens when the host invalidates pages * belonging to the guest. * * asidgen eptgen Action * mismatch mismatch * 0 0 (a) * 0 1 (b1) or (b2) * 1 0 (c) * 1 1 (d) * * (a) There is no mismatch in eptgen or ASID generation and therefore * no further action is needed. * * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is * retained and the TLB entries associated with this ASID * are flushed by VMRUN. * * (b2) If the cpu does not support FlushByAsid then a new ASID is * allocated. * * (c) A new ASID is allocated. * * (d) A new ASID is allocated. */ alloc_asid = false; eptgen = pmap->pm_eptgen; ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; if (vcpustate->asid.gen != asid[thiscpu].gen) { alloc_asid = true; /* (c) and (d) */ } else if (vcpustate->eptgen != eptgen) { if (flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ else alloc_asid = true; /* (b2) */ } else { /* * This is the common case (a). */ KASSERT(!alloc_asid, ("ASID allocation not necessary")); KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); } if (alloc_asid) { if (++asid[thiscpu].num >= nasid) { asid[thiscpu].num = 1; if (++asid[thiscpu].gen == 0) asid[thiscpu].gen = 1; /* * If this cpu does not support "flush-by-asid" * then flush the entire TLB on a generation * bump. Subsequent ASID allocation in this * generation can be done without a TLB flush. */ if (!flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; } vcpustate->asid.gen = asid[thiscpu].gen; vcpustate->asid.num = asid[thiscpu].num; ctrl->asid = vcpustate->asid.num; svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); /* * If this cpu supports "flush-by-asid" then the TLB * was not flushed after the generation bump. The TLB * is flushed selectively after every new ASID allocation. */ if (flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; } vcpustate->eptgen = eptgen; KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); KASSERT(ctrl->asid == vcpustate->asid.num, ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); } static __inline void disable_gintr(void) { __asm __volatile("clgi"); } static __inline void enable_gintr(void) { __asm __volatile("stgi"); } static __inline void svm_dr_enter_guest(struct svm_regctx *gctx) { /* Save host control debug registers. */ gctx->host_dr7 = rdr7(); gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); /* * Disable debugging in DR7 and DEBUGCTL to avoid triggering * exceptions in the host based on the guest DRx values. The * guest DR6, DR7, and DEBUGCTL are saved/restored in the * VMCB. */ load_dr7(0); wrmsr(MSR_DEBUGCTLMSR, 0); /* Save host debug registers. */ gctx->host_dr0 = rdr0(); gctx->host_dr1 = rdr1(); gctx->host_dr2 = rdr2(); gctx->host_dr3 = rdr3(); gctx->host_dr6 = rdr6(); /* Restore guest debug registers. */ load_dr0(gctx->sctx_dr0); load_dr1(gctx->sctx_dr1); load_dr2(gctx->sctx_dr2); load_dr3(gctx->sctx_dr3); } static __inline void svm_dr_leave_guest(struct svm_regctx *gctx) { /* Save guest debug registers. */ gctx->sctx_dr0 = rdr0(); gctx->sctx_dr1 = rdr1(); gctx->sctx_dr2 = rdr2(); gctx->sctx_dr3 = rdr3(); /* * Restore host debug registers. Restore DR7 and DEBUGCTL * last. */ load_dr0(gctx->host_dr0); load_dr1(gctx->host_dr1); load_dr2(gctx->host_dr2); load_dr3(gctx->host_dr3); load_dr6(gctx->host_dr6); wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); load_dr7(gctx->host_dr7); } /* * Start vcpu with specified RIP. */ static int svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo) { struct svm_regctx *gctx; struct svm_softc *svm_sc; struct svm_vcpu *vcpustate; struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct vm_exit *vmexit; struct vlapic *vlapic; struct vm *vm; uint64_t vmcb_pa; int handled; uint16_t ldt_sel; svm_sc = arg; vm = svm_sc->vm; vcpustate = svm_get_vcpu(svm_sc, vcpu); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); vmexit = vm_exitinfo(vm, vcpu); vlapic = vm_lapic(vm, vcpu); gctx = svm_get_guest_regctx(svm_sc, vcpu); vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; if (vcpustate->lastcpu != curcpu) { /* * Force new ASID allocation by invalidating the generation. */ vcpustate->asid.gen = 0; /* * Invalidate the VMCB state cache by marking all fields dirty. */ svm_set_dirty(svm_sc, vcpu, 0xffffffff); /* * XXX * Setting 'vcpustate->lastcpu' here is bit premature because * we may return from this function without actually executing * the VMRUN instruction. This could happen if a rendezvous * or an AST is pending on the first time through the loop. * * This works for now but any new side-effects of vcpu * migration should take this case into account. */ vcpustate->lastcpu = curcpu; vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); } svm_msr_guest_enter(svm_sc, vcpu); /* Update Guest RIP */ state->rip = rip; do { /* * Disable global interrupts to guarantee atomicity during * loading of guest state. This includes not only the state * loaded by the "vmrun" instruction but also software state * maintained by the hypervisor: suspended and rendezvous * state, NPT generation number, vlapic interrupts etc. */ disable_gintr(); if (vcpu_suspended(evinfo)) { enable_gintr(); vm_exit_suspended(vm, vcpu, state->rip); break; } if (vcpu_rendezvous_pending(evinfo)) { enable_gintr(); vm_exit_rendezvous(vm, vcpu, state->rip); break; } if (vcpu_reqidle(evinfo)) { enable_gintr(); vm_exit_reqidle(vm, vcpu, state->rip); break; } /* We are asked to give the cpu by scheduler. */ if (vcpu_should_yield(vm, vcpu)) { enable_gintr(); vm_exit_astpending(vm, vcpu, state->rip); break; } if (vcpu_debugged(vm, vcpu)) { enable_gintr(); vm_exit_debug(vm, vcpu, state->rip); break; } /* * #VMEXIT resumes the host with the guest LDTR, so * save the current LDT selector so it can be restored * after an exit. The userspace hypervisor probably * doesn't use a LDT, but save and restore it to be * safe. */ ldt_sel = sldt(); svm_inj_interrupts(svm_sc, vcpu, vlapic); /* Activate the nested pmap on 'curcpu' */ CPU_SET_ATOMIC_ACQ(curcpu, &pmap->pm_active); /* * Check the pmap generation and the ASID generation to * ensure that the vcpu does not use stale TLB mappings. */ check_asid(svm_sc, vcpu, pmap, curcpu); ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; vcpustate->dirty = 0; VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); /* Launch Virtual Machine. */ VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); svm_dr_enter_guest(gctx); svm_launch(vmcb_pa, gctx, &__pcpu[curcpu]); svm_dr_leave_guest(gctx); CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); /* * The host GDTR and IDTR is saved by VMRUN and restored * automatically on #VMEXIT. However, the host TSS needs * to be restored explicitly. */ restore_host_tss(); /* Restore host LDTR. */ lldt(ldt_sel); /* #VMEXIT disables interrupts so re-enable them here. */ enable_gintr(); /* Update 'nextrip' */ vcpustate->nextrip = state->rip; /* Handle #VMEXIT and if required return to user space. */ handled = svm_vmexit(svm_sc, vcpu, vmexit); } while (handled); svm_msr_guest_exit(svm_sc, vcpu); return (0); } static void svm_vmcleanup(void *arg) { struct svm_softc *sc = arg; contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM); contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM); free(sc, M_SVM); } static register_t * swctx_regptr(struct svm_regctx *regctx, int reg) { switch (reg) { case VM_REG_GUEST_RBX: return (®ctx->sctx_rbx); case VM_REG_GUEST_RCX: return (®ctx->sctx_rcx); case VM_REG_GUEST_RDX: return (®ctx->sctx_rdx); case VM_REG_GUEST_RDI: return (®ctx->sctx_rdi); case VM_REG_GUEST_RSI: return (®ctx->sctx_rsi); case VM_REG_GUEST_RBP: return (®ctx->sctx_rbp); case VM_REG_GUEST_R8: return (®ctx->sctx_r8); case VM_REG_GUEST_R9: return (®ctx->sctx_r9); case VM_REG_GUEST_R10: return (®ctx->sctx_r10); case VM_REG_GUEST_R11: return (®ctx->sctx_r11); case VM_REG_GUEST_R12: return (®ctx->sctx_r12); case VM_REG_GUEST_R13: return (®ctx->sctx_r13); case VM_REG_GUEST_R14: return (®ctx->sctx_r14); case VM_REG_GUEST_R15: return (®ctx->sctx_r15); case VM_REG_GUEST_DR0: return (®ctx->sctx_dr0); case VM_REG_GUEST_DR1: return (®ctx->sctx_dr1); case VM_REG_GUEST_DR2: return (®ctx->sctx_dr2); case VM_REG_GUEST_DR3: return (®ctx->sctx_dr3); default: return (NULL); } } static int svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) { struct svm_softc *svm_sc; register_t *reg; svm_sc = arg; if (ident == VM_REG_GUEST_INTR_SHADOW) { return (svm_get_intr_shadow(svm_sc, vcpu, val)); } if (vmcb_read(svm_sc, vcpu, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *val = *reg; return (0); } VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident); return (EINVAL); } static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val) { struct svm_softc *svm_sc; register_t *reg; svm_sc = arg; if (ident == VM_REG_GUEST_INTR_SHADOW) { return (svm_modify_intr_shadow(svm_sc, vcpu, val)); } if (vmcb_write(svm_sc, vcpu, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *reg = val; return (0); } /* * XXX deal with CR3 and invalidate TLB entries tagged with the * vcpu's ASID. This needs to be treated differently depending on * whether 'running' is true/false. */ VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident); return (EINVAL); } static int svm_setcap(void *arg, int vcpu, int type, int val) { struct svm_softc *sc; int error; sc = arg; error = 0; switch (type) { case VM_CAP_HALT_EXIT: svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT, val); break; case VM_CAP_PAUSE_EXIT: svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PAUSE, val); break; case VM_CAP_UNRESTRICTED_GUEST: /* Unrestricted guest execution cannot be disabled in SVM */ if (val == 0) error = EINVAL; break; default: error = ENOENT; break; } return (error); } static int svm_getcap(void *arg, int vcpu, int type, int *retval) { struct svm_softc *sc; int error; sc = arg; error = 0; switch (type) { case VM_CAP_HALT_EXIT: *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT); break; case VM_CAP_PAUSE_EXIT: *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PAUSE); break; case VM_CAP_UNRESTRICTED_GUEST: *retval = 1; /* unrestricted guest is always enabled */ break; default: error = ENOENT; break; } return (error); } static struct vlapic * svm_vlapic_init(void *arg, int vcpuid) { struct svm_softc *svm_sc; struct vlapic *vlapic; svm_sc = arg; vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); vlapic->vm = svm_sc->vm; vlapic->vcpuid = vcpuid; vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; vlapic_init(vlapic); return (vlapic); } static void svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) { vlapic_cleanup(vlapic); free(vlapic, M_SVM_VLAPIC); } struct vmm_ops vmm_ops_amd = { svm_init, svm_cleanup, svm_restore, svm_vminit, svm_vmrun, svm_vmcleanup, svm_getreg, svm_setreg, vmcb_getdesc, vmcb_setdesc, svm_getcap, svm_setcap, svm_npt_alloc, svm_npt_free, svm_vlapic_init, svm_vlapic_cleanup };