/*- * Copyright (c) 2013 Dmitry Chagin * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2003 Peter Wemm * Copyright (c) 2002 Doug Rabson * Copyright (c) 1998-1999 Andrew Gallatin * Copyright (c) 1994-1996 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #define __ELF_WORD_SIZE 64 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_VERSION(linux64, 1); #if BYTE_ORDER == LITTLE_ENDIAN #define SHELLMAGIC 0x2123 /* #! */ #else #define SHELLMAGIC 0x2321 #endif #if defined(DEBUG) SYSCTL_PROC(_compat_linux, OID_AUTO, debug, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, linux_sysctl_debug, "A", "Linux 64 debugging control"); #endif /* * Allow the this functions to use the ldebug() facility * even though they are not syscalls themselves. Map them * to syscall 0. This is slightly less bogus than using * ldebug(sigreturn). */ #define LINUX_SYS_linux_rt_sendsig 0 const char *linux_kplatform; static int linux_szsigcode; static vm_object_t linux_shared_page_obj; static char *linux_shared_page_mapping; extern char _binary_linux_locore_o_start; extern char _binary_linux_locore_o_end; extern struct sysent linux_sysent[LINUX_SYS_MAXSYSCALL]; SET_DECLARE(linux_ioctl_handler_set, struct linux_ioctl_handler); static register_t * linux_copyout_strings(struct image_params *imgp); static int elf_linux_fixup(register_t **stack_base, struct image_params *iparams); static boolean_t linux_trans_osrel(const Elf_Note *note, int32_t *osrel); static void linux_vdso_install(void *param); static void linux_vdso_deinstall(void *param); static void linux_set_syscall_retval(struct thread *td, int error); static int linux_fetch_syscall_args(struct thread *td, struct syscall_args *sa); static void linux_exec_setregs(struct thread *td, struct image_params *imgp, u_long stack); static int linux_vsyscall(struct thread *td); /* * Linux syscalls return negative errno's, we do positive and map them * Reference: * FreeBSD: src/sys/sys/errno.h * Linux: linux-2.6.17.8/include/asm-generic/errno-base.h * linux-2.6.17.8/include/asm-generic/errno.h */ static int bsd_to_linux_errno[ELAST + 1] = { -0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -35, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -11,-115,-114, -88, -89, -90, -91, -92, -93, -94, -95, -96, -97, -98, -99, -100,-101,-102,-103,-104,-105,-106,-107,-108,-109, -110,-111, -40, -36,-112,-113, -39, -11, -87,-122, -116, -66, -6, -6, -6, -6, -6, -37, -38, -9, -6, -6, -43, -42, -75,-125, -84, -95, -16, -74, -72, -67, -71 }; #define LINUX_T_UNKNOWN 255 static int _bsd_to_linux_trapcode[] = { LINUX_T_UNKNOWN, /* 0 */ 6, /* 1 T_PRIVINFLT */ LINUX_T_UNKNOWN, /* 2 */ 3, /* 3 T_BPTFLT */ LINUX_T_UNKNOWN, /* 4 */ LINUX_T_UNKNOWN, /* 5 */ 16, /* 6 T_ARITHTRAP */ 254, /* 7 T_ASTFLT */ LINUX_T_UNKNOWN, /* 8 */ 13, /* 9 T_PROTFLT */ 1, /* 10 T_TRCTRAP */ LINUX_T_UNKNOWN, /* 11 */ 14, /* 12 T_PAGEFLT */ LINUX_T_UNKNOWN, /* 13 */ 17, /* 14 T_ALIGNFLT */ LINUX_T_UNKNOWN, /* 15 */ LINUX_T_UNKNOWN, /* 16 */ LINUX_T_UNKNOWN, /* 17 */ 0, /* 18 T_DIVIDE */ 2, /* 19 T_NMI */ 4, /* 20 T_OFLOW */ 5, /* 21 T_BOUND */ 7, /* 22 T_DNA */ 8, /* 23 T_DOUBLEFLT */ 9, /* 24 T_FPOPFLT */ 10, /* 25 T_TSSFLT */ 11, /* 26 T_SEGNPFLT */ 12, /* 27 T_STKFLT */ 18, /* 28 T_MCHK */ 19, /* 29 T_XMMFLT */ 15 /* 30 T_RESERVED */ }; #define bsd_to_linux_trapcode(code) \ ((code)td_proc; frame = td->td_frame; sa->args[0] = frame->tf_rdi; sa->args[1] = frame->tf_rsi; sa->args[2] = frame->tf_rdx; sa->args[3] = frame->tf_rcx; sa->args[4] = frame->tf_r8; sa->args[5] = frame->tf_r9; sa->code = frame->tf_rax; if (sa->code >= p->p_sysent->sv_size) /* nosys */ sa->callp = &p->p_sysent->sv_table[p->p_sysent->sv_size - 1]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; td->td_retval[0] = 0; return (0); } static void linux_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame = td->td_frame; /* * On Linux only %rcx and %r11 values are not preserved across * the syscall. * So, do not clobber %rdx and %r10 */ td->td_retval[1] = frame->tf_rdx; frame->tf_r10 = frame->tf_rcx; cpu_set_syscall_retval(td, error); /* Restore all registers. */ set_pcb_flags(td->td_pcb, PCB_FULL_IRET); } static int elf_linux_fixup(register_t **stack_base, struct image_params *imgp) { Elf_Auxargs *args; Elf_Addr *base; Elf_Addr *pos; struct ps_strings *arginfo; struct proc *p; int issetugid; p = imgp->proc; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; KASSERT(curthread->td_proc == imgp->proc, ("unsafe elf_linux_fixup(), should be curproc")); base = (Elf64_Addr *)*stack_base; args = (Elf64_Auxargs *)imgp->auxargs; pos = base + (imgp->args->argc + imgp->args->envc + 2); issetugid = p->p_flag & P_SUGID ? 1 : 0; AUXARGS_ENTRY(pos, LINUX_AT_SYSINFO_EHDR, imgp->proc->p_sysent->sv_shared_page_base); AUXARGS_ENTRY(pos, LINUX_AT_HWCAP, cpu_feature); AUXARGS_ENTRY(pos, LINUX_AT_CLKTCK, stclohz); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_UID, imgp->proc->p_ucred->cr_ruid); AUXARGS_ENTRY(pos, AT_EUID, imgp->proc->p_ucred->cr_svuid); AUXARGS_ENTRY(pos, AT_GID, imgp->proc->p_ucred->cr_rgid); AUXARGS_ENTRY(pos, AT_EGID, imgp->proc->p_ucred->cr_svgid); AUXARGS_ENTRY(pos, LINUX_AT_SECURE, issetugid); AUXARGS_ENTRY(pos, LINUX_AT_PLATFORM, PTROUT(linux_platform)); AUXARGS_ENTRY(pos, LINUX_AT_RANDOM, imgp->canary); if (imgp->execpathp != 0) AUXARGS_ENTRY(pos, LINUX_AT_EXECFN, imgp->execpathp); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; base--; suword(base, (uint64_t)imgp->args->argc); *stack_base = (register_t *)base; return (0); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ static register_t * linux_copyout_strings(struct image_params *imgp) { int argc, envc; char **vectp; char *stringp, *destp; register_t *stack_base; struct ps_strings *arginfo; char canary[LINUX_AT_RANDOM_LEN]; size_t execpath_len; struct proc *p; /* * Calculate string base and vector table pointers. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; p = imgp->proc; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; destp = (caddr_t)arginfo - SPARE_USRSPACE - roundup(sizeof(canary), sizeof(char *)) - roundup(execpath_len, sizeof(char *)) - roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); if (execpath_len != 0) { imgp->execpathp = (uintptr_t)arginfo - execpath_len; copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); imgp->canary = (uintptr_t)arginfo - roundup(execpath_len, sizeof(char *)) - roundup(sizeof(canary), sizeof(char *)); copyout(canary, (void *)imgp->canary, sizeof(canary)); /* * If we have a valid auxargs ptr, prepare some room * on the stack. */ if (imgp->auxargs) { /* * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for * lower compatibility. */ imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size : (LINUX_AT_COUNT * 2); /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets,and imgp->auxarg_size is room * for argument of Runtime loader. */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2 + imgp->auxarg_size) * sizeof(char *)); } else { /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets */ vectp = (char **)(destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(char *)); } /* * vectp also becomes our initial stack base */ stack_base = (register_t *)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); /* * Fill in "ps_strings" struct for ps, w, etc. */ suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp); suword(&arginfo->ps_nargvstr, argc); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* a null vector table pointer separates the argp's from the envp's */ suword(vectp++, 0); suword(&arginfo->ps_envstr, (long)(intptr_t)vectp); suword(&arginfo->ps_nenvstr, envc); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { suword(vectp++, (long)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* end of vector table is a null pointer */ suword(vectp, 0); return (stack_base); } /* * Reset registers to default values on exec. */ static void linux_exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *regs = td->td_frame; struct pcb *pcb = td->td_pcb; mtx_lock(&dt_lock); if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); else mtx_unlock(&dt_lock); pcb->pcb_fsbase = 0; pcb->pcb_gsbase = 0; clear_pcb_flags(pcb, PCB_32BIT); pcb->pcb_initial_fpucw = __LINUX_NPXCW__; set_pcb_flags(pcb, PCB_FULL_IRET); bzero((char *)regs, sizeof(struct trapframe)); regs->tf_rip = imgp->entry_addr; regs->tf_rsp = stack; regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T); regs->tf_ss = _udatasel; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _ufssel; regs->tf_gs = _ugssel; regs->tf_flags = TF_HASSEGS; /* * Reset the hardware debug registers if they were in use. * They won't have any meaning for the newly exec'd process. */ if (pcb->pcb_flags & PCB_DBREGS) { pcb->pcb_dr0 = 0; pcb->pcb_dr1 = 0; pcb->pcb_dr2 = 0; pcb->pcb_dr3 = 0; pcb->pcb_dr6 = 0; pcb->pcb_dr7 = 0; if (pcb == curpcb) { /* * Clear the debug registers on the running * CPU, otherwise they will end up affecting * the next process we switch to. */ reset_dbregs(); } clear_pcb_flags(pcb, PCB_DBREGS); } /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } /* * Copied from amd64/amd64/machdep.c * * XXX fpu state need? don't think so */ int linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args) { struct proc *p; struct l_ucontext uc; struct l_sigcontext *context; struct trapframe *regs; unsigned long rflags; int error; ksiginfo_t ksi; regs = td->td_frame; error = copyin((void *)regs->tf_rbx, &uc, sizeof(uc)); if (error != 0) return (error); p = td->td_proc; context = &uc.uc_mcontext; rflags = context->sc_rflags; /* * Don't allow users to change privileged or reserved flags. */ /* * XXX do allow users to change the privileged flag PSL_RF. * The cpu sets PSL_RF in tf_rflags for faults. Debuggers * should sometimes set it there too. tf_rflags is kept in * the signal context during signal handling and there is no * other place to remember it, so the PSL_RF bit may be * corrupted by the signal handler without us knowing. * Corruption of the PSL_RF bit at worst causes one more or * one less debugger trap, so allowing it is fairly harmless. */ #define RFLAG_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) if (!RFLAG_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) { printf("linux_rt_sigreturn: rflags = 0x%lx\n", rflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) if (!CS_SECURE(context->sc_cs)) { printf("linux_rt_sigreturn: cs = 0x%x\n", context->sc_cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_rip; trapsignal(td, &ksi); return (EINVAL); } PROC_LOCK(p); linux_to_bsd_sigset(&uc.uc_sigmask, &td->td_sigmask); SIG_CANTMASK(td->td_sigmask); signotify(td); PROC_UNLOCK(p); regs->tf_rdi = context->sc_rdi; regs->tf_rsi = context->sc_rsi; regs->tf_rdx = context->sc_rdx; regs->tf_rbp = context->sc_rbp; regs->tf_rbx = context->sc_rbx; regs->tf_rcx = context->sc_rcx; regs->tf_rax = context->sc_rax; regs->tf_rip = context->sc_rip; regs->tf_rsp = context->sc_rsp; regs->tf_r8 = context->sc_r8; regs->tf_r9 = context->sc_r9; regs->tf_r10 = context->sc_r10; regs->tf_r11 = context->sc_r11; regs->tf_r12 = context->sc_r12; regs->tf_r13 = context->sc_r13; regs->tf_r14 = context->sc_r14; regs->tf_r15 = context->sc_r15; regs->tf_cs = context->sc_cs; regs->tf_err = context->sc_err; regs->tf_rflags = rflags; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); return (EJUSTRETURN); } /* * copied from amd64/amd64/machdep.c * * Send an interrupt to process. */ static void linux_rt_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct l_rt_sigframe sf, *sfp; struct proc *p; struct thread *td; struct sigacts *psp; caddr_t sp; struct trapframe *regs; int sig, code; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; code = ksi->ksi_code; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_rsp); LINUX_CTR4(rt_sendsig, "%p, %d, %p, %u", catcher, sig, mask, code); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = (caddr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct l_rt_sigframe); } else sp = (caddr_t)regs->tf_rsp - sizeof(struct l_rt_sigframe) - 128; /* Align to 16 bytes. */ sfp = (struct l_rt_sigframe *)((unsigned long)sp & ~0xFul); mtx_unlock(&psp->ps_mtx); /* Translate the signal. */ sig = bsd_to_linux_signal(sig); /* Save user context. */ bzero(&sf, sizeof(sf)); bsd_to_linux_sigset(mask, &sf.sf_sc.uc_sigmask); bsd_to_linux_sigset(mask, &sf.sf_sc.uc_mcontext.sc_mask); sf.sf_sc.uc_stack.ss_sp = PTROUT(td->td_sigstk.ss_sp); sf.sf_sc.uc_stack.ss_size = td->td_sigstk.ss_size; sf.sf_sc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? LINUX_SS_ONSTACK : 0) : LINUX_SS_DISABLE; PROC_UNLOCK(p); sf.sf_sc.uc_mcontext.sc_rdi = regs->tf_rdi; sf.sf_sc.uc_mcontext.sc_rsi = regs->tf_rsi; sf.sf_sc.uc_mcontext.sc_rdx = regs->tf_rdx; sf.sf_sc.uc_mcontext.sc_rbp = regs->tf_rbp; sf.sf_sc.uc_mcontext.sc_rbx = regs->tf_rbx; sf.sf_sc.uc_mcontext.sc_rcx = regs->tf_rcx; sf.sf_sc.uc_mcontext.sc_rax = regs->tf_rax; sf.sf_sc.uc_mcontext.sc_rip = regs->tf_rip; sf.sf_sc.uc_mcontext.sc_rsp = regs->tf_rsp; sf.sf_sc.uc_mcontext.sc_r8 = regs->tf_r8; sf.sf_sc.uc_mcontext.sc_r9 = regs->tf_r9; sf.sf_sc.uc_mcontext.sc_r10 = regs->tf_r10; sf.sf_sc.uc_mcontext.sc_r11 = regs->tf_r11; sf.sf_sc.uc_mcontext.sc_r12 = regs->tf_r12; sf.sf_sc.uc_mcontext.sc_r13 = regs->tf_r13; sf.sf_sc.uc_mcontext.sc_r14 = regs->tf_r14; sf.sf_sc.uc_mcontext.sc_r15 = regs->tf_r15; sf.sf_sc.uc_mcontext.sc_cs = regs->tf_cs; sf.sf_sc.uc_mcontext.sc_rflags = regs->tf_rflags; sf.sf_sc.uc_mcontext.sc_err = regs->tf_err; sf.sf_sc.uc_mcontext.sc_trapno = bsd_to_linux_trapcode(code); sf.sf_sc.uc_mcontext.sc_cr2 = (register_t)ksi->ksi_addr; /* Build the argument list for the signal handler. */ regs->tf_rdi = sig; /* arg 1 in %rdi */ regs->tf_rax = 0; regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */ regs->tf_rdx = (register_t)&sfp->sf_sc; /* arg 3 in %rdx */ sf.sf_handler = catcher; /* Fill in POSIX parts */ ksiginfo_to_lsiginfo(ksi, &sf.sf_si, sig); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0) { #ifdef DEBUG printf("process %ld has trashed its stack\n", (long)p->p_pid); #endif PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_rsp = (long)sfp; regs->tf_rip = linux_rt_sigcode; regs->tf_rflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * If a linux binary is exec'ing something, try this image activator * first. We override standard shell script execution in order to * be able to modify the interpreter path. We only do this if a linux * binary is doing the exec, so we do not create an EXEC module for it. */ static int exec_linux_imgact_try(struct image_params *iparams); static int exec_linux_imgact_try(struct image_params *imgp) { const char *head = (const char *)imgp->image_header; char *rpath; int error = -1, len; /* * The interpreter for shell scripts run from a linux binary needs * to be located in /compat/linux if possible in order to recursively * maintain linux path emulation. */ if (((const short *)head)[0] == SHELLMAGIC) { /* * Run our normal shell image activator. If it succeeds * attempt to use the alternate path for the interpreter. * If an alternate path is found, use our stringspace * to store it. */ if ((error = exec_shell_imgact(imgp)) == 0) { linux_emul_convpath(FIRST_THREAD_IN_PROC(imgp->proc), imgp->interpreter_name, UIO_SYSSPACE, &rpath, 0, AT_FDCWD); if (rpath != NULL) { len = strlen(rpath) + 1; if (len <= MAXSHELLCMDLEN) memcpy(imgp->interpreter_name, rpath, len); free(rpath, M_TEMP); } } } return(error); } #define LINUX_VSYSCALL_START (-10UL << 20) #define LINUX_VSYSCALL_SZ 1024 const unsigned long linux_vsyscall_vector[] = { LINUX_SYS_gettimeofday, LINUX_SYS_linux_time, /* getcpu not implemented */ }; static int linux_vsyscall(struct thread *td) { struct trapframe *frame; uint64_t retqaddr; int code, traced; int error; frame = td->td_frame; /* Check %rip for vsyscall area */ if (__predict_true(frame->tf_rip < LINUX_VSYSCALL_START)) return (EINVAL); if ((frame->tf_rip & (LINUX_VSYSCALL_SZ - 1)) != 0) return (EINVAL); code = (frame->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SZ; if (code >= nitems(linux_vsyscall_vector)) return (EINVAL); /* * vsyscall called as callq *(%rax), so we must * use return address from %rsp and also fixup %rsp */ error = copyin((void *)frame->tf_rsp, &retqaddr, sizeof(retqaddr)); if (error) return (error); frame->tf_rip = retqaddr; frame->tf_rax = linux_vsyscall_vector[code]; frame->tf_rsp += 8; traced = (frame->tf_flags & PSL_T); amd64_syscall(td, traced); return (0); } struct sysentvec elf_linux_sysvec = { .sv_size = LINUX_SYS_MAXSYSCALL, .sv_table = linux_sysent, .sv_mask = 0, .sv_errsize = ELAST + 1, .sv_errtbl = bsd_to_linux_errno, .sv_transtrap = translate_traps, .sv_fixup = elf_linux_fixup, .sv_sendsig = linux_rt_sendsig, .sv_sigcode = &_binary_linux_locore_o_start, .sv_szsigcode = &linux_szsigcode, .sv_name = "Linux ELF64", .sv_coredump = elf64_coredump, .sv_imgact_try = exec_linux_imgact_try, .sv_minsigstksz = LINUX_MINSIGSTKSZ, .sv_pagesize = PAGE_SIZE, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_strings = linux_copyout_strings, .sv_setregs = linux_exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_LINUX | SV_LP64 | SV_SHP, .sv_set_syscall_retval = linux_set_syscall_retval, .sv_fetch_syscall_args = linux_fetch_syscall_args, .sv_syscallnames = NULL, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = linux_schedtail, .sv_thread_detach = linux_thread_detach, .sv_trap = linux_vsyscall, }; static void linux_vdso_install(void *param) { linux_szsigcode = (&_binary_linux_locore_o_end - &_binary_linux_locore_o_start); if (linux_szsigcode > elf_linux_sysvec.sv_shared_page_len) panic("Linux invalid vdso size\n"); __elfN(linux_vdso_fixup)(&elf_linux_sysvec); linux_shared_page_obj = __elfN(linux_shared_page_init) (&linux_shared_page_mapping); __elfN(linux_vdso_reloc)(&elf_linux_sysvec, SHAREDPAGE); bcopy(elf_linux_sysvec.sv_sigcode, linux_shared_page_mapping, linux_szsigcode); elf_linux_sysvec.sv_shared_page_obj = linux_shared_page_obj; linux_kplatform = linux_shared_page_mapping + (linux_platform - (caddr_t)SHAREDPAGE); } SYSINIT(elf_linux_vdso_init, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t)linux_vdso_install, NULL); static void linux_vdso_deinstall(void *param) { __elfN(linux_shared_page_fini)(linux_shared_page_obj); }; SYSUNINIT(elf_linux_vdso_uninit, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)linux_vdso_deinstall, NULL); static char GNULINUX_ABI_VENDOR[] = "GNU"; static int GNULINUX_ABI_DESC = 0; static boolean_t linux_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); desc = (const Elf32_Word *)p; if (desc[0] != GNULINUX_ABI_DESC) return (FALSE); /* * For linux we encode osrel as follows (see linux_mib.c): * VVVMMMIII (version, major, minor), see linux_mib.c. */ *osrel = desc[1] * 1000000 + desc[2] * 1000 + desc[3]; return (TRUE); } static Elf_Brandnote linux64_brandnote = { .hdr.n_namesz = sizeof(GNULINUX_ABI_VENDOR), .hdr.n_descsz = 16, .hdr.n_type = 1, .vendor = GNULINUX_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = linux_trans_osrel }; static Elf64_Brandinfo linux_glibc2brand = { .brand = ELFOSABI_LINUX, .machine = EM_X86_64, .compat_3_brand = "Linux", .emul_path = "/compat/linux", .interp_path = "/lib64/ld-linux-x86-64.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; static Elf64_Brandinfo linux_glibc2brandshort = { .brand = ELFOSABI_LINUX, .machine = EM_X86_64, .compat_3_brand = "Linux", .emul_path = "/compat/linux", .interp_path = "/lib64/ld-linux.so.2", .sysvec = &elf_linux_sysvec, .interp_newpath = NULL, .brand_note = &linux64_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; Elf64_Brandinfo *linux_brandlist[] = { &linux_glibc2brand, &linux_glibc2brandshort, NULL }; static int linux64_elf_modevent(module_t mod, int type, void *data) { Elf64_Brandinfo **brandinfo; int error; struct linux_ioctl_handler **lihp; error = 0; switch(type) { case MOD_LOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_insert_brand_entry(*brandinfo) < 0) error = EINVAL; if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_register_handler(*lihp); LIST_INIT(&futex_list); mtx_init(&futex_mtx, "ftllk64", NULL, MTX_DEF); stclohz = (stathz ? stathz : hz); if (bootverbose) printf("Linux x86-64 ELF exec handler installed\n"); } else printf("cannot insert Linux x86-64 ELF brand handler\n"); break; case MOD_UNLOAD: for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_brand_inuse(*brandinfo)) error = EBUSY; if (error == 0) { for (brandinfo = &linux_brandlist[0]; *brandinfo != NULL; ++brandinfo) if (elf64_remove_brand_entry(*brandinfo) < 0) error = EINVAL; } if (error == 0) { SET_FOREACH(lihp, linux_ioctl_handler_set) linux_ioctl_unregister_handler(*lihp); mtx_destroy(&futex_mtx); if (bootverbose) printf("Linux ELF exec handler removed\n"); } else printf("Could not deinstall ELF interpreter entry\n"); break; default: return (EOPNOTSUPP); } return (error); } static moduledata_t linux64_elf_mod = { "linux64elf", linux64_elf_modevent, 0 }; DECLARE_MODULE_TIED(linux64elf, linux64_elf_mod, SI_SUB_EXEC, SI_ORDER_ANY); MODULE_DEPEND(linux64elf, linux_common, 1, 1, 1); FEATURE(linux64, "Linux 64bit support");