/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _VMM_H_ #define _VMM_H_ #include #include #include struct vcpu; struct vm_snapshot_meta; #ifdef _KERNEL SDT_PROVIDER_DECLARE(vmm); #endif enum vm_suspend_how { VM_SUSPEND_NONE, VM_SUSPEND_RESET, VM_SUSPEND_POWEROFF, VM_SUSPEND_HALT, VM_SUSPEND_TRIPLEFAULT, VM_SUSPEND_LAST }; /* * Identifiers for architecturally defined registers. */ enum vm_reg_name { VM_REG_GUEST_RAX, VM_REG_GUEST_RBX, VM_REG_GUEST_RCX, VM_REG_GUEST_RDX, VM_REG_GUEST_RSI, VM_REG_GUEST_RDI, VM_REG_GUEST_RBP, VM_REG_GUEST_R8, VM_REG_GUEST_R9, VM_REG_GUEST_R10, VM_REG_GUEST_R11, VM_REG_GUEST_R12, VM_REG_GUEST_R13, VM_REG_GUEST_R14, VM_REG_GUEST_R15, VM_REG_GUEST_CR0, VM_REG_GUEST_CR3, VM_REG_GUEST_CR4, VM_REG_GUEST_DR7, VM_REG_GUEST_RSP, VM_REG_GUEST_RIP, VM_REG_GUEST_RFLAGS, VM_REG_GUEST_ES, VM_REG_GUEST_CS, VM_REG_GUEST_SS, VM_REG_GUEST_DS, VM_REG_GUEST_FS, VM_REG_GUEST_GS, VM_REG_GUEST_LDTR, VM_REG_GUEST_TR, VM_REG_GUEST_IDTR, VM_REG_GUEST_GDTR, VM_REG_GUEST_EFER, VM_REG_GUEST_CR2, VM_REG_GUEST_PDPTE0, VM_REG_GUEST_PDPTE1, VM_REG_GUEST_PDPTE2, VM_REG_GUEST_PDPTE3, VM_REG_GUEST_INTR_SHADOW, VM_REG_GUEST_DR0, VM_REG_GUEST_DR1, VM_REG_GUEST_DR2, VM_REG_GUEST_DR3, VM_REG_GUEST_DR6, VM_REG_GUEST_ENTRY_INST_LENGTH, VM_REG_LAST }; enum x2apic_state { X2APIC_DISABLED, X2APIC_ENABLED, X2APIC_STATE_LAST }; #define VM_INTINFO_VECTOR(info) ((info) & 0xff) #define VM_INTINFO_DEL_ERRCODE 0x800 #define VM_INTINFO_RSVD 0x7ffff000 #define VM_INTINFO_VALID 0x80000000 #define VM_INTINFO_TYPE 0x700 #define VM_INTINFO_HWINTR (0 << 8) #define VM_INTINFO_NMI (2 << 8) #define VM_INTINFO_HWEXCEPTION (3 << 8) #define VM_INTINFO_SWINTR (4 << 8) /* * The VM name has to fit into the pathname length constraints of devfs, * governed primarily by SPECNAMELEN. The length is the total number of * characters in the full path, relative to the mount point and not * including any leading '/' characters. * A prefix and a suffix are added to the name specified by the user. * The prefix is usually "vmm/" or "vmm.io/", but can be a few characters * longer for future use. * The suffix is a string that identifies a bootrom image or some similar * image that is attached to the VM. A separator character gets added to * the suffix automatically when generating the full path, so it must be * accounted for, reducing the effective length by 1. * The effective length of a VM name is 229 bytes for FreeBSD 13 and 37 * bytes for FreeBSD 12. A minimum length is set for safety and supports * a SPECNAMELEN as small as 32 on old systems. */ #define VM_MAX_PREFIXLEN 10 #define VM_MAX_SUFFIXLEN 15 #define VM_MIN_NAMELEN 6 #define VM_MAX_NAMELEN \ (SPECNAMELEN - VM_MAX_PREFIXLEN - VM_MAX_SUFFIXLEN - 1) #ifdef _KERNEL CTASSERT(VM_MAX_NAMELEN >= VM_MIN_NAMELEN); struct vm; struct vm_exception; struct seg_desc; struct vm_exit; struct vm_run; struct vhpet; struct vioapic; struct vlapic; struct vmspace; struct vm_object; struct vm_guest_paging; struct pmap; enum snapshot_req; struct vm_eventinfo { cpuset_t *rptr; /* rendezvous cookie */ int *sptr; /* suspend cookie */ int *iptr; /* reqidle cookie */ }; typedef int (*vmm_init_func_t)(int ipinum); typedef int (*vmm_cleanup_func_t)(void); typedef void (*vmm_resume_func_t)(void); typedef void * (*vmi_init_func_t)(struct vm *vm, struct pmap *pmap); typedef int (*vmi_run_func_t)(void *vcpui, register_t rip, struct pmap *pmap, struct vm_eventinfo *info); typedef void (*vmi_cleanup_func_t)(void *vmi); typedef void * (*vmi_vcpu_init_func_t)(void *vmi, struct vcpu *vcpu, int vcpu_id); typedef void (*vmi_vcpu_cleanup_func_t)(void *vcpui); typedef int (*vmi_get_register_t)(void *vcpui, int num, uint64_t *retval); typedef int (*vmi_set_register_t)(void *vcpui, int num, uint64_t val); typedef int (*vmi_get_desc_t)(void *vcpui, int num, struct seg_desc *desc); typedef int (*vmi_set_desc_t)(void *vcpui, int num, struct seg_desc *desc); typedef int (*vmi_get_cap_t)(void *vcpui, int num, int *retval); typedef int (*vmi_set_cap_t)(void *vcpui, int num, int val); typedef struct vmspace * (*vmi_vmspace_alloc)(vm_offset_t min, vm_offset_t max); typedef void (*vmi_vmspace_free)(struct vmspace *vmspace); typedef struct vlapic * (*vmi_vlapic_init)(void *vcpui); typedef void (*vmi_vlapic_cleanup)(struct vlapic *vlapic); typedef int (*vmi_snapshot_vcpu_t)(void *vcpui, struct vm_snapshot_meta *meta); typedef int (*vmi_restore_tsc_t)(void *vcpui, uint64_t now); struct vmm_ops { vmm_init_func_t modinit; /* module wide initialization */ vmm_cleanup_func_t modcleanup; vmm_resume_func_t modresume; vmi_init_func_t init; /* vm-specific initialization */ vmi_run_func_t run; vmi_cleanup_func_t cleanup; vmi_vcpu_init_func_t vcpu_init; vmi_vcpu_cleanup_func_t vcpu_cleanup; vmi_get_register_t getreg; vmi_set_register_t setreg; vmi_get_desc_t getdesc; vmi_set_desc_t setdesc; vmi_get_cap_t getcap; vmi_set_cap_t setcap; vmi_vmspace_alloc vmspace_alloc; vmi_vmspace_free vmspace_free; vmi_vlapic_init vlapic_init; vmi_vlapic_cleanup vlapic_cleanup; /* checkpoint operations */ vmi_snapshot_vcpu_t vcpu_snapshot; vmi_restore_tsc_t restore_tsc; }; extern const struct vmm_ops vmm_ops_intel; extern const struct vmm_ops vmm_ops_amd; extern u_int vm_maxcpu; /* maximum virtual cpus */ int vm_create(const char *name, struct vm **retvm); struct vcpu *vm_alloc_vcpu(struct vm *vm, int vcpuid); void vm_disable_vcpu_creation(struct vm *vm); void vm_slock_vcpus(struct vm *vm); void vm_unlock_vcpus(struct vm *vm); void vm_destroy(struct vm *vm); int vm_reinit(struct vm *vm); const char *vm_name(struct vm *vm); uint16_t vm_get_maxcpus(struct vm *vm); void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus); int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus); /* * APIs that modify the guest memory map require all vcpus to be frozen. */ void vm_slock_memsegs(struct vm *vm); void vm_xlock_memsegs(struct vm *vm); void vm_unlock_memsegs(struct vm *vm); int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off, size_t len, int prot, int flags); int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len); int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem); void vm_free_memseg(struct vm *vm, int ident); int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa); int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len); int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func); int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func); /* * APIs that inspect the guest memory map require only a *single* vcpu to * be frozen. This acts like a read lock on the guest memory map since any * modification requires *all* vcpus to be frozen. */ int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags); int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, struct vm_object **objptr); vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm); void *vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int prot, void **cookie); void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int prot, void **cookie); void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int prot, void **cookie); void vm_gpa_release(void *cookie); bool vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa); int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval); int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val); int vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *ret_desc); int vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc); int vm_run(struct vcpu *vcpu); int vm_suspend(struct vm *vm, enum vm_suspend_how how); int vm_inject_nmi(struct vcpu *vcpu); int vm_nmi_pending(struct vcpu *vcpu); void vm_nmi_clear(struct vcpu *vcpu); int vm_inject_extint(struct vcpu *vcpu); int vm_extint_pending(struct vcpu *vcpu); void vm_extint_clear(struct vcpu *vcpu); int vcpu_vcpuid(struct vcpu *vcpu); struct vm *vcpu_vm(struct vcpu *vcpu); struct vcpu *vm_vcpu(struct vm *vm, int cpu); struct vlapic *vm_lapic(struct vcpu *vcpu); struct vioapic *vm_ioapic(struct vm *vm); struct vhpet *vm_hpet(struct vm *vm); int vm_get_capability(struct vcpu *vcpu, int type, int *val); int vm_set_capability(struct vcpu *vcpu, int type, int val); int vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state); int vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state); int vm_apicid2vcpuid(struct vm *vm, int apicid); int vm_activate_cpu(struct vcpu *vcpu); int vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu); int vm_resume_cpu(struct vm *vm, struct vcpu *vcpu); int vm_restart_instruction(struct vcpu *vcpu); struct vm_exit *vm_exitinfo(struct vcpu *vcpu); cpuset_t *vm_exitinfo_cpuset(struct vcpu *vcpu); void vm_exit_suspended(struct vcpu *vcpu, uint64_t rip); void vm_exit_debug(struct vcpu *vcpu, uint64_t rip); void vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip); void vm_exit_astpending(struct vcpu *vcpu, uint64_t rip); void vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip); int vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta); int vm_restore_time(struct vm *vm); #ifdef _SYS__CPUSET_H_ /* * Rendezvous all vcpus specified in 'dest' and execute 'func(arg)'. * The rendezvous 'func(arg)' is not allowed to do anything that will * cause the thread to be put to sleep. * * The caller cannot hold any locks when initiating the rendezvous. * * The implementation of this API may cause vcpus other than those specified * by 'dest' to be stalled. The caller should not rely on any vcpus making * forward progress when the rendezvous is in progress. */ typedef void (*vm_rendezvous_func_t)(struct vcpu *vcpu, void *arg); int vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, vm_rendezvous_func_t func, void *arg); cpuset_t vm_active_cpus(struct vm *vm); cpuset_t vm_debug_cpus(struct vm *vm); cpuset_t vm_suspended_cpus(struct vm *vm); cpuset_t vm_start_cpus(struct vm *vm, const cpuset_t *tostart); void vm_await_start(struct vm *vm, const cpuset_t *waiting); #endif /* _SYS__CPUSET_H_ */ static __inline int vcpu_rendezvous_pending(struct vcpu *vcpu, struct vm_eventinfo *info) { /* * This check isn't done with atomic operations or under a lock because * there's no need to. If the vcpuid bit is set, the vcpu is part of a * rendezvous and the bit won't be cleared until the vcpu enters the * rendezvous. On rendezvous exit, the cpuset is cleared and the vcpu * will see an empty cpuset. So, the races are harmless. */ return (CPU_ISSET(vcpu_vcpuid(vcpu), info->rptr)); } static __inline int vcpu_suspended(struct vm_eventinfo *info) { return (*info->sptr); } static __inline int vcpu_reqidle(struct vm_eventinfo *info) { return (*info->iptr); } int vcpu_debugged(struct vcpu *vcpu); /* * Return true if device indicated by bus/slot/func is supposed to be a * pci passthrough device. * * Return false otherwise. */ bool vmm_is_pptdev(int bus, int slot, int func); void *vm_iommu_domain(struct vm *vm); enum vcpu_state { VCPU_IDLE, VCPU_FROZEN, VCPU_RUNNING, VCPU_SLEEPING, }; int vcpu_set_state(struct vcpu *vcpu, enum vcpu_state state, bool from_idle); enum vcpu_state vcpu_get_state(struct vcpu *vcpu, int *hostcpu); static int __inline vcpu_is_running(struct vcpu *vcpu, int *hostcpu) { return (vcpu_get_state(vcpu, hostcpu) == VCPU_RUNNING); } #ifdef _SYS_PROC_H_ static int __inline vcpu_should_yield(struct vcpu *vcpu) { struct thread *td; td = curthread; return (td->td_ast != 0 || td->td_owepreempt != 0); } #endif void *vcpu_stats(struct vcpu *vcpu); void vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr); struct vmspace *vm_get_vmspace(struct vm *vm); struct vatpic *vm_atpic(struct vm *vm); struct vatpit *vm_atpit(struct vm *vm); struct vpmtmr *vm_pmtmr(struct vm *vm); struct vrtc *vm_rtc(struct vm *vm); /* * Inject exception 'vector' into the guest vcpu. This function returns 0 on * success and non-zero on failure. * * Wrapper functions like 'vm_inject_gp()' should be preferred to calling * this function directly because they enforce the trap-like or fault-like * behavior of an exception. * * This function should only be called in the context of the thread that is * executing this vcpu. */ int vm_inject_exception(struct vcpu *vcpu, int vector, int err_valid, uint32_t errcode, int restart_instruction); /* * This function is called after a VM-exit that occurred during exception or * interrupt delivery through the IDT. The format of 'intinfo' is described * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2. * * If a VM-exit handler completes the event delivery successfully then it * should call vm_exit_intinfo() to extinguish the pending event. For e.g., * if the task switch emulation is triggered via a task gate then it should * call this function with 'intinfo=0' to indicate that the external event * is not pending anymore. * * Return value is 0 on success and non-zero on failure. */ int vm_exit_intinfo(struct vcpu *vcpu, uint64_t intinfo); /* * This function is called before every VM-entry to retrieve a pending * event that should be injected into the guest. This function combines * nested events into a double or triple fault. * * Returns 0 if there are no events that need to be injected into the guest * and non-zero otherwise. */ int vm_entry_intinfo(struct vcpu *vcpu, uint64_t *info); int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2); /* * Function used to keep track of the guest's TSC offset. The * offset is used by the virutalization extensions to provide a consistent * value for the Time Stamp Counter to the guest. */ void vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset); enum vm_reg_name vm_segment_name(int seg_encoding); struct vm_copyinfo { uint64_t gpa; size_t len; void *hva; void *cookie; }; /* * Set up 'copyinfo[]' to copy to/from guest linear address space starting * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for * a copyin or PROT_WRITE for a copyout. * * retval is_fault Interpretation * 0 0 Success * 0 1 An exception was injected into the guest * EFAULT N/A Unrecoverable error * * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if * the return value is 0. The 'copyinfo[]' resources should be freed by calling * 'vm_copy_teardown()' after the copy is done. */ int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, int num_copyinfo, int *is_fault); void vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo); void vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len); void vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len); int vcpu_trace_exceptions(struct vcpu *vcpu); int vcpu_trap_wbinvd(struct vcpu *vcpu); #endif /* KERNEL */ /* * Identifiers for optional vmm capabilities */ enum vm_cap_type { VM_CAP_HALT_EXIT, VM_CAP_MTRAP_EXIT, VM_CAP_PAUSE_EXIT, VM_CAP_UNRESTRICTED_GUEST, VM_CAP_ENABLE_INVPCID, VM_CAP_BPT_EXIT, VM_CAP_RDPID, VM_CAP_RDTSCP, VM_CAP_IPI_EXIT, VM_CAP_MASK_HWINTR, VM_CAP_MAX }; enum vm_intr_trigger { EDGE_TRIGGER, LEVEL_TRIGGER }; /* * The 'access' field has the format specified in Table 21-2 of the Intel * Architecture Manual vol 3b. * * XXX The contents of the 'access' field are architecturally defined except * bit 16 - Segment Unusable. */ struct seg_desc { uint64_t base; uint32_t limit; uint32_t access; }; #define SEG_DESC_TYPE(access) ((access) & 0x001f) #define SEG_DESC_DPL(access) (((access) >> 5) & 0x3) #define SEG_DESC_PRESENT(access) (((access) & 0x0080) ? 1 : 0) #define SEG_DESC_DEF32(access) (((access) & 0x4000) ? 1 : 0) #define SEG_DESC_GRANULARITY(access) (((access) & 0x8000) ? 1 : 0) #define SEG_DESC_UNUSABLE(access) (((access) & 0x10000) ? 1 : 0) enum vm_cpu_mode { CPU_MODE_REAL, CPU_MODE_PROTECTED, CPU_MODE_COMPATIBILITY, /* IA-32E mode (CS.L = 0) */ CPU_MODE_64BIT, /* IA-32E mode (CS.L = 1) */ }; enum vm_paging_mode { PAGING_MODE_FLAT, PAGING_MODE_32, PAGING_MODE_PAE, PAGING_MODE_64, PAGING_MODE_64_LA57, }; struct vm_guest_paging { uint64_t cr3; int cpl; enum vm_cpu_mode cpu_mode; enum vm_paging_mode paging_mode; }; /* * The data structures 'vie' and 'vie_op' are meant to be opaque to the * consumers of instruction decoding. The only reason why their contents * need to be exposed is because they are part of the 'vm_exit' structure. */ struct vie_op { uint8_t op_byte; /* actual opcode byte */ uint8_t op_type; /* type of operation (e.g. MOV) */ uint16_t op_flags; }; _Static_assert(sizeof(struct vie_op) == 4, "ABI"); _Static_assert(_Alignof(struct vie_op) == 2, "ABI"); #define VIE_INST_SIZE 15 struct vie { uint8_t inst[VIE_INST_SIZE]; /* instruction bytes */ uint8_t num_valid; /* size of the instruction */ /* The following fields are all zeroed upon restart. */ #define vie_startzero num_processed uint8_t num_processed; uint8_t addrsize:4, opsize:4; /* address and operand sizes */ uint8_t rex_w:1, /* REX prefix */ rex_r:1, rex_x:1, rex_b:1, rex_present:1, repz_present:1, /* REP/REPE/REPZ prefix */ repnz_present:1, /* REPNE/REPNZ prefix */ opsize_override:1, /* Operand size override */ addrsize_override:1, /* Address size override */ segment_override:1; /* Segment override */ uint8_t mod:2, /* ModRM byte */ reg:4, rm:4; uint8_t ss:2, /* SIB byte */ vex_present:1, /* VEX prefixed */ vex_l:1, /* L bit */ index:4, /* SIB byte */ base:4; /* SIB byte */ uint8_t disp_bytes; uint8_t imm_bytes; uint8_t scale; uint8_t vex_reg:4, /* vvvv: first source register specifier */ vex_pp:2, /* pp */ _sparebits:2; uint8_t _sparebytes[2]; int base_register; /* VM_REG_GUEST_xyz */ int index_register; /* VM_REG_GUEST_xyz */ int segment_register; /* VM_REG_GUEST_xyz */ int64_t displacement; /* optional addr displacement */ int64_t immediate; /* optional immediate operand */ uint8_t decoded; /* set to 1 if successfully decoded */ uint8_t _sparebyte; struct vie_op op; /* opcode description */ }; _Static_assert(sizeof(struct vie) == 64, "ABI"); _Static_assert(__offsetof(struct vie, disp_bytes) == 22, "ABI"); _Static_assert(__offsetof(struct vie, scale) == 24, "ABI"); _Static_assert(__offsetof(struct vie, base_register) == 28, "ABI"); enum vm_exitcode { VM_EXITCODE_INOUT, VM_EXITCODE_VMX, VM_EXITCODE_BOGUS, VM_EXITCODE_RDMSR, VM_EXITCODE_WRMSR, VM_EXITCODE_HLT, VM_EXITCODE_MTRAP, VM_EXITCODE_PAUSE, VM_EXITCODE_PAGING, VM_EXITCODE_INST_EMUL, VM_EXITCODE_SPINUP_AP, VM_EXITCODE_DEPRECATED1, /* used to be SPINDOWN_CPU */ VM_EXITCODE_RENDEZVOUS, VM_EXITCODE_IOAPIC_EOI, VM_EXITCODE_SUSPENDED, VM_EXITCODE_INOUT_STR, VM_EXITCODE_TASK_SWITCH, VM_EXITCODE_MONITOR, VM_EXITCODE_MWAIT, VM_EXITCODE_SVM, VM_EXITCODE_REQIDLE, VM_EXITCODE_DEBUG, VM_EXITCODE_VMINSN, VM_EXITCODE_BPT, VM_EXITCODE_IPI, VM_EXITCODE_MAX }; struct vm_inout { uint16_t bytes:3; /* 1 or 2 or 4 */ uint16_t in:1; uint16_t string:1; uint16_t rep:1; uint16_t port; uint32_t eax; /* valid for out */ }; struct vm_inout_str { struct vm_inout inout; /* must be the first element */ struct vm_guest_paging paging; uint64_t rflags; uint64_t cr0; uint64_t index; uint64_t count; /* rep=1 (%rcx), rep=0 (1) */ int addrsize; enum vm_reg_name seg_name; struct seg_desc seg_desc; }; enum task_switch_reason { TSR_CALL, TSR_IRET, TSR_JMP, TSR_IDT_GATE, /* task gate in IDT */ }; struct vm_task_switch { uint16_t tsssel; /* new TSS selector */ int ext; /* task switch due to external event */ uint32_t errcode; int errcode_valid; /* push 'errcode' on the new stack */ enum task_switch_reason reason; struct vm_guest_paging paging; }; struct vm_exit { enum vm_exitcode exitcode; int inst_length; /* 0 means unknown */ uint64_t rip; union { struct vm_inout inout; struct vm_inout_str inout_str; struct { uint64_t gpa; int fault_type; } paging; struct { uint64_t gpa; uint64_t gla; uint64_t cs_base; int cs_d; /* CS.D */ struct vm_guest_paging paging; struct vie vie; } inst_emul; /* * VMX specific payload. Used when there is no "better" * exitcode to represent the VM-exit. */ struct { int status; /* vmx inst status */ /* * 'exit_reason' and 'exit_qualification' are valid * only if 'status' is zero. */ uint32_t exit_reason; uint64_t exit_qualification; /* * 'inst_error' and 'inst_type' are valid * only if 'status' is non-zero. */ int inst_type; int inst_error; } vmx; /* * SVM specific payload. */ struct { uint64_t exitcode; uint64_t exitinfo1; uint64_t exitinfo2; } svm; struct { int inst_length; } bpt; struct { uint32_t code; /* ecx value */ uint64_t wval; } msr; struct { int vcpu; uint64_t rip; } spinup_ap; struct { uint64_t rflags; uint64_t intr_status; } hlt; struct { int vector; } ioapic_eoi; struct { enum vm_suspend_how how; } suspended; struct { /* * The destination vCPU mask is saved in vcpu->cpuset * and is copied out to userspace separately to avoid * ABI concerns. */ uint32_t mode; uint8_t vector; } ipi; struct vm_task_switch task_switch; } u; }; /* APIs to inject faults into the guest */ void vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode); static __inline void vm_inject_ud(struct vcpu *vcpu) { vm_inject_fault(vcpu, IDT_UD, 0, 0); } static __inline void vm_inject_gp(struct vcpu *vcpu) { vm_inject_fault(vcpu, IDT_GP, 1, 0); } static __inline void vm_inject_ac(struct vcpu *vcpu, int errcode) { vm_inject_fault(vcpu, IDT_AC, 1, errcode); } static __inline void vm_inject_ss(struct vcpu *vcpu, int errcode) { vm_inject_fault(vcpu, IDT_SS, 1, errcode); } void vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2); #endif /* _VMM_H_ */