/*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD$ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ /* * Page-directory and page-table entries follow this format, with a few * of the fields not present here and there, depending on a lot of things. */ /* ---- Intel Nomenclature ---- */ #define X86_PG_V 0x001 /* P Valid */ #define X86_PG_RW 0x002 /* R/W Read/Write */ #define X86_PG_U 0x004 /* U/S User/Supervisor */ #define X86_PG_NC_PWT 0x008 /* PWT Write through */ #define X86_PG_NC_PCD 0x010 /* PCD Cache disable */ #define X86_PG_A 0x020 /* A Accessed */ #define X86_PG_M 0x040 /* D Dirty */ #define X86_PG_PS 0x080 /* PS Page size (0=4k,1=2M) */ #define X86_PG_PTE_PAT 0x080 /* PAT PAT index */ #define X86_PG_G 0x100 /* G Global */ #define X86_PG_AVAIL1 0x200 /* / Available for system */ #define X86_PG_AVAIL2 0x400 /* < programmers use */ #define X86_PG_AVAIL3 0x800 /* \ */ #define X86_PG_PDE_PAT 0x1000 /* PAT PAT index */ #define X86_PG_NX (1ul<<63) /* No-execute */ #define X86_PG_AVAIL(x) (1ul << (x)) /* Page level cache control fields used to determine the PAT type */ #define X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) #define X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD) /* * Intel extended page table (EPT) bit definitions. */ #define EPT_PG_READ 0x001 /* R Read */ #define EPT_PG_WRITE 0x002 /* W Write */ #define EPT_PG_EXECUTE 0x004 /* X Execute */ #define EPT_PG_IGNORE_PAT 0x040 /* IPAT Ignore PAT */ #define EPT_PG_PS 0x080 /* PS Page size */ #define EPT_PG_A 0x100 /* A Accessed */ #define EPT_PG_M 0x200 /* D Dirty */ #define EPT_PG_MEMORY_TYPE(x) ((x) << 3) /* MT Memory Type */ /* * Define the PG_xx macros in terms of the bits on x86 PTEs. */ #define PG_V X86_PG_V #define PG_RW X86_PG_RW #define PG_U X86_PG_U #define PG_NC_PWT X86_PG_NC_PWT #define PG_NC_PCD X86_PG_NC_PCD #define PG_A X86_PG_A #define PG_M X86_PG_M #define PG_PS X86_PG_PS #define PG_PTE_PAT X86_PG_PTE_PAT #define PG_G X86_PG_G #define PG_AVAIL1 X86_PG_AVAIL1 #define PG_AVAIL2 X86_PG_AVAIL2 #define PG_AVAIL3 X86_PG_AVAIL3 #define PG_PDE_PAT X86_PG_PDE_PAT #define PG_NX X86_PG_NX #define PG_PDE_CACHE X86_PG_PDE_CACHE #define PG_PTE_CACHE X86_PG_PTE_CACHE /* Our various interpretations of the above */ #define PG_W X86_PG_AVAIL3 /* "Wired" pseudoflag */ #define PG_MANAGED X86_PG_AVAIL2 #define EPT_PG_EMUL_V X86_PG_AVAIL(52) #define EPT_PG_EMUL_RW X86_PG_AVAIL(53) #define PG_FRAME (0x000ffffffffff000ul) #define PG_PS_FRAME (0x000fffffffe00000ul) /* * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB * (PTE) page mappings have identical settings for the following fields: */ #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \ PG_M | PG_A | PG_U | PG_RW | PG_V) /* * Page Protection Exception bits */ #define PGEX_P 0x01 /* Protection violation vs. not present */ #define PGEX_W 0x02 /* during a Write cycle */ #define PGEX_U 0x04 /* access from User mode (UPL) */ #define PGEX_RSV 0x08 /* reserved PTE field is non-zero */ #define PGEX_I 0x10 /* during an instruction fetch */ /* * undef the PG_xx macros that define bits in the regular x86 PTEs that * have a different position in nested PTEs. This is done when compiling * code that needs to be aware of the differences between regular x86 and * nested PTEs. * * The appropriate bitmask will be calculated at runtime based on the pmap * type. */ #ifdef AMD64_NPT_AWARE #undef PG_AVAIL1 /* X86_PG_AVAIL1 aliases with EPT_PG_M */ #undef PG_G #undef PG_A #undef PG_M #undef PG_PDE_PAT #undef PG_PDE_CACHE #undef PG_PTE_PAT #undef PG_PTE_CACHE #undef PG_RW #undef PG_V #endif /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KVADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l4, l3, l2, l1) ( \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) /* * Number of kernel PML4 slots. Can be anywhere from 1 to 64 or so, * but setting it larger than NDMPML4E makes no sense. * * Each slot provides .5 TB of kernel virtual space. */ #define NKPML4E 4 #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ /* * NDMPML4E is the maximum number of PML4 entries that will be * used to implement the direct map. It must be a power of two, * and should generally exceed NKPML4E. The maximum possible * value is 64; using 128 will make the direct map intrude into * the recursive page table map. */ #define NDMPML4E 8 /* * These values control the layout of virtual memory. The starting address * of the direct map, which is controlled by DMPML4I, must be a multiple of * its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.) * * Note: KPML4I is the index of the (single) level 4 page that maps * the KVA that holds KERNBASE, while KPML4BASE is the index of the * first level 4 page that maps VM_MIN_KERNEL_ADDRESS. If NKPML4E * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to * KERNBASE. * * (KPML4I combines with KPDPI to choose where KERNBASE starts. * Or, in other words, KPML4I provides bits 39..47 of KERNBASE, * and KPDPI provides bits 30..38.) */ #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ #define KPML4BASE (NPML4EPG-NKPML4E) /* KVM at highest addresses */ #define DMPML4I rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */ #define KPML4I (NPML4EPG-1) #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #define PMAP_PCID_NONE 0xffffffff #define PMAP_PCID_KERN 0 #define PMAP_PCID_OVERMAX 0x1000 #ifndef LOCORE #include #include #include #include #include typedef u_int64_t pd_entry_t; typedef u_int64_t pt_entry_t; typedef u_int64_t pdp_entry_t; typedef u_int64_t pml4_entry_t; /* * Address of current address space page table maps and directories. */ #ifdef _KERNEL #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define PTmap ((pt_entry_t *)(addr_PTmap)) #define PDmap ((pd_entry_t *)(addr_PDmap)) #define PDPmap ((pd_entry_t *)(addr_PDPmap)) #define PML4map ((pd_entry_t *)(addr_PML4map)) #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) extern int nkpt; /* Initial number of kernel page tables */ extern u_int64_t KPDPphys; /* physical address of kernel level 3 */ extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ /* * virtual address to page table entry and * to physical address. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ pt_entry_t *vtopte(vm_offset_t); #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte) #define pte_load_clear(ptep) atomic_swap_long(ptep, 0) #define pte_store(ptep, pte) do { \ *(u_long *)(ptep) = (u_long)(pte); \ } while (0) #define pte_clear(ptep) pte_store(ptep, 0) #define pde_store(pdep, pde) pte_store(pdep, pde) extern pt_entry_t pg_nx; #endif /* _KERNEL */ /* * Pmap stuff */ struct pv_entry; struct pv_chunk; /* * Locks * (p) PV list lock */ struct md_page { TAILQ_HEAD(, pv_entry) pv_list; /* (p) */ int pv_gen; /* (p) */ int pat_mode; }; enum pmap_type { PT_X86, /* regular x86 page tables */ PT_EPT, /* Intel's nested page tables */ PT_RVI, /* AMD's nested page tables */ }; struct pmap_pcids { uint32_t pm_pcid; uint32_t pm_gen; }; /* * The kernel virtual address (KVA) of the level 4 page table page is always * within the direct map (DMAP) region. */ struct pmap { struct mtx pm_mtx; pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ uint64_t pm_cr3; TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ cpuset_t pm_active; /* active on cpus */ enum pmap_type pm_type; /* regular or nested tables */ struct pmap_statistics pm_stats; /* pmap statistics */ struct vm_radix pm_root; /* spare page table pages */ long pm_eptgen; /* EPT pmap generation id */ int pm_flags; struct pmap_pcids pm_pcids[MAXCPU]; }; /* flags */ #define PMAP_NESTED_IPIMASK 0xff #define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */ #define PMAP_EMULATE_AD_BITS (1 << 9) /* needs A/D bits emulation */ #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10) /* execute only mappings ok */ typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_ASSERT(pmap, type) \ mtx_assert(&(pmap)->pm_mtx, (type)) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ NULL, MTX_DEF | MTX_DUPOK) #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) int pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags); int pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype); #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_list. */ typedef struct pv_entry { vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_next; } *pv_entry_t; /* * pv_entries are allocated in chunks per-process. This avoids the * need to track per-pmap assignments. */ #define _NPCM 3 #define _NPCPV 168 struct pv_chunk { pmap_t pc_pmap; TAILQ_ENTRY(pv_chunk) pc_list; uint64_t pc_map[_NPCM]; /* bitmap; 1 = free */ TAILQ_ENTRY(pv_chunk) pc_lru; struct pv_entry pc_pventry[_NPCPV]; }; #ifdef _KERNEL extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t phys_avail[]; extern vm_paddr_t dump_avail[]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; extern vm_paddr_t dmaplimit; #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) #define pmap_page_is_write_mapped(m) (((m)->aflags & PGA_WRITEABLE) != 0) #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) struct thread; void pmap_activate_sw(struct thread *); void pmap_bootstrap(vm_paddr_t *); int pmap_change_attr(vm_offset_t, vm_size_t, int); void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate); void pmap_init_pat(void); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void *pmap_kenter_temporary(vm_paddr_t pa, int i); vm_paddr_t pmap_kextract(vm_offset_t); void pmap_kremove(vm_offset_t); void *pmap_mapbios(vm_paddr_t, vm_size_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); boolean_t pmap_page_is_mapped(vm_page_t m); void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); void pmap_unmapdev(vm_offset_t, vm_size_t); void pmap_invalidate_page(pmap_t, vm_offset_t); void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); void pmap_invalidate_all(pmap_t); void pmap_invalidate_cache(void); void pmap_invalidate_cache_pages(vm_page_t *pages, int count); void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force); void pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num); boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t); void pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t); #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */