/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. */ #ifdef __i386__ #include #else /* !__i386__ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include /* * Define the PG_xx macros in terms of the bits on x86 PTEs. */ #define PG_V X86_PG_V #define PG_RW X86_PG_RW #define PG_U X86_PG_U #define PG_NC_PWT X86_PG_NC_PWT #define PG_NC_PCD X86_PG_NC_PCD #define PG_A X86_PG_A #define PG_M X86_PG_M #define PG_PS X86_PG_PS #define PG_PTE_PAT X86_PG_PTE_PAT #define PG_G X86_PG_G #define PG_AVAIL1 X86_PG_AVAIL1 #define PG_AVAIL2 X86_PG_AVAIL2 #define PG_AVAIL3 X86_PG_AVAIL3 #define PG_PDE_PAT X86_PG_PDE_PAT #define PG_NX X86_PG_NX #define PG_PDE_CACHE X86_PG_PDE_CACHE #define PG_PTE_CACHE X86_PG_PTE_CACHE /* Our various interpretations of the above */ #define PG_W X86_PG_AVAIL3 /* "Wired" pseudoflag */ #define PG_MANAGED X86_PG_AVAIL2 #define EPT_PG_EMUL_V X86_PG_AVAIL(52) #define EPT_PG_EMUL_RW X86_PG_AVAIL(53) #define PG_PROMOTED X86_PG_AVAIL(54) /* PDE only */ /* * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB * (PTE) page mappings have identical settings for the following fields: */ #define PG_PTE_PROMOTE (PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \ PG_M | PG_U | PG_RW | PG_V | PG_PKU_MASK) /* * undef the PG_xx macros that define bits in the regular x86 PTEs that * have a different position in nested PTEs. This is done when compiling * code that needs to be aware of the differences between regular x86 and * nested PTEs. * * The appropriate bitmask will be calculated at runtime based on the pmap * type. */ #ifdef AMD64_NPT_AWARE #undef PG_AVAIL1 /* X86_PG_AVAIL1 aliases with EPT_PG_M */ #undef PG_G #undef PG_A #undef PG_M #undef PG_PDE_PAT #undef PG_PDE_CACHE #undef PG_PTE_PAT #undef PG_PTE_CACHE #undef PG_RW #undef PG_V #endif /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KV4ADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define KV5ADDR(l5, l4, l3, l2, l1) ( \ ((unsigned long)-1 << 56) | \ ((unsigned long)(l5) << PML5SHIFT) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l5, l4, l3, l2, l1) ( \ ((unsigned long)(l5) << PML5SHIFT) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) /* * Number of kernel PML4 slots. Can be anywhere from 1 to 64 or so, * but setting it larger than NDMPML4E makes no sense. * * Each slot provides .5 TB of kernel virtual space. */ #define NKPML4E 4 /* * Number of PML4 slots for the KASAN shadow map. It requires 1 byte of memory * for every 8 bytes of the kernel address space. */ #define NKASANPML4E ((NKPML4E + 7) / 8) /* * Number of PML4 slots for the KMSAN shadow and origin maps. These are * one-to-one with the kernel map. */ #define NKMSANSHADPML4E NKPML4E #define NKMSANORIGPML4E NKPML4E /* * We use the same numbering of the page table pages for 5-level and * 4-level paging structures. */ #define NUPML5E (NPML5EPG / 2) /* number of userland PML5 pages */ #define NUPML4E (NUPML5E * NPML4EPG) /* number of userland PML4 pages */ #define NUPDPE (NUPML4E * NPDPEPG) /* number of userland PDP pages */ #define NUPDE (NUPDPE * NPDEPG) /* number of userland PD entries */ #define NUP4ML4E (NPML4EPG / 2) /* * NDMPML4E is the maximum number of PML4 entries that will be * used to implement the direct map. It must be a power of two, * and should generally exceed NKPML4E. The maximum possible * value is 64; using 128 will make the direct map intrude into * the recursive page table map. */ #define NDMPML4E 8 /* * These values control the layout of virtual memory. The starting address * of the direct map, which is controlled by DMPML4I, must be a multiple of * its size. (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.) * * Note: KPML4I is the index of the (single) level 4 page that maps * the KVA that holds KERNBASE, while KPML4BASE is the index of the * first level 4 page that maps VM_MIN_KERNEL_ADDRESS. If NKPML4E * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to * KERNBASE. * * (KPML4I combines with KPDPI to choose where KERNBASE starts. * Or, in other words, KPML4I provides bits 39..47 of KERNBASE, * and KPDPI provides bits 30..38.) */ #define PML4PML4I (NPML4EPG / 2) /* Index of recursive pml4 mapping */ #define PML5PML5I (NPML5EPG / 2) /* Index of recursive pml5 mapping */ #define KPML4BASE (NPML4EPG-NKPML4E) /* KVM at highest addresses */ #define DMPML4I rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */ #define KPML4I (NPML4EPG-1) #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ #define KASANPML4I (DMPML4I - NKASANPML4E) /* Below the direct map */ #define KMSANSHADPML4I (KPML4BASE - NKMSANSHADPML4E) #define KMSANORIGPML4I (DMPML4I - NKMSANORIGPML4E) /* Large map: index of the first and max last pml4 entry */ #define LMSPML4I (PML4PML4I + 1) #define LMEPML4I (KASANPML4I - 1) /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #define PMAP_PCID_NONE 0xffffffff #define PMAP_PCID_KERN 0 #define PMAP_PCID_OVERMAX 0x1000 #define PMAP_PCID_OVERMAX_KERN 0x800 #define PMAP_PCID_USER_PT 0x800 #define PMAP_NO_CR3 0xffffffffffffffff #define PMAP_UCR3_NOMASK 0xffffffffffffffff #ifndef LOCORE #include #include #include #include #include #include #include #include #include #include #include typedef u_int64_t pd_entry_t; typedef u_int64_t pt_entry_t; typedef u_int64_t pdp_entry_t; typedef u_int64_t pml4_entry_t; typedef u_int64_t pml5_entry_t; /* * Address of current address space page table maps and directories. */ #ifdef _KERNEL #define addr_P4Tmap (KV4ADDR(PML4PML4I, 0, 0, 0)) #define addr_P4Dmap (KV4ADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_P4DPmap (KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_P4ML4map (KV4ADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_P4ML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define P4Tmap ((pt_entry_t *)(addr_P4Tmap)) #define P4Dmap ((pd_entry_t *)(addr_P4Dmap)) #define addr_P5Tmap (KV5ADDR(PML5PML5I, 0, 0, 0, 0)) #define addr_P5Dmap (KV5ADDR(PML5PML5I, PML5PML5I, 0, 0, 0)) #define addr_P5DPmap (KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, 0, 0)) #define addr_P5ML4map (KV5ADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, 0)) #define addr_P5ML5map \ (KVADDR(PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I, PML5PML5I)) #define addr_P5ML5pml5e (addr_P5ML5map + (PML5PML5I * sizeof(pml5_entry_t))) #define P5Tmap ((pt_entry_t *)(addr_P5Tmap)) #define P5Dmap ((pd_entry_t *)(addr_P5Dmap)) extern int nkpt; /* Initial number of kernel page tables */ extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ extern u_int64_t KPML5phys; /* physical address of kernel level 5 */ /* * virtual address to page table entry and * to physical address. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ pt_entry_t *vtopte(vm_offset_t); #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte) #define pte_load_clear(ptep) atomic_swap_long(ptep, 0) #define pte_store(ptep, pte) do { \ *(u_long *)(ptep) = (u_long)(pte); \ } while (0) #define pte_clear(ptep) pte_store(ptep, 0) #define pde_store(pdep, pde) pte_store(pdep, pde) extern pt_entry_t pg_nx; #endif /* _KERNEL */ /* * Pmap stuff */ /* * Locks * (p) PV list lock */ struct md_page { TAILQ_HEAD(, pv_entry) pv_list; /* (p) */ int pv_gen; /* (p) */ int pat_mode; }; enum pmap_type { PT_X86, /* regular x86 page tables */ PT_EPT, /* Intel's nested page tables */ PT_RVI, /* AMD's nested page tables */ }; /* * The kernel virtual address (KVA) of the level 4 page table page is always * within the direct map (DMAP) region. */ struct pmap { struct mtx pm_mtx; pml4_entry_t *pm_pmltop; /* KVA of top level page table */ pml4_entry_t *pm_pmltopu; /* KVA of user top page table */ uint64_t pm_cr3; uint64_t pm_ucr3; TAILQ_HEAD(,pv_chunk) pm_pvchunk; /* list of mappings in pmap */ cpuset_t pm_active; /* active on cpus */ enum pmap_type pm_type; /* regular or nested tables */ struct pmap_statistics pm_stats; /* pmap statistics */ struct vm_radix pm_root; /* spare page table pages */ long pm_eptgen; /* EPT pmap generation id */ smr_t pm_eptsmr; int pm_flags; struct pmap_pcid *pm_pcidp; struct rangeset pm_pkru; }; /* flags */ #define PMAP_NESTED_IPIMASK 0xff #define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */ #define PMAP_EMULATE_AD_BITS (1 << 9) /* needs A/D bits emulation */ #define PMAP_SUPPORTS_EXEC_ONLY (1 << 10) /* execute only mappings ok */ typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #define PMAP_LOCK(pmap) mtx_lock(&(pmap)->pm_mtx) #define PMAP_LOCK_ASSERT(pmap, type) \ mtx_assert(&(pmap)->pm_mtx, (type)) #define PMAP_LOCK_DESTROY(pmap) mtx_destroy(&(pmap)->pm_mtx) #define PMAP_LOCK_INIT(pmap) mtx_init(&(pmap)->pm_mtx, "pmap", \ NULL, MTX_DEF | MTX_DUPOK) #define PMAP_LOCKED(pmap) mtx_owned(&(pmap)->pm_mtx) #define PMAP_MTX(pmap) (&(pmap)->pm_mtx) #define PMAP_TRYLOCK(pmap) mtx_trylock(&(pmap)->pm_mtx) #define PMAP_UNLOCK(pmap) mtx_unlock(&(pmap)->pm_mtx) int pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags); int pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype); extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; extern vm_paddr_t dmaplimit; extern int pmap_pcid_enabled; extern int invpcid_works; extern int invlpgb_works; extern int invlpgb_maxcnt; extern int pmap_pcid_invlpg_workaround; extern int pmap_pcid_invlpg_workaround_uena; #define pmap_page_get_memattr(m) ((vm_memattr_t)(m)->md.pat_mode) #define pmap_page_is_write_mapped(m) (((m)->a.flags & PGA_WRITEABLE) != 0) #define pmap_unmapbios(va, sz) pmap_unmapdev((va), (sz)) #define pmap_vm_page_alloc_check(m) \ KASSERT(m->phys_addr < kernphys || \ m->phys_addr >= kernphys + (vm_offset_t)&_end - KERNSTART, \ ("allocating kernel page %p pa %#lx kernphys %#lx end %p", \ m, m->phys_addr, kernphys, &_end)); struct thread; void pmap_activate_boot(pmap_t pmap); void pmap_activate_sw(struct thread *); void pmap_allow_2m_x_ept_recalculate(void); void pmap_bootstrap(vm_paddr_t *); int pmap_cache_bits(pmap_t pmap, int mode, bool is_pde); int pmap_change_attr(vm_offset_t, vm_size_t, int); int pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t); void pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate); void pmap_flush_cache_range(vm_offset_t, vm_offset_t); void pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t); void pmap_init_pat(void); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void *pmap_kenter_temporary(vm_paddr_t pa, int i); vm_paddr_t pmap_kextract(vm_offset_t); void pmap_kremove(vm_offset_t); int pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t); void pmap_large_map_wb(void *sva, vm_size_t len); void pmap_large_unmap(void *sva, vm_size_t len); void *pmap_mapbios(vm_paddr_t, vm_size_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); void *pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size); bool pmap_not_in_di(void); bool pmap_page_is_mapped(vm_page_t m); void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); void pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma); void pmap_pinit_pml4(vm_page_t); void pmap_pinit_pml5(vm_page_t); bool pmap_ps_enabled(pmap_t pmap); void pmap_unmapdev(void *, vm_size_t); void pmap_invalidate_page(pmap_t, vm_offset_t); void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); void pmap_invalidate_all(pmap_t); void pmap_invalidate_cache(void); void pmap_invalidate_cache_pages(vm_page_t *pages, int count); void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva); void pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva); void pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num); bool pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, bool); void pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, bool); void pmap_map_delete(pmap_t, vm_offset_t, vm_offset_t); void pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec); void pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva); void pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3); void pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va); void pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva, vm_offset_t eva); int pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva); int pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx, int flags); void pmap_thread_init_invl_gen(struct thread *td); int pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap); void pmap_page_array_startup(long count); vm_page_t pmap_page_alloc_below_4g(bool zeroed); #if defined(KASAN) || defined(KMSAN) void pmap_san_enter(vm_offset_t); #endif /* * Returns a pointer to a set of CPUs on which the pmap is currently active. * Note that the set can be modified without any mutual exclusion, so a copy * must be made if a stable value is required. */ static __inline volatile cpuset_t * pmap_invalidate_cpu_mask(pmap_t pmap) { return (&pmap->pm_active); } #if defined(_SYS_PCPU_H_) && defined(_MACHINE_CPUFUNC_H_) /* * It seems that AlderLake+ small cores have some microarchitectural * bug, which results in the INVLPG instruction failing to flush all * global TLB entries when PCID is enabled. Work around it for now, * by doing global invalidation on small cores instead of INVLPG. */ static __inline void pmap_invlpg(pmap_t pmap, vm_offset_t va) { if (pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) { struct invpcid_descr d = { 0 }; invpcid(&d, INVPCID_CTXGLOB); } else { invlpg(va); } } #endif /* sys/pcpu.h && machine/cpufunc.h */ #if defined(_SYS_PCPU_H_) /* Return pcid for the pmap pmap on current cpu */ static __inline uint32_t pmap_get_pcid(pmap_t pmap) { struct pmap_pcid *pcidp; MPASS(pmap_pcid_enabled); pcidp = zpcpu_get(pmap->pm_pcidp); return (pcidp->pm_pcid); } #endif /* sys/pcpu.h */ /* * Invalidation request. PCPU pc_smp_tlb_op uses u_int instead of the * enum to avoid both namespace and ABI issues (with enums). */ enum invl_op_codes { INVL_OP_TLB = 1, INVL_OP_TLB_INVPCID = 2, INVL_OP_TLB_INVPCID_PTI = 3, INVL_OP_TLB_PCID = 4, INVL_OP_PGRNG = 5, INVL_OP_PGRNG_INVPCID = 6, INVL_OP_PGRNG_PCID = 7, INVL_OP_PG = 8, INVL_OP_PG_INVPCID = 9, INVL_OP_PG_PCID = 10, INVL_OP_CACHE = 11, }; typedef void (*smp_invl_local_cb_t)(struct pmap *, vm_offset_t addr1, vm_offset_t addr2); typedef void (*smp_targeted_tlb_shootdown_t)(pmap_t, vm_offset_t, vm_offset_t, smp_invl_local_cb_t, enum invl_op_codes); void smp_targeted_tlb_shootdown_native(pmap_t, vm_offset_t, vm_offset_t, smp_invl_local_cb_t, enum invl_op_codes); extern smp_targeted_tlb_shootdown_t smp_targeted_tlb_shootdown; #endif /* _KERNEL */ /* Return various clipped indexes for a given VA */ static __inline vm_pindex_t pmap_pte_index(vm_offset_t va) { return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1)); } static __inline vm_pindex_t pmap_pde_index(vm_offset_t va) { return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1)); } static __inline vm_pindex_t pmap_pdpe_index(vm_offset_t va) { return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1)); } static __inline vm_pindex_t pmap_pml4e_index(vm_offset_t va) { return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1)); } static __inline vm_pindex_t pmap_pml5e_index(vm_offset_t va) { return ((va >> PML5SHIFT) & ((1ul << NPML5EPGSHIFT) - 1)); } #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */ #endif /* __i386__ */