/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Functions to provide access to special i386 instructions. * This in included in sys/systm.h, and that file should be * used in preference to this. */ #ifndef _MACHINE_CPUFUNC_H_ #define _MACHINE_CPUFUNC_H_ #ifndef _SYS_CDEFS_H_ #error this file needs sys/cdefs.h as a prerequisite #endif struct region_descriptor; #define readb(va) (*(volatile uint8_t *) (va)) #define readw(va) (*(volatile uint16_t *) (va)) #define readl(va) (*(volatile uint32_t *) (va)) #define readq(va) (*(volatile uint64_t *) (va)) #define writeb(va, d) (*(volatile uint8_t *) (va) = (d)) #define writew(va, d) (*(volatile uint16_t *) (va) = (d)) #define writel(va, d) (*(volatile uint32_t *) (va) = (d)) #define writeq(va, d) (*(volatile uint64_t *) (va) = (d)) #if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE) static __inline void breakpoint(void) { __asm __volatile("int $3"); } static __inline __pure2 u_int bsfl(u_int mask) { u_int result; __asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask)); return (result); } static __inline __pure2 u_long bsfq(u_long mask) { u_long result; __asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask)); return (result); } static __inline __pure2 u_int bsrl(u_int mask) { u_int result; __asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask)); return (result); } static __inline __pure2 u_long bsrq(u_long mask) { u_long result; __asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask)); return (result); } static __inline void clflush(u_long addr) { __asm __volatile("clflush %0" : : "m" (*(char *)addr)); } static __inline void clflushopt(u_long addr) { __asm __volatile(".byte 0x66;clflush %0" : : "m" (*(char *)addr)); } static __inline void clwb(u_long addr) { __asm __volatile("clwb %0" : : "m" (*(char *)addr)); } static __inline void clts(void) { __asm __volatile("clts"); } static __inline void disable_intr(void) { __asm __volatile("cli" : : : "memory"); } static __inline void do_cpuid(u_int ax, u_int *p) { __asm __volatile("cpuid" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax)); } static __inline void cpuid_count(u_int ax, u_int cx, u_int *p) { __asm __volatile("cpuid" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax), "c" (cx)); } static __inline void enable_intr(void) { __asm __volatile("sti"); } #ifdef _KERNEL #define HAVE_INLINE_FFS #define ffs(x) __builtin_ffs(x) #define HAVE_INLINE_FFSL static __inline __pure2 int ffsl(long mask) { return (__builtin_ffsl(mask)); } #define HAVE_INLINE_FFSLL static __inline __pure2 int ffsll(long long mask) { return (ffsl((long)mask)); } #define HAVE_INLINE_FLS static __inline __pure2 int fls(int mask) { return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1); } #define HAVE_INLINE_FLSL static __inline __pure2 int flsl(long mask) { return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1); } #define HAVE_INLINE_FLSLL static __inline __pure2 int flsll(long long mask) { return (flsl((long)mask)); } #endif /* _KERNEL */ static __inline void halt(void) { __asm __volatile("hlt"); } static __inline u_char inb(u_int port) { u_char data; __asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline u_int inl(u_int port) { u_int data; __asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline void insb(u_int port, void *addr, size_t count) { __asm __volatile("rep; insb" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void insw(u_int port, void *addr, size_t count) { __asm __volatile("rep; insw" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void insl(u_int port, void *addr, size_t count) { __asm __volatile("rep; insl" : "+D" (addr), "+c" (count) : "d" (port) : "memory"); } static __inline void invd(void) { __asm __volatile("invd"); } static __inline u_short inw(u_int port) { u_short data; __asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port)); return (data); } static __inline void outb(u_int port, u_char data) { __asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port)); } static __inline void outl(u_int port, u_int data) { __asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port)); } static __inline void outsb(u_int port, const void *addr, size_t count) { __asm __volatile("rep; outsb" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outsw(u_int port, const void *addr, size_t count) { __asm __volatile("rep; outsw" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outsl(u_int port, const void *addr, size_t count) { __asm __volatile("rep; outsl" : "+S" (addr), "+c" (count) : "d" (port)); } static __inline void outw(u_int port, u_short data) { __asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port)); } static __inline u_long popcntq(u_long mask) { u_long result; __asm __volatile("popcntq %1,%0" : "=r" (result) : "rm" (mask)); return (result); } static __inline void lfence(void) { __asm __volatile("lfence" : : : "memory"); } static __inline void mfence(void) { __asm __volatile("mfence" : : : "memory"); } static __inline void sfence(void) { __asm __volatile("sfence" : : : "memory"); } static __inline void ia32_pause(void) { __asm __volatile("pause"); } static __inline u_long read_rflags(void) { u_long rf; __asm __volatile("pushfq; popq %0" : "=r" (rf)); return (rf); } static __inline uint64_t rdmsr(u_int msr) { uint32_t low, high; __asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr)); return (low | ((uint64_t)high << 32)); } static __inline uint32_t rdmsr32(u_int msr) { uint32_t low; __asm __volatile("rdmsr" : "=a" (low) : "c" (msr) : "rdx"); return (low); } static __inline uint64_t rdpmc(u_int pmc) { uint32_t low, high; __asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc)); return (low | ((uint64_t)high << 32)); } static __inline uint64_t rdtsc(void) { uint32_t low, high; __asm __volatile("rdtsc" : "=a" (low), "=d" (high)); return (low | ((uint64_t)high << 32)); } static __inline uint64_t rdtscp(void) { uint32_t low, high; __asm __volatile("rdtscp" : "=a" (low), "=d" (high) : : "ecx"); return (low | ((uint64_t)high << 32)); } static __inline uint32_t rdtsc32(void) { uint32_t rv; __asm __volatile("rdtsc" : "=a" (rv) : : "edx"); return (rv); } static __inline uint32_t rdtscp32(void) { uint32_t rv; __asm __volatile("rdtscp" : "=a" (rv) : : "ecx", "edx"); return (rv); } static __inline void wbinvd(void) { __asm __volatile("wbinvd"); } static __inline void write_rflags(u_long rf) { __asm __volatile("pushq %0; popfq" : : "r" (rf)); } static __inline void wrmsr(u_int msr, uint64_t newval) { uint32_t low, high; low = newval; high = newval >> 32; __asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr)); } static __inline void load_cr0(u_long data) { __asm __volatile("movq %0,%%cr0" : : "r" (data)); } static __inline u_long rcr0(void) { u_long data; __asm __volatile("movq %%cr0,%0" : "=r" (data)); return (data); } static __inline u_long rcr2(void) { u_long data; __asm __volatile("movq %%cr2,%0" : "=r" (data)); return (data); } static __inline void load_cr3(u_long data) { __asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory"); } static __inline u_long rcr3(void) { u_long data; __asm __volatile("movq %%cr3,%0" : "=r" (data)); return (data); } static __inline void load_cr4(u_long data) { __asm __volatile("movq %0,%%cr4" : : "r" (data)); } static __inline u_long rcr4(void) { u_long data; __asm __volatile("movq %%cr4,%0" : "=r" (data)); return (data); } static __inline u_long rxcr(u_int reg) { u_int low, high; __asm __volatile("xgetbv" : "=a" (low), "=d" (high) : "c" (reg)); return (low | ((uint64_t)high << 32)); } static __inline void load_xcr(u_int reg, u_long val) { u_int low, high; low = val; high = val >> 32; __asm __volatile("xsetbv" : : "c" (reg), "a" (low), "d" (high)); } /* * Global TLB flush (except for thise for pages marked PG_G) */ static __inline void invltlb(void) { load_cr3(rcr3()); } #ifndef CR4_PGE #define CR4_PGE 0x00000080 /* Page global enable */ #endif /* * Perform the guaranteed invalidation of all TLB entries. This * includes the global entries, and entries in all PCIDs, not only the * current context. The function works both on non-PCID CPUs and CPUs * with the PCID turned off or on. See IA-32 SDM Vol. 3a 4.10.4.1 * Operations that Invalidate TLBs and Paging-Structure Caches. */ static __inline void invltlb_glob(void) { uint64_t cr4; cr4 = rcr4(); load_cr4(cr4 & ~CR4_PGE); /* * Although preemption at this point could be detrimental to * performance, it would not lead to an error. PG_G is simply * ignored if CR4.PGE is clear. Moreover, in case this block * is re-entered, the load_cr4() either above or below will * modify CR4.PGE flushing the TLB. */ load_cr4(cr4 | CR4_PGE); } /* * TLB flush for an individual page (even if it has PG_G). * Only works on 486+ CPUs (i386 does not have PG_G). */ static __inline void invlpg(u_long addr) { __asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory"); } #define INVPCID_ADDR 0 #define INVPCID_CTX 1 #define INVPCID_CTXGLOB 2 #define INVPCID_ALLCTX 3 struct invpcid_descr { uint64_t pcid:12 __packed; uint64_t pad:52 __packed; uint64_t addr; } __packed; static __inline void invpcid(struct invpcid_descr *d, int type) { __asm __volatile("invpcid (%0),%1" : : "r" (d), "r" ((u_long)type) : "memory"); } static __inline u_short rfs(void) { u_short sel; __asm __volatile("movw %%fs,%0" : "=rm" (sel)); return (sel); } static __inline u_short rgs(void) { u_short sel; __asm __volatile("movw %%gs,%0" : "=rm" (sel)); return (sel); } static __inline u_short rss(void) { u_short sel; __asm __volatile("movw %%ss,%0" : "=rm" (sel)); return (sel); } static __inline void load_ds(u_short sel) { __asm __volatile("movw %0,%%ds" : : "rm" (sel)); } static __inline void load_es(u_short sel) { __asm __volatile("movw %0,%%es" : : "rm" (sel)); } static __inline void cpu_monitor(const void *addr, u_long extensions, u_int hints) { __asm __volatile("monitor" : : "a" (addr), "c" (extensions), "d" (hints)); } static __inline void cpu_mwait(u_long extensions, u_int hints) { __asm __volatile("mwait" : : "a" (hints), "c" (extensions)); } static __inline uint32_t rdpkru(void) { uint32_t res; __asm __volatile("rdpkru" : "=a" (res) : "c" (0) : "edx"); return (res); } static __inline void wrpkru(uint32_t mask) { __asm __volatile("wrpkru" : : "a" (mask), "c" (0), "d" (0)); } #ifdef _KERNEL /* This is defined in but is too painful to get to */ #ifndef MSR_FSBASE #define MSR_FSBASE 0xc0000100 #endif static __inline void load_fs(u_short sel) { /* Preserve the fsbase value across the selector load */ __asm __volatile("rdmsr; movw %0,%%fs; wrmsr" : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx"); } #ifndef MSR_GSBASE #define MSR_GSBASE 0xc0000101 #endif static __inline void load_gs(u_short sel) { /* * Preserve the gsbase value across the selector load. * Note that we have to disable interrupts because the gsbase * being trashed happens to be the kernel gsbase at the time. */ __asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq" : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx"); } #else /* Usable by userland */ static __inline void load_fs(u_short sel) { __asm __volatile("movw %0,%%fs" : : "rm" (sel)); } static __inline void load_gs(u_short sel) { __asm __volatile("movw %0,%%gs" : : "rm" (sel)); } #endif static __inline uint64_t rdfsbase(void) { uint64_t x; __asm __volatile("rdfsbase %0" : "=r" (x)); return (x); } static __inline void wrfsbase(uint64_t x) { __asm __volatile("wrfsbase %0" : : "r" (x)); } static __inline uint64_t rdgsbase(void) { uint64_t x; __asm __volatile("rdgsbase %0" : "=r" (x)); return (x); } static __inline void wrgsbase(uint64_t x) { __asm __volatile("wrgsbase %0" : : "r" (x)); } static __inline void bare_lgdt(struct region_descriptor *addr) { __asm __volatile("lgdt (%0)" : : "r" (addr)); } static __inline void sgdt(struct region_descriptor *addr) { char *loc; loc = (char *)addr; __asm __volatile("sgdt %0" : "=m" (*loc) : : "memory"); } static __inline void lidt(struct region_descriptor *addr) { __asm __volatile("lidt (%0)" : : "r" (addr)); } static __inline void sidt(struct region_descriptor *addr) { char *loc; loc = (char *)addr; __asm __volatile("sidt %0" : "=m" (*loc) : : "memory"); } static __inline void lldt(u_short sel) { __asm __volatile("lldt %0" : : "r" (sel)); } static __inline u_short sldt(void) { u_short sel; __asm __volatile("sldt %0" : "=r" (sel)); return (sel); } static __inline void ltr(u_short sel) { __asm __volatile("ltr %0" : : "r" (sel)); } static __inline uint32_t read_tr(void) { u_short sel; __asm __volatile("str %0" : "=r" (sel)); return (sel); } static __inline uint64_t rdr0(void) { uint64_t data; __asm __volatile("movq %%dr0,%0" : "=r" (data)); return (data); } static __inline void load_dr0(uint64_t dr0) { __asm __volatile("movq %0,%%dr0" : : "r" (dr0)); } static __inline uint64_t rdr1(void) { uint64_t data; __asm __volatile("movq %%dr1,%0" : "=r" (data)); return (data); } static __inline void load_dr1(uint64_t dr1) { __asm __volatile("movq %0,%%dr1" : : "r" (dr1)); } static __inline uint64_t rdr2(void) { uint64_t data; __asm __volatile("movq %%dr2,%0" : "=r" (data)); return (data); } static __inline void load_dr2(uint64_t dr2) { __asm __volatile("movq %0,%%dr2" : : "r" (dr2)); } static __inline uint64_t rdr3(void) { uint64_t data; __asm __volatile("movq %%dr3,%0" : "=r" (data)); return (data); } static __inline void load_dr3(uint64_t dr3) { __asm __volatile("movq %0,%%dr3" : : "r" (dr3)); } static __inline uint64_t rdr6(void) { uint64_t data; __asm __volatile("movq %%dr6,%0" : "=r" (data)); return (data); } static __inline void load_dr6(uint64_t dr6) { __asm __volatile("movq %0,%%dr6" : : "r" (dr6)); } static __inline uint64_t rdr7(void) { uint64_t data; __asm __volatile("movq %%dr7,%0" : "=r" (data)); return (data); } static __inline void load_dr7(uint64_t dr7) { __asm __volatile("movq %0,%%dr7" : : "r" (dr7)); } static __inline register_t intr_disable(void) { register_t rflags; rflags = read_rflags(); disable_intr(); return (rflags); } static __inline void intr_restore(register_t rflags) { write_rflags(rflags); } static __inline void stac(void) { __asm __volatile("stac" : : : "cc"); } static __inline void clac(void) { __asm __volatile("clac" : : : "cc"); } enum { SGX_ECREATE = 0x0, SGX_EADD = 0x1, SGX_EINIT = 0x2, SGX_EREMOVE = 0x3, SGX_EDGBRD = 0x4, SGX_EDGBWR = 0x5, SGX_EEXTEND = 0x6, SGX_ELDU = 0x8, SGX_EBLOCK = 0x9, SGX_EPA = 0xA, SGX_EWB = 0xB, SGX_ETRACK = 0xC, }; enum { SGX_PT_SECS = 0x00, SGX_PT_TCS = 0x01, SGX_PT_REG = 0x02, SGX_PT_VA = 0x03, SGX_PT_TRIM = 0x04, }; int sgx_encls(uint32_t eax, uint64_t rbx, uint64_t rcx, uint64_t rdx); static __inline int sgx_ecreate(void *pginfo, void *secs) { return (sgx_encls(SGX_ECREATE, (uint64_t)pginfo, (uint64_t)secs, 0)); } static __inline int sgx_eadd(void *pginfo, void *epc) { return (sgx_encls(SGX_EADD, (uint64_t)pginfo, (uint64_t)epc, 0)); } static __inline int sgx_einit(void *sigstruct, void *secs, void *einittoken) { return (sgx_encls(SGX_EINIT, (uint64_t)sigstruct, (uint64_t)secs, (uint64_t)einittoken)); } static __inline int sgx_eextend(void *secs, void *epc) { return (sgx_encls(SGX_EEXTEND, (uint64_t)secs, (uint64_t)epc, 0)); } static __inline int sgx_epa(void *epc) { return (sgx_encls(SGX_EPA, SGX_PT_VA, (uint64_t)epc, 0)); } static __inline int sgx_eldu(uint64_t rbx, uint64_t rcx, uint64_t rdx) { return (sgx_encls(SGX_ELDU, rbx, rcx, rdx)); } static __inline int sgx_eremove(void *epc) { return (sgx_encls(SGX_EREMOVE, 0, (uint64_t)epc, 0)); } #else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */ int breakpoint(void); u_int bsfl(u_int mask); u_int bsrl(u_int mask); void clflush(u_long addr); void clts(void); void cpuid_count(u_int ax, u_int cx, u_int *p); void disable_intr(void); void do_cpuid(u_int ax, u_int *p); void enable_intr(void); void halt(void); void ia32_pause(void); u_char inb(u_int port); u_int inl(u_int port); void insb(u_int port, void *addr, size_t count); void insl(u_int port, void *addr, size_t count); void insw(u_int port, void *addr, size_t count); register_t intr_disable(void); void intr_restore(register_t rf); void invd(void); void invlpg(u_int addr); void invltlb(void); u_short inw(u_int port); void lidt(struct region_descriptor *addr); void lldt(u_short sel); void load_cr0(u_long cr0); void load_cr3(u_long cr3); void load_cr4(u_long cr4); void load_dr0(uint64_t dr0); void load_dr1(uint64_t dr1); void load_dr2(uint64_t dr2); void load_dr3(uint64_t dr3); void load_dr6(uint64_t dr6); void load_dr7(uint64_t dr7); void load_fs(u_short sel); void load_gs(u_short sel); void ltr(u_short sel); void outb(u_int port, u_char data); void outl(u_int port, u_int data); void outsb(u_int port, const void *addr, size_t count); void outsl(u_int port, const void *addr, size_t count); void outsw(u_int port, const void *addr, size_t count); void outw(u_int port, u_short data); u_long rcr0(void); u_long rcr2(void); u_long rcr3(void); u_long rcr4(void); uint64_t rdmsr(u_int msr); uint32_t rdmsr32(u_int msr); uint64_t rdpmc(u_int pmc); uint64_t rdr0(void); uint64_t rdr1(void); uint64_t rdr2(void); uint64_t rdr3(void); uint64_t rdr6(void); uint64_t rdr7(void); uint64_t rdtsc(void); u_long read_rflags(void); u_int rfs(void); u_int rgs(void); void wbinvd(void); void write_rflags(u_int rf); void wrmsr(u_int msr, uint64_t newval); #endif /* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */ void reset_dbregs(void); #ifdef _KERNEL int rdmsr_safe(u_int msr, uint64_t *val); int wrmsr_safe(u_int msr, uint64_t newval); #endif #endif /* !_MACHINE_CPUFUNC_H_ */