/*- * Copyright (c) 2007 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); /* * Stand-alone file reading package. */ #include #include #include #include #include #include #include #include #include #include #include "libzfs.h" #include "zfsimpl.c" /* Define the range of indexes to be populated with ZFS Boot Environments */ #define ZFS_BE_FIRST 4 #define ZFS_BE_LAST 8 static int zfs_open(const char *path, struct open_file *f); static int zfs_close(struct open_file *f); static int zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid); static off_t zfs_seek(struct open_file *f, off_t offset, int where); static int zfs_stat(struct open_file *f, struct stat *sb); static int zfs_readdir(struct open_file *f, struct dirent *d); static void zfs_bootenv_initial(const char *); struct devsw zfs_dev; struct fs_ops zfs_fsops = { "zfs", zfs_open, zfs_close, zfs_read, null_write, zfs_seek, zfs_stat, zfs_readdir }; /* * In-core open file. */ struct file { off_t f_seekp; /* seek pointer */ dnode_phys_t f_dnode; uint64_t f_zap_type; /* zap type for readdir */ uint64_t f_num_leafs; /* number of fzap leaf blocks */ zap_leaf_phys_t *f_zap_leaf; /* zap leaf buffer */ }; static int zfs_env_index; static int zfs_env_count; SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head); struct zfs_be_list *zfs_be_headp; struct zfs_be_entry { const char *name; SLIST_ENTRY(zfs_be_entry) entries; } *zfs_be, *zfs_be_tmp; /* * Open a file. */ static int zfs_open(const char *upath, struct open_file *f) { struct zfsmount *mount = (struct zfsmount *)f->f_devdata; struct file *fp; int rc; if (f->f_dev != &zfs_dev) return (EINVAL); /* allocate file system specific data structure */ fp = malloc(sizeof(struct file)); bzero(fp, sizeof(struct file)); f->f_fsdata = (void *)fp; rc = zfs_lookup(mount, upath, &fp->f_dnode); fp->f_seekp = 0; if (rc) { f->f_fsdata = NULL; free(fp); } return (rc); } static int zfs_close(struct open_file *f) { struct file *fp = (struct file *)f->f_fsdata; dnode_cache_obj = NULL; f->f_fsdata = (void *)0; if (fp == (struct file *)0) return (0); free(fp); return (0); } /* * Copy a portion of a file into kernel memory. * Cross block boundaries when necessary. */ static int zfs_read(struct open_file *f, void *start, size_t size, size_t *resid /* out */) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; struct stat sb; size_t n; int rc; rc = zfs_stat(f, &sb); if (rc) return (rc); n = size; if (fp->f_seekp + n > sb.st_size) n = sb.st_size - fp->f_seekp; rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n); if (rc) return (rc); if (0) { int i; for (i = 0; i < n; i++) putchar(((char*) start)[i]); } fp->f_seekp += n; if (resid) *resid = size - n; return (0); } static off_t zfs_seek(struct open_file *f, off_t offset, int where) { struct file *fp = (struct file *)f->f_fsdata; switch (where) { case SEEK_SET: fp->f_seekp = offset; break; case SEEK_CUR: fp->f_seekp += offset; break; case SEEK_END: { struct stat sb; int error; error = zfs_stat(f, &sb); if (error != 0) { errno = error; return (-1); } fp->f_seekp = sb.st_size - offset; break; } default: errno = EINVAL; return (-1); } return (fp->f_seekp); } static int zfs_stat(struct open_file *f, struct stat *sb) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; return (zfs_dnode_stat(spa, &fp->f_dnode, sb)); } static int zfs_readdir(struct open_file *f, struct dirent *d) { const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa; struct file *fp = (struct file *)f->f_fsdata; mzap_ent_phys_t mze; struct stat sb; size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT; int rc; rc = zfs_stat(f, &sb); if (rc) return (rc); if (!S_ISDIR(sb.st_mode)) return (ENOTDIR); /* * If this is the first read, get the zap type. */ if (fp->f_seekp == 0) { rc = dnode_read(spa, &fp->f_dnode, 0, &fp->f_zap_type, sizeof(fp->f_zap_type)); if (rc) return (rc); if (fp->f_zap_type == ZBT_MICRO) { fp->f_seekp = offsetof(mzap_phys_t, mz_chunk); } else { rc = dnode_read(spa, &fp->f_dnode, offsetof(zap_phys_t, zap_num_leafs), &fp->f_num_leafs, sizeof(fp->f_num_leafs)); if (rc) return (rc); fp->f_seekp = bsize; fp->f_zap_leaf = (zap_leaf_phys_t *)malloc(bsize); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, fp->f_zap_leaf, bsize); if (rc) return (rc); } } if (fp->f_zap_type == ZBT_MICRO) { mzap_next: if (fp->f_seekp >= bsize) return (ENOENT); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, &mze, sizeof(mze)); if (rc) return (rc); fp->f_seekp += sizeof(mze); if (!mze.mze_name[0]) goto mzap_next; d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value); d->d_type = ZFS_DIRENT_TYPE(mze.mze_value); strcpy(d->d_name, mze.mze_name); d->d_namlen = strlen(d->d_name); return (0); } else { zap_leaf_t zl; zap_leaf_chunk_t *zc, *nc; int chunk; size_t namelen; char *p; uint64_t value; /* * Initialise this so we can use the ZAP size * calculating macros. */ zl.l_bs = ilog2(bsize); zl.l_phys = fp->f_zap_leaf; /* * Figure out which chunk we are currently looking at * and consider seeking to the next leaf. We use the * low bits of f_seekp as a simple chunk index. */ fzap_next: chunk = fp->f_seekp & (bsize - 1); if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) { fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize; chunk = 0; /* * Check for EOF and read the new leaf. */ if (fp->f_seekp >= bsize * fp->f_num_leafs) return (ENOENT); rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, fp->f_zap_leaf, bsize); if (rc) return (rc); } zc = &ZAP_LEAF_CHUNK(&zl, chunk); fp->f_seekp++; if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) goto fzap_next; namelen = zc->l_entry.le_name_numints; if (namelen > sizeof(d->d_name)) namelen = sizeof(d->d_name); /* * Paste the name back together. */ nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); p = d->d_name; while (namelen > 0) { int len; len = namelen; if (len > ZAP_LEAF_ARRAY_BYTES) len = ZAP_LEAF_ARRAY_BYTES; memcpy(p, nc->l_array.la_array, len); p += len; namelen -= len; nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); } d->d_name[sizeof(d->d_name) - 1] = 0; /* * Assume the first eight bytes of the value are * a uint64_t. */ value = fzap_leaf_value(&zl, zc); d->d_fileno = ZFS_DIRENT_OBJ(value); d->d_type = ZFS_DIRENT_TYPE(value); d->d_namlen = strlen(d->d_name); return (0); } } static int vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t bytes) { int fd, ret; size_t res, size, remainder, rb_size, blksz; unsigned secsz; off_t off; char *bouncebuf, *rb_buf; fd = (uintptr_t) priv; bouncebuf = NULL; ret = ioctl(fd, DIOCGSECTORSIZE, &secsz); if (ret != 0) return (ret); off = offset / secsz; remainder = offset % secsz; if (lseek(fd, off * secsz, SEEK_SET) == -1) return (errno); rb_buf = buf; rb_size = bytes; size = roundup2(bytes + remainder, secsz); blksz = size; if (remainder != 0 || size != bytes) { bouncebuf = zfs_alloc(secsz); if (bouncebuf == NULL) { printf("vdev_read: out of memory\n"); return (ENOMEM); } rb_buf = bouncebuf; blksz = rb_size - remainder; } while (bytes > 0) { res = read(fd, rb_buf, rb_size); if (res != rb_size) { ret = EIO; goto error; } if (bytes < blksz) blksz = bytes; if (bouncebuf != NULL) memcpy(buf, rb_buf + remainder, blksz); buf = (void *)((uintptr_t)buf + blksz); bytes -= blksz; remainder = 0; blksz = rb_size; } ret = 0; error: if (bouncebuf != NULL) zfs_free(bouncebuf, secsz); return (ret); } static int zfs_dev_init(void) { spa_t *spa; spa_t *next; spa_t *prev; zfs_init(); if (archsw.arch_zfs_probe == NULL) return (ENXIO); archsw.arch_zfs_probe(); prev = NULL; spa = STAILQ_FIRST(&zfs_pools); while (spa != NULL) { next = STAILQ_NEXT(spa, spa_link); if (zfs_spa_init(spa)) { if (prev == NULL) STAILQ_REMOVE_HEAD(&zfs_pools, spa_link); else STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link); } else prev = spa; spa = next; } return (0); } struct zfs_probe_args { int fd; const char *devname; uint64_t *pool_guid; u_int secsz; }; static int zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset) { struct zfs_probe_args *ppa; ppa = (struct zfs_probe_args *)arg; return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd, offset * ppa->secsz, buf, blocks * ppa->secsz)); } static int zfs_probe(int fd, uint64_t *pool_guid) { spa_t *spa; int ret; spa = NULL; ret = vdev_probe(vdev_read, (void *)(uintptr_t)fd, &spa); if (ret == 0 && pool_guid != NULL) *pool_guid = spa->spa_guid; return (ret); } static int zfs_probe_partition(void *arg, const char *partname, const struct ptable_entry *part) { struct zfs_probe_args *ppa, pa; struct ptable *table; char devname[32]; int ret; /* Probe only freebsd-zfs and freebsd partitions */ if (part->type != PART_FREEBSD && part->type != PART_FREEBSD_ZFS) return (0); ppa = (struct zfs_probe_args *)arg; strncpy(devname, ppa->devname, strlen(ppa->devname) - 1); devname[strlen(ppa->devname) - 1] = '\0'; sprintf(devname, "%s%s:", devname, partname); pa.fd = open(devname, O_RDONLY); if (pa.fd == -1) return (0); ret = zfs_probe(pa.fd, ppa->pool_guid); if (ret == 0) return (0); /* Do we have BSD label here? */ if (part->type == PART_FREEBSD) { pa.devname = devname; pa.pool_guid = ppa->pool_guid; pa.secsz = ppa->secsz; table = ptable_open(&pa, part->end - part->start + 1, ppa->secsz, zfs_diskread); if (table != NULL) { ptable_iterate(table, &pa, zfs_probe_partition); ptable_close(table); } } close(pa.fd); return (0); } int zfs_probe_dev(const char *devname, uint64_t *pool_guid) { struct ptable *table; struct zfs_probe_args pa; uint64_t mediasz; int ret; if (pool_guid) *pool_guid = 0; pa.fd = open(devname, O_RDONLY); if (pa.fd == -1) return (ENXIO); /* Probe the whole disk */ ret = zfs_probe(pa.fd, pool_guid); if (ret == 0) return (0); /* Probe each partition */ ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz); if (ret == 0) ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz); if (ret == 0) { pa.devname = devname; pa.pool_guid = pool_guid; table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz, zfs_diskread); if (table != NULL) { ptable_iterate(table, &pa, zfs_probe_partition); ptable_close(table); } } close(pa.fd); if (pool_guid && *pool_guid == 0) ret = ENXIO; return (ret); } /* * Print information about ZFS pools */ static int zfs_dev_print(int verbose) { spa_t *spa; char line[80]; int ret = 0; if (STAILQ_EMPTY(&zfs_pools)) return (0); printf("%s devices:", zfs_dev.dv_name); if ((ret = pager_output("\n")) != 0) return (ret); if (verbose) { return (spa_all_status()); } STAILQ_FOREACH(spa, &zfs_pools, spa_link) { snprintf(line, sizeof(line), " zfs:%s\n", spa->spa_name); ret = pager_output(line); if (ret != 0) break; } return (ret); } /* * Attempt to open the pool described by (dev) for use by (f). */ static int zfs_dev_open(struct open_file *f, ...) { va_list args; struct zfs_devdesc *dev; struct zfsmount *mount; spa_t *spa; int rv; va_start(args, f); dev = va_arg(args, struct zfs_devdesc *); va_end(args); if (dev->pool_guid == 0) spa = STAILQ_FIRST(&zfs_pools); else spa = spa_find_by_guid(dev->pool_guid); if (!spa) return (ENXIO); mount = malloc(sizeof(*mount)); rv = zfs_mount(spa, dev->root_guid, mount); if (rv != 0) { free(mount); return (rv); } if (mount->objset.os_type != DMU_OST_ZFS) { printf("Unexpected object set type %ju\n", (uintmax_t)mount->objset.os_type); free(mount); return (EIO); } f->f_devdata = mount; free(dev); return (0); } static int zfs_dev_close(struct open_file *f) { free(f->f_devdata); f->f_devdata = NULL; return (0); } static int zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize) { return (ENOSYS); } struct devsw zfs_dev = { .dv_name = "zfs", .dv_type = DEVT_ZFS, .dv_init = zfs_dev_init, .dv_strategy = zfs_dev_strategy, .dv_open = zfs_dev_open, .dv_close = zfs_dev_close, .dv_ioctl = noioctl, .dv_print = zfs_dev_print, .dv_cleanup = NULL }; int zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path) { static char rootname[ZFS_MAXNAMELEN]; static char poolname[ZFS_MAXNAMELEN]; spa_t *spa; const char *end; const char *np; const char *sep; int rv; np = devspec; if (*np != ':') return (EINVAL); np++; end = strrchr(np, ':'); if (end == NULL) return (EINVAL); sep = strchr(np, '/'); if (sep == NULL || sep >= end) sep = end; memcpy(poolname, np, sep - np); poolname[sep - np] = '\0'; if (sep < end) { sep++; memcpy(rootname, sep, end - sep); rootname[end - sep] = '\0'; } else rootname[0] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); dev->pool_guid = spa->spa_guid; rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid); if (rv != 0) return (rv); if (path != NULL) *path = (*end == '\0') ? end : end + 1; dev->dd.d_dev = &zfs_dev; return (0); } char * zfs_fmtdev(void *vdev) { static char rootname[ZFS_MAXNAMELEN]; static char buf[2 * ZFS_MAXNAMELEN + 8]; struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev; spa_t *spa; buf[0] = '\0'; if (dev->dd.d_dev->dv_type != DEVT_ZFS) return (buf); if (dev->pool_guid == 0) { spa = STAILQ_FIRST(&zfs_pools); dev->pool_guid = spa->spa_guid; } else spa = spa_find_by_guid(dev->pool_guid); if (spa == NULL) { printf("ZFS: can't find pool by guid\n"); return (buf); } if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) { printf("ZFS: can't find root filesystem\n"); return (buf); } if (zfs_rlookup(spa, dev->root_guid, rootname)) { printf("ZFS: can't find filesystem by guid\n"); return (buf); } if (rootname[0] == '\0') sprintf(buf, "%s:%s:", dev->dd.d_dev->dv_name, spa->spa_name); else sprintf(buf, "%s:%s/%s:", dev->dd.d_dev->dv_name, spa->spa_name, rootname); return (buf); } int zfs_list(const char *name) { static char poolname[ZFS_MAXNAMELEN]; uint64_t objid; spa_t *spa; const char *dsname; int len; int rv; len = strlen(name); dsname = strchr(name, '/'); if (dsname != NULL) { len = dsname - name; dsname++; } else dsname = ""; memcpy(poolname, name, len); poolname[len] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); rv = zfs_lookup_dataset(spa, dsname, &objid); if (rv != 0) return (rv); return (zfs_list_dataset(spa, objid)); } void init_zfs_bootenv(const char *currdev_in) { char *beroot, *currdev; int currdev_len; currdev = NULL; currdev_len = strlen(currdev_in); if (currdev_len == 0) return; if (strncmp(currdev_in, "zfs:", 4) != 0) return; currdev = strdup(currdev_in); if (currdev == NULL) return; /* Remove the trailing : */ currdev[currdev_len - 1] = '\0'; setenv("zfs_be_active", currdev, 1); setenv("zfs_be_currpage", "1", 1); /* Remove the last element (current bootenv) */ beroot = strrchr(currdev, '/'); if (beroot != NULL) beroot[0] = '\0'; beroot = strchr(currdev, ':') + 1; setenv("zfs_be_root", beroot, 1); zfs_bootenv_initial(beroot); free(currdev); } static void zfs_bootenv_initial(const char *name) { char poolname[ZFS_MAXNAMELEN], *dsname; char envname[32], envval[256]; uint64_t objid; spa_t *spa; int bootenvs_idx, len, rv; SLIST_INIT(&zfs_be_head); zfs_env_count = 0; len = strlen(name); dsname = strchr(name, '/'); if (dsname != NULL) { len = dsname - name; dsname++; } else dsname = ""; strlcpy(poolname, name, len + 1); spa = spa_find_by_name(poolname); if (spa == NULL) return; rv = zfs_lookup_dataset(spa, dsname, &objid); if (rv != 0) return; rv = zfs_callback_dataset(spa, objid, zfs_belist_add); bootenvs_idx = 0; /* Populate the initial environment variables */ SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) { /* Enumerate all bootenvs for general usage */ snprintf(envname, sizeof(envname), "bootenvs[%d]", bootenvs_idx); snprintf(envval, sizeof(envval), "zfs:%s/%s", name, zfs_be->name); rv = setenv(envname, envval, 1); if (rv != 0) break; bootenvs_idx++; } snprintf(envval, sizeof(envval), "%d", bootenvs_idx); setenv("bootenvs_count", envval, 1); /* Clean up the SLIST of ZFS BEs */ while (!SLIST_EMPTY(&zfs_be_head)) { zfs_be = SLIST_FIRST(&zfs_be_head); SLIST_REMOVE_HEAD(&zfs_be_head, entries); free(zfs_be); } return; } int zfs_bootenv(const char *name) { static char poolname[ZFS_MAXNAMELEN], *dsname, *root; char becount[4]; uint64_t objid; spa_t *spa; int len, rv, pages, perpage, currpage; if (name == NULL) return (EINVAL); if ((root = getenv("zfs_be_root")) == NULL) return (EINVAL); if (strcmp(name, root) != 0) { if (setenv("zfs_be_root", name, 1) != 0) return (ENOMEM); } SLIST_INIT(&zfs_be_head); zfs_env_count = 0; len = strlen(name); dsname = strchr(name, '/'); if (dsname != NULL) { len = dsname - name; dsname++; } else dsname = ""; memcpy(poolname, name, len); poolname[len] = '\0'; spa = spa_find_by_name(poolname); if (!spa) return (ENXIO); rv = zfs_lookup_dataset(spa, dsname, &objid); if (rv != 0) return (rv); rv = zfs_callback_dataset(spa, objid, zfs_belist_add); /* Calculate and store the number of pages of BEs */ perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1); pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0); snprintf(becount, 4, "%d", pages); if (setenv("zfs_be_pages", becount, 1) != 0) return (ENOMEM); /* Roll over the page counter if it has exceeded the maximum */ currpage = strtol(getenv("zfs_be_currpage"), NULL, 10); if (currpage > pages) { if (setenv("zfs_be_currpage", "1", 1) != 0) return (ENOMEM); } /* Populate the menu environment variables */ zfs_set_env(); /* Clean up the SLIST of ZFS BEs */ while (!SLIST_EMPTY(&zfs_be_head)) { zfs_be = SLIST_FIRST(&zfs_be_head); SLIST_REMOVE_HEAD(&zfs_be_head, entries); free(zfs_be); } return (rv); } int zfs_belist_add(const char *name, uint64_t value __unused) { /* Skip special datasets that start with a $ character */ if (strncmp(name, "$", 1) == 0) { return (0); } /* Add the boot environment to the head of the SLIST */ zfs_be = malloc(sizeof(struct zfs_be_entry)); if (zfs_be == NULL) { return (ENOMEM); } zfs_be->name = name; SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries); zfs_env_count++; return (0); } int zfs_set_env(void) { char envname[32], envval[256]; char *beroot, *pagenum; int rv, page, ctr; beroot = getenv("zfs_be_root"); if (beroot == NULL) { return (1); } pagenum = getenv("zfs_be_currpage"); if (pagenum != NULL) { page = strtol(pagenum, NULL, 10); } else { page = 1; } ctr = 1; rv = 0; zfs_env_index = ZFS_BE_FIRST; SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) { /* Skip to the requested page number */ if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) { ctr++; continue; } snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index); snprintf(envval, sizeof(envval), "%s", zfs_be->name); rv = setenv(envname, envval, 1); if (rv != 0) { break; } snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index); rv = setenv(envname, envval, 1); if (rv != 0){ break; } snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index); rv = setenv(envname, "set_bootenv", 1); if (rv != 0){ break; } snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index); snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name); rv = setenv(envname, envval, 1); if (rv != 0){ break; } zfs_env_index++; if (zfs_env_index > ZFS_BE_LAST) { break; } } for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) { snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index); (void)unsetenv(envname); snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index); (void)unsetenv(envname); } return (rv); }