/* * This module derived from code donated to the FreeBSD Project by * Matthew Dillon * * Copyright (c) 1998 The FreeBSD Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include /* * LIB/MEMORY/ZALLOC.C - self contained low-overhead memory pool/allocation * subsystem * * This subsystem implements memory pools and memory allocation * routines. * * Pools are managed via a linked list of 'free' areas. Allocating * memory creates holes in the freelist, freeing memory fills them. * Since the freelist consists only of free memory areas, it is possible * to allocate the entire pool without incuring any structural overhead. * * The system works best when allocating similarly-sized chunks of * memory. Care must be taken to avoid fragmentation when * allocating/deallocating dissimilar chunks. * * When a memory pool is first allocated, the entire pool is marked as * allocated. This is done mainly because we do not want to modify any * portion of a pool's data area until we are given permission. The * caller must explicitly deallocate portions of the pool to make them * available. * * z[n]xalloc() works like z[n]alloc() but the allocation is made from * within the specified address range. If the segment could not be * allocated, NULL is returned. WARNING! The address range will be * aligned to an 8 or 16 byte boundry depending on the cpu so if you * give an unaligned address range, unexpected results may occur. * * If a standard allocation fails, the reclaim function will be called * to recover some space. This usually causes other portions of the * same pool to be released. Memory allocations at this low level * should not block but you can do that too in your reclaim function * if you want. Reclaim does not function when z[n]xalloc() is used, * only for z[n]alloc(). * * Allocation and frees of 0 bytes are valid operations. */ #include "zalloc_defs.h" /* * Objects in the pool must be aligned to at least the size of struct MemNode. * They must also be aligned to MALLOCALIGN, which should normally be larger * than the struct, so assert that to be so at compile time. */ typedef char assert_align[(sizeof(struct MemNode) <= MALLOCALIGN) ? 1 : -1]; #define MEMNODE_SIZE_MASK MALLOCALIGN_MASK /* * znalloc() - allocate memory (without zeroing) from pool. Call reclaim * and retry if appropriate, return NULL if unable to allocate * memory. */ void * znalloc(MemPool *mp, uintptr_t bytes, size_t align) { MemNode **pmn; MemNode *mn; /* * align according to pool object size (can be 0). This is * inclusive of the MEMNODE_SIZE_MASK minimum alignment. * */ bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK; if (bytes == 0) return ((void *)-1); /* * locate freelist entry big enough to hold the object. If all objects * are the same size, this is a constant-time function. */ if (bytes > mp->mp_Size - mp->mp_Used) return (NULL); for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) { char *ptr = (char *)mn; uintptr_t dptr; char *aligned; size_t extra; dptr = (uintptr_t)(ptr + MALLOCALIGN); /* pointer to data */ aligned = (char *)(roundup2(dptr, align) - MALLOCALIGN); extra = aligned - ptr; if (bytes + extra > mn->mr_Bytes) continue; /* * Cut extra from head and create new memory node from * remainder. */ if (extra != 0) { MemNode *new; new = (MemNode *)aligned; new->mr_Next = mn->mr_Next; new->mr_Bytes = mn->mr_Bytes - extra; /* And update current memory node */ mn->mr_Bytes = extra; mn->mr_Next = new; /* In next iteration, we will get our aligned address */ continue; } /* * Cut a chunk of memory out of the beginning of this * block and fixup the link appropriately. */ if (mn->mr_Bytes == bytes) { *pmn = mn->mr_Next; } else { mn = (MemNode *)((char *)mn + bytes); mn->mr_Next = ((MemNode *)ptr)->mr_Next; mn->mr_Bytes = ((MemNode *)ptr)->mr_Bytes - bytes; *pmn = mn; } mp->mp_Used += bytes; return(ptr); } /* * Memory pool is full, return NULL. */ return (NULL); } /* * zfree() - free previously allocated memory */ void zfree(MemPool *mp, void *ptr, uintptr_t bytes) { MemNode **pmn; MemNode *mn; /* * align according to pool object size (can be 0). This is * inclusive of the MEMNODE_SIZE_MASK minimum alignment. */ bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK; if (bytes == 0) return; /* * panic if illegal pointer */ if ((char *)ptr < (char *)mp->mp_Base || (char *)ptr + bytes > (char *)mp->mp_End || ((uintptr_t)ptr & MEMNODE_SIZE_MASK) != 0) panic("zfree(%p,%ju): wild pointer", ptr, (uintmax_t)bytes); /* * free the segment */ mp->mp_Used -= bytes; for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) { /* * If area between last node and current node * - check range * - check merge with next area * - check merge with previous area */ if ((char *)ptr <= (char *)mn) { /* * range check */ if ((char *)ptr + bytes > (char *)mn) { panic("zfree(%p,%ju): corrupt memlist1", ptr, (uintmax_t)bytes); } /* * merge against next area or create independent area */ if ((char *)ptr + bytes == (char *)mn) { ((MemNode *)ptr)->mr_Next = mn->mr_Next; ((MemNode *)ptr)->mr_Bytes = bytes + mn->mr_Bytes; } else { ((MemNode *)ptr)->mr_Next = mn; ((MemNode *)ptr)->mr_Bytes = bytes; } *pmn = mn = (MemNode *)ptr; /* * merge against previous area (if there is a previous * area). */ if (pmn != &mp->mp_First) { if ((char *)pmn + ((MemNode*)pmn)->mr_Bytes == (char *)ptr) { ((MemNode *)pmn)->mr_Next = mn->mr_Next; ((MemNode *)pmn)->mr_Bytes += mn->mr_Bytes; mn = (MemNode *)pmn; } } return; } if ((char *)ptr < (char *)mn + mn->mr_Bytes) { panic("zfree(%p,%ju): corrupt memlist2", ptr, (uintmax_t)bytes); } } /* * We are beyond the last MemNode, append new MemNode. Merge against * previous area if possible. */ if (pmn == &mp->mp_First || (char *)pmn + ((MemNode *)pmn)->mr_Bytes != (char *)ptr) { ((MemNode *)ptr)->mr_Next = NULL; ((MemNode *)ptr)->mr_Bytes = bytes; *pmn = (MemNode *)ptr; mn = (MemNode *)ptr; } else { ((MemNode *)pmn)->mr_Bytes += bytes; mn = (MemNode *)pmn; } } /* * zextendPool() - extend memory pool to cover additional space. * * Note: the added memory starts out as allocated, you * must free it to make it available to the memory subsystem. * * Note: mp_Size may not reflect (mp_End - mp_Base) range * due to other parts of the system doing their own sbrk() * calls. */ void zextendPool(MemPool *mp, void *base, uintptr_t bytes) { if (mp->mp_Size == 0) { mp->mp_Base = base; mp->mp_Used = bytes; mp->mp_End = (char *)base + bytes; mp->mp_Size = bytes; } else { void *pend = (char *)mp->mp_Base + mp->mp_Size; if (base < mp->mp_Base) { mp->mp_Size += (char *)mp->mp_Base - (char *)base; mp->mp_Used += (char *)mp->mp_Base - (char *)base; mp->mp_Base = base; } base = (char *)base + bytes; if (base > pend) { mp->mp_Size += (char *)base - (char *)pend; mp->mp_Used += (char *)base - (char *)pend; mp->mp_End = (char *)base; } } } #ifdef ZALLOCDEBUG void zallocstats(MemPool *mp) { int abytes = 0; int hbytes = 0; int fcount = 0; MemNode *mn; printf("%d bytes reserved", (int)mp->mp_Size); mn = mp->mp_First; if ((void *)mn != (void *)mp->mp_Base) { abytes += (char *)mn - (char *)mp->mp_Base; } while (mn != NULL) { if ((char *)mn + mn->mr_Bytes != mp->mp_End) { hbytes += mn->mr_Bytes; ++fcount; } if (mn->mr_Next != NULL) { abytes += (char *)mn->mr_Next - ((char *)mn + mn->mr_Bytes); } mn = mn->mr_Next; } printf(" %d bytes allocated\n%d fragments (%d bytes fragmented)\n", abytes, fcount, hbytes); } #endif