/*- * Copyright (c) 2005-2009 Jung-uk Kim * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #define PTOV(x) ptov(x) /* Only enable 64-bit entry point if it makes sense */ #if __SIZEOF_POINTER__ > 4 #define HAS_SMBV3 1 #endif /* * Detect SMBIOS and export information about the SMBIOS into the * environment. * * System Management BIOS Reference Specification, v2.6 Final * http://www.dmtf.org/standards/published_documents/DSP0134_2.6.0.pdf * * System Management BIOS (SMBIOS) Reference Specification, 3.6.0 * https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.6.0.pdf */ /* * The first quoted paragraph below can also be found in section 2.1.1 SMBIOS * Structure Table Entry Point of System Management BIOS Reference * Specification, v2.6 Final * * (From System Management BIOS (SMBIOS) Reference Specification, 3.6.0) * 5.2.1 SMBIOS 2.1 (32-bit) Entry Point * * "On non-UEFI systems, the 32-bit SMBIOS Entry Point structure, can be * located by application software by searching for the anchor-string on * paragraph (16-byte) boundaries within the physical memory address * range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate * anchor string that is used by some existing DMI browsers. * * On UEFI-based systems, the SMBIOS Entry Point structure can be located by * looking in the EFI Configuration Table for the SMBIOS GUID * (SMBIOS_TABLE_GUID, {EB9D2D31-2D88-11D3-9A16-0090273FC14D}) and using the * associated pointer. See section 4.6 of the UEFI Specification for details. * See section 2.3 of the UEFI Specification for how to report the containing * memory type. * * NOTE While the SMBIOS Major and Minor Versions (offsets 06h and 07h) * currently duplicate the information that is present in the SMBIOS BCD * Revision (offset 1Eh), they provide a path for future growth in this * specification. The BCD Revision, for example, provides only a single digit * for each of the major and minor version numbers." * * 5.2.2 SMBIOS 860 3.0 (64-bit) Entry Point * * "On non-UEFI systems, the 64-bit SMBIOS Entry Point structure can be located * by application software by searching for the anchor-string on paragraph * (16-byte) boundaries within the physical memory address range 000F0000h to * 000FFFFFh. * * On UEFI-based systems, the SMBIOS Entry Point structure can be located by * looking in the EFI Configuration Table for the SMBIOS 3.x GUID * (SMBIOS3_TABLE_GUID, {F2FD1544-9794-4A2C-992E-E5BBCF20E394}) and using the * associated pointer. See section 4.6 of the UEFI Specification for details. * See section 2.3 of the UEFI Specification for how to report the containing * memory type." */ #define SMBIOS_START 0xf0000 #define SMBIOS_LENGTH 0x10000 #define SMBIOS_STEP 0x10 #define SMBIOS_SIG "_SM_" #define SMBIOS3_SIG "_SM3_" #define SMBIOS_DMI_SIG "_DMI_" /* * 5.1 General *... * NOTE The Entry Point Structure and all SMBIOS structures assume a * little-endian ordering convention... * ... * * We use memcpy to avoid unaligned access to memory. To normal memory, this is * fine, but the memory we are using might be mmap'd /dev/mem which under Linux * on aarch64 doesn't allow unaligned access. leXdec and friends can't be used * because those can optimize to an unaligned load (which often is fine, but not * for mmap'd /dev/mem which has special memory attributes). */ static inline uint8_t SMBIOS_GET8(const caddr_t base, int off) { return (base[off]); } static inline uint16_t SMBIOS_GET16(const caddr_t base, int off) { uint16_t v; memcpy(&v, base + off, sizeof(v)); return (le16toh(v)); } static inline uint32_t SMBIOS_GET32(const caddr_t base, int off) { uint32_t v; memcpy(&v, base + off, sizeof(v)); return (le32toh(v)); } static inline uint64_t SMBIOS_GET64(const caddr_t base, int off) { uint64_t v; memcpy(&v, base + off, sizeof(v)); return (le64toh(v)); } #define SMBIOS_GETLEN(base) SMBIOS_GET8(base, 0x01) #define SMBIOS_GETSTR(base) ((base) + SMBIOS_GETLEN(base)) struct smbios_attr { int probed; caddr_t addr; size_t length; size_t count; int major; int minor; int ver; const char* bios_vendor; const char* maker; const char* product; uint32_t enabled_memory; uint32_t old_enabled_memory; uint8_t enabled_sockets; uint8_t populated_sockets; }; static struct smbios_attr smbios; #ifdef HAS_SMBV3 static int isv3; #endif static uint8_t smbios_checksum(const caddr_t addr, const uint8_t len) { uint8_t sum; int i; for (sum = 0, i = 0; i < len; i++) sum += SMBIOS_GET8(addr, i); return (sum); } static caddr_t smbios_sigsearch(const caddr_t addr, const uint32_t len) { caddr_t cp; /* Search on 16-byte boundaries. */ for (cp = addr; cp < addr + len; cp += SMBIOS_STEP) { /* v2.1, 32-bit Entry point */ if (strncmp(cp, SMBIOS_SIG, sizeof(SMBIOS_SIG) - 1) == 0 && smbios_checksum(cp, SMBIOS_GET8(cp, 0x05)) == 0 && strncmp(cp + 0x10, SMBIOS_DMI_SIG, 5) == 0 && smbios_checksum(cp + 0x10, 0x0f) == 0) return (cp); #ifdef HAS_SMBV3 /* v3.0, 64-bit Entry point */ if (strncmp(cp, SMBIOS3_SIG, sizeof(SMBIOS3_SIG) - 1) == 0 && smbios_checksum(cp, SMBIOS_GET8(cp, 0x06)) == 0) { isv3 = 1; return (cp); } #endif } return (NULL); } static const char* smbios_getstring(caddr_t addr, const int offset) { caddr_t cp; int i, idx; idx = SMBIOS_GET8(addr, offset); if (idx != 0) { cp = SMBIOS_GETSTR(addr); for (i = 1; i < idx; i++) cp += strlen(cp) + 1; return cp; } return (NULL); } static void smbios_setenv(const char *name, caddr_t addr, const int offset) { const char* val; val = smbios_getstring(addr, offset); if (val != NULL) setenv(name, val, 1); } #ifdef SMBIOS_SERIAL_NUMBERS #define UUID_SIZE 16 #define UUID_TYPE uint32_t #define UUID_STEP sizeof(UUID_TYPE) #define UUID_ALL_BITS (UUID_SIZE / UUID_STEP) #define UUID_GET(base, off) SMBIOS_GET32(base, off) static void smbios_setuuid(const char *name, const caddr_t addr, const int ver __unused) { char uuid[37]; int byteorder, i, ones, zeros; UUID_TYPE n; uint32_t f1; uint16_t f2, f3; for (i = 0, ones = 0, zeros = 0; i < UUID_SIZE; i += UUID_STEP) { n = UUID_GET(addr, i) + 1; if (zeros == 0 && n == 0) ones++; else if (ones == 0 && n == 1) zeros++; else break; } if (ones != UUID_ALL_BITS && zeros != UUID_ALL_BITS) { /* * 3.3.2.1 System UUID * * "Although RFC 4122 recommends network byte order for all * fields, the PC industry (including the ACPI, UEFI, and * Microsoft specifications) has consistently used * little-endian byte encoding for the first three fields: * time_low, time_mid, time_hi_and_version. The same encoding, * also known as wire format, should also be used for the * SMBIOS representation of the UUID." * * Note: We use network byte order for backward compatibility * unless SMBIOS version is 2.6+ or little-endian is forced. */ #if defined(SMBIOS_LITTLE_ENDIAN_UUID) byteorder = LITTLE_ENDIAN; #elif defined(SMBIOS_NETWORK_ENDIAN_UUID) byteorder = BIG_ENDIAN; #else byteorder = ver < 0x0206 ? BIG_ENDIAN : LITTLE_ENDIAN; #endif if (byteorder != LITTLE_ENDIAN) { f1 = ntohl(SMBIOS_GET32(addr, 0)); f2 = ntohs(SMBIOS_GET16(addr, 4)); f3 = ntohs(SMBIOS_GET16(addr, 6)); } else { f1 = le32toh(SMBIOS_GET32(addr, 0)); f2 = le16toh(SMBIOS_GET16(addr, 4)); f3 = le16toh(SMBIOS_GET16(addr, 6)); } sprintf(uuid, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", f1, f2, f3, SMBIOS_GET8(addr, 8), SMBIOS_GET8(addr, 9), SMBIOS_GET8(addr, 10), SMBIOS_GET8(addr, 11), SMBIOS_GET8(addr, 12), SMBIOS_GET8(addr, 13), SMBIOS_GET8(addr, 14), SMBIOS_GET8(addr, 15)); setenv(name, uuid, 1); } } #undef UUID_SIZE #undef UUID_TYPE #undef UUID_STEP #undef UUID_ALL_BITS #undef UUID_GET #endif static const char * smbios_parse_chassis_type(caddr_t addr) { int type; type = SMBIOS_GET8(addr, 0x5); switch (type) { case 0x1: return ("Other"); case 0x2: return ("Unknown"); case 0x3: return ("Desktop"); case 0x4: return ("Low Profile Desktop"); case 0x5: return ("Pizza Box"); case 0x6: return ("Mini Tower"); case 0x7: return ("Tower"); case 0x8: return ("Portable"); case 0x9: return ("Laptop"); case 0xA: return ("Notebook"); case 0xB: return ("Hand Held"); case 0xC: return ("Docking Station"); case 0xD: return ("All in One"); case 0xE: return ("Sub Notebook"); case 0xF: return ("Lunch Box"); case 0x10: return ("Space-saving"); case 0x11: return ("Main Server Chassis"); case 0x12: return ("Expansion Chassis"); case 0x13: return ("SubChassis"); case 0x14: return ("Bus Expansion Chassis"); case 0x15: return ("Peripheral Chassis"); case 0x16: return ("RAID Chassis"); case 0x17: return ("Rack Mount Chassis"); case 0x18: return ("Sealed-case PC"); case 0x19: return ("Multi-system chassis"); case 0x1A: return ("Compact PCI"); case 0x1B: return ("Advanced TCA"); case 0x1C: return ("Blade"); case 0x1D: return ("Blade Enclosure"); case 0x1E: return ("Tablet"); case 0x1F: return ("Convertible"); case 0x20: return ("Detachable"); case 0x21: return ("IoT Gateway"); case 0x22: return ("Embedded PC"); case 0x23: return ("Mini PC"); case 0x24: return ("Stick PC"); } return ("Undefined"); } static caddr_t smbios_parse_table(const caddr_t addr) { caddr_t cp; int proc, size, osize, type; uint8_t bios_minor, bios_major; char buf[16]; type = SMBIOS_GET8(addr, 0); /* 3.1.2 Structure Header Format */ switch(type) { case 0: /* 3.3.1 BIOS Information (Type 0) */ smbios_setenv("smbios.bios.vendor", addr, 0x04); smbios_setenv("smbios.bios.version", addr, 0x05); smbios_setenv("smbios.bios.reldate", addr, 0x08); bios_major = SMBIOS_GET8(addr, 0x14); bios_minor = SMBIOS_GET8(addr, 0x15); if (bios_minor != 0xFF && bios_major != 0xFF) { snprintf(buf, sizeof(buf), "%u.%u", bios_major, bios_minor); setenv("smbios.bios.revision", buf, 1); } break; case 1: /* 3.3.2 System Information (Type 1) */ smbios_setenv("smbios.system.maker", addr, 0x04); smbios_setenv("smbios.system.product", addr, 0x05); smbios_setenv("smbios.system.version", addr, 0x06); #ifdef SMBIOS_SERIAL_NUMBERS smbios_setenv("smbios.system.serial", addr, 0x07); smbios_setuuid("smbios.system.uuid", addr + 0x08, smbios.ver); #endif if (smbios.major > 2 || (smbios.major == 2 && smbios.minor >= 4)) { smbios_setenv("smbios.system.sku", addr, 0x19); smbios_setenv("smbios.system.family", addr, 0x1a); } break; case 2: /* 3.3.3 Base Board (or Module) Information (Type 2) */ smbios_setenv("smbios.planar.maker", addr, 0x04); smbios_setenv("smbios.planar.product", addr, 0x05); smbios_setenv("smbios.planar.version", addr, 0x06); #ifdef SMBIOS_SERIAL_NUMBERS smbios_setenv("smbios.planar.serial", addr, 0x07); smbios_setenv("smbios.planar.tag", addr, 0x08); #endif smbios_setenv("smbios.planar.location", addr, 0x0a); break; case 3: /* 3.3.4 System Enclosure or Chassis (Type 3) */ smbios_setenv("smbios.chassis.maker", addr, 0x04); setenv("smbios.chassis.type", smbios_parse_chassis_type(addr), 1); smbios_setenv("smbios.chassis.version", addr, 0x06); #ifdef SMBIOS_SERIAL_NUMBERS smbios_setenv("smbios.chassis.serial", addr, 0x07); smbios_setenv("smbios.chassis.tag", addr, 0x08); #endif break; case 4: /* 3.3.5 Processor Information (Type 4) */ /* * Offset 18h: Processor Status * * Bit 7 Reserved, must be 0 * Bit 6 CPU Socket Populated * 1 - CPU Socket Populated * 0 - CPU Socket Unpopulated * Bit 5:3 Reserved, must be zero * Bit 2:0 CPU Status * 0h - Unknown * 1h - CPU Enabled * 2h - CPU Disabled by User via BIOS Setup * 3h - CPU Disabled by BIOS (POST Error) * 4h - CPU is Idle, waiting to be enabled * 5-6h - Reserved * 7h - Other */ proc = SMBIOS_GET8(addr, 0x18); if ((proc & 0x07) == 1) smbios.enabled_sockets++; if ((proc & 0x40) != 0) smbios.populated_sockets++; break; case 6: /* 3.3.7 Memory Module Information (Type 6, Obsolete) */ /* * Offset 0Ah: Enabled Size * * Bit 7 Bank connection * 1 - Double-bank connection * 0 - Single-bank connection * Bit 6:0 Size (n), where 2**n is the size in MB * 7Dh - Not determinable (Installed Size only) * 7Eh - Module is installed, but no memory * has been enabled * 7Fh - Not installed */ osize = SMBIOS_GET8(addr, 0x0a) & 0x7f; if (osize > 0 && osize < 22) smbios.old_enabled_memory += 1 << (osize + 10); break; case 17: /* 3.3.18 Memory Device (Type 17) */ /* * Offset 0Ch: Size * * Bit 15 Granularity * 1 - Value is in kilobytes units * 0 - Value is in megabytes units * Bit 14:0 Size */ size = SMBIOS_GET16(addr, 0x0c); if (size != 0 && size != 0xffff) smbios.enabled_memory += (size & 0x8000) != 0 ? (size & 0x7fff) : (size << 10); break; default: /* skip other types */ break; } /* Find structure terminator. */ cp = SMBIOS_GETSTR(addr); while (SMBIOS_GET16(cp, 0) != 0) cp++; return (cp + 2); } static caddr_t smbios_find_struct(int type) { caddr_t dmi; size_t i; caddr_t ep; if (smbios.addr == NULL) return (NULL); ep = smbios.addr + smbios.length; for (dmi = smbios.addr, i = 0; dmi < ep && i < smbios.count; i++) { if (SMBIOS_GET8(dmi, 0) == type) { return dmi; } /* Find structure terminator. */ dmi = SMBIOS_GETSTR(dmi); while (SMBIOS_GET16(dmi, 0) != 0 && dmi < ep) { dmi++; } dmi += 2; /* For checksum */ } return (NULL); } static void smbios_probe(const caddr_t addr) { caddr_t saddr, info; uintptr_t paddr; int maj_off; int min_off; if (smbios.probed) return; smbios.probed = 1; /* Search signatures and validate checksums. */ saddr = smbios_sigsearch(addr ? addr : PTOV(SMBIOS_START), SMBIOS_LENGTH); if (saddr == NULL) return; #ifdef HAS_SMBV3 if (isv3) { smbios.length = SMBIOS_GET32(saddr, 0x0c); /* Structure Table Length */ paddr = SMBIOS_GET64(saddr, 0x10); /* Structure Table Address */ smbios.count = -1; /* not present in V3 */ smbios.ver = 0; /* not present in V3 */ maj_off = 0x07; min_off = 0x08; } else #endif { smbios.length = SMBIOS_GET16(saddr, 0x16); /* Structure Table Length */ paddr = SMBIOS_GET32(saddr, 0x18); /* Structure Table Address */ smbios.count = SMBIOS_GET16(saddr, 0x1c); /* No of SMBIOS Structures */ smbios.ver = SMBIOS_GET8(saddr, 0x1e); /* SMBIOS BCD Revision */ maj_off = 0x06; min_off = 0x07; } if (smbios.ver != 0) { smbios.major = smbios.ver >> 4; smbios.minor = smbios.ver & 0x0f; if (smbios.major > 9 || smbios.minor > 9) smbios.ver = 0; } if (smbios.ver == 0) { smbios.major = SMBIOS_GET8(saddr, maj_off);/* SMBIOS Major Version */ smbios.minor = SMBIOS_GET8(saddr, min_off);/* SMBIOS Minor Version */ } smbios.ver = (smbios.major << 8) | smbios.minor; smbios.addr = PTOV(paddr); /* Get system information from SMBIOS */ info = smbios_find_struct(0x00); if (info != NULL) { smbios.bios_vendor = smbios_getstring(info, 0x04); } info = smbios_find_struct(0x01); if (info != NULL) { smbios.maker = smbios_getstring(info, 0x04); smbios.product = smbios_getstring(info, 0x05); } } void smbios_detect(const caddr_t addr) { char buf[16]; caddr_t dmi; size_t i; smbios_probe(addr); if (smbios.addr == NULL) return; for (dmi = smbios.addr, i = 0; dmi < smbios.addr + smbios.length && i < smbios.count; i++) dmi = smbios_parse_table(dmi); sprintf(buf, "%d.%d", smbios.major, smbios.minor); setenv("smbios.version", buf, 1); if (smbios.enabled_memory > 0 || smbios.old_enabled_memory > 0) { sprintf(buf, "%u", smbios.enabled_memory > 0 ? smbios.enabled_memory : smbios.old_enabled_memory); setenv("smbios.memory.enabled", buf, 1); } if (smbios.enabled_sockets > 0) { sprintf(buf, "%u", smbios.enabled_sockets); setenv("smbios.socket.enabled", buf, 1); } if (smbios.populated_sockets > 0) { sprintf(buf, "%u", smbios.populated_sockets); setenv("smbios.socket.populated", buf, 1); } } static int smbios_match_str(const char* s1, const char* s2) { return (s1 == NULL || (s2 != NULL && !strcmp(s1, s2))); } int smbios_match(const char* bios_vendor, const char* maker, const char* product) { /* XXXRP currently, only called from non-EFI. */ smbios_probe(NULL); return (smbios_match_str(bios_vendor, smbios.bios_vendor) && smbios_match_str(maker, smbios.maker) && smbios_match_str(product, smbios.product)); }