/*- * Copyright (c) 2013 The FreeBSD Foundation * * This software was developed by Benno Rice under sponsorship from * the FreeBSD Foundation. * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include "loader_efi.h" #define M(x) ((x) * 1024 * 1024) #define G(x) (1UL * (x) * 1024 * 1024 * 1024) #if defined(__i386__) || defined(__amd64__) #include #include #include /* * The code is excerpted from sys/x86/x86/identcpu.c: identify_cpu(), * identify_hypervisor(), and dev/hyperv/vmbus/hyperv.c: hyperv_identify(). */ #define CPUID_LEAF_HV_MAXLEAF 0x40000000 #define CPUID_LEAF_HV_INTERFACE 0x40000001 #define CPUID_LEAF_HV_FEATURES 0x40000003 #define CPUID_LEAF_HV_LIMITS 0x40000005 #define CPUID_HV_IFACE_HYPERV 0x31237648 /* HV#1 */ #define CPUID_HV_MSR_TIME_REFCNT 0x0002 /* MSR_HV_TIME_REF_COUNT */ #define CPUID_HV_MSR_HYPERCALL 0x0020 static int running_on_hyperv(void) { char hv_vendor[16]; uint32_t regs[4]; do_cpuid(1, regs); if ((regs[2] & CPUID2_HV) == 0) return (0); do_cpuid(CPUID_LEAF_HV_MAXLEAF, regs); if (regs[0] < CPUID_LEAF_HV_LIMITS) return (0); ((uint32_t *)&hv_vendor)[0] = regs[1]; ((uint32_t *)&hv_vendor)[1] = regs[2]; ((uint32_t *)&hv_vendor)[2] = regs[3]; hv_vendor[12] = '\0'; if (strcmp(hv_vendor, "Microsoft Hv") != 0) return (0); do_cpuid(CPUID_LEAF_HV_INTERFACE, regs); if (regs[0] != CPUID_HV_IFACE_HYPERV) return (0); do_cpuid(CPUID_LEAF_HV_FEATURES, regs); if ((regs[0] & CPUID_HV_MSR_HYPERCALL) == 0) return (0); if ((regs[0] & CPUID_HV_MSR_TIME_REFCNT) == 0) return (0); return (1); } static void efi_verify_staging_size(unsigned long *nr_pages) { UINTN sz; EFI_MEMORY_DESCRIPTOR *map = NULL, *p; EFI_PHYSICAL_ADDRESS start, end; UINTN key, dsz; UINT32 dver; EFI_STATUS status; int i, ndesc; unsigned long available_pages = 0; sz = 0; for (;;) { status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); if (!EFI_ERROR(status)) break; if (status != EFI_BUFFER_TOO_SMALL) { printf("Can't read memory map: %lu\n", EFI_ERROR_CODE(status)); goto out; } free(map); /* Allocate 10 descriptors more than the size reported, * to allow for any fragmentation caused by calling * malloc */ map = malloc(sz + (10 * dsz)); if (map == NULL) { printf("Unable to allocate memory\n"); goto out; } } ndesc = sz / dsz; for (i = 0, p = map; i < ndesc; i++, p = NextMemoryDescriptor(p, dsz)) { start = p->PhysicalStart; end = start + p->NumberOfPages * EFI_PAGE_SIZE; if (KERNLOAD < start || KERNLOAD >= end) continue; available_pages = p->NumberOfPages - ((KERNLOAD - start) >> EFI_PAGE_SHIFT); break; } if (available_pages == 0) { printf("Can't find valid memory map for staging area!\n"); goto out; } i++; p = NextMemoryDescriptor(p, dsz); for ( ; i < ndesc; i++, p = NextMemoryDescriptor(p, dsz)) { if (p->Type != EfiConventionalMemory && p->Type != EfiLoaderData) break; if (p->PhysicalStart != end) break; end = p->PhysicalStart + p->NumberOfPages * EFI_PAGE_SIZE; available_pages += p->NumberOfPages; } if (*nr_pages > available_pages) { printf("Staging area's size is reduced: %ld -> %ld!\n", *nr_pages, available_pages); *nr_pages = available_pages; } out: free(map); } #endif /* __i386__ || __amd64__ */ #if defined(__arm__) #define DEFAULT_EFI_STAGING_SIZE 32 #else #define DEFAULT_EFI_STAGING_SIZE 64 #endif #ifndef EFI_STAGING_SIZE #define EFI_STAGING_SIZE DEFAULT_EFI_STAGING_SIZE #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ defined(__riscv) #define EFI_STAGING_2M_ALIGN 1 #else #define EFI_STAGING_2M_ALIGN 0 #endif #if defined(__amd64__) #define EFI_STAGING_SLOP M(8) #else #define EFI_STAGING_SLOP 0 #endif static u_long staging_slop = EFI_STAGING_SLOP; EFI_PHYSICAL_ADDRESS staging, staging_end, staging_base; int stage_offset_set = 0; ssize_t stage_offset; static void efi_copy_free(void) { BS->FreePages(staging_base, (staging_end - staging_base) / EFI_PAGE_SIZE); stage_offset_set = 0; stage_offset = 0; } #ifdef __amd64__ int copy_staging = COPY_STAGING_AUTO; static int command_copy_staging(int argc, char *argv[]) { static const char *const mode[3] = { [COPY_STAGING_ENABLE] = "enable", [COPY_STAGING_DISABLE] = "disable", [COPY_STAGING_AUTO] = "auto", }; int prev, res; res = CMD_OK; if (argc > 2) { res = CMD_ERROR; } else if (argc == 2) { prev = copy_staging; if (strcmp(argv[1], "enable") == 0) copy_staging = COPY_STAGING_ENABLE; else if (strcmp(argv[1], "disable") == 0) copy_staging = COPY_STAGING_DISABLE; else if (strcmp(argv[1], "auto") == 0) copy_staging = COPY_STAGING_AUTO; else { printf("usage: copy_staging enable|disable|auto\n"); res = CMD_ERROR; } if (res == CMD_OK && prev != copy_staging) { printf("changed copy_staging, unloading kernel\n"); unload(); efi_copy_free(); efi_copy_init(); } } else { printf("copy staging: %s\n", mode[copy_staging]); } return (res); } COMMAND_SET(copy_staging, "copy_staging", "copy staging", command_copy_staging); #endif static int command_staging_slop(int argc, char *argv[]) { char *endp; u_long new, prev; int res; res = CMD_OK; if (argc > 2) { res = CMD_ERROR; } else if (argc == 2) { new = strtoul(argv[1], &endp, 0); if (*endp != '\0') { printf("invalid slop value\n"); res = CMD_ERROR; } if (res == CMD_OK && staging_slop != new) { printf("changed slop, unloading kernel\n"); unload(); efi_copy_free(); efi_copy_init(); } } else { printf("staging slop %#lx\n", staging_slop); } return (res); } COMMAND_SET(staging_slop, "staging_slop", "set staging slop", command_staging_slop); #if defined(__i386__) || defined(__amd64__) /* * The staging area must reside in the the first 1GB or 4GB physical * memory: see elf64_exec() in * boot/efi/loader/arch/amd64/elf64_freebsd.c. */ static EFI_PHYSICAL_ADDRESS get_staging_max(void) { EFI_PHYSICAL_ADDRESS res; #if defined(__i386__) res = G(1); #elif defined(__amd64__) res = copy_staging == COPY_STAGING_ENABLE ? G(1) : G(4); #endif return (res); } #define EFI_ALLOC_METHOD AllocateMaxAddress #else #define EFI_ALLOC_METHOD AllocateAnyPages #endif int efi_copy_init(void) { EFI_STATUS status; unsigned long nr_pages; vm_offset_t ess; ess = EFI_STAGING_SIZE; if (ess < DEFAULT_EFI_STAGING_SIZE) ess = DEFAULT_EFI_STAGING_SIZE; nr_pages = EFI_SIZE_TO_PAGES(M(1) * ess); #if defined(__i386__) || defined(__amd64__) /* * We'll decrease nr_pages, if it's too big. Currently we only * apply this to FreeBSD VM running on Hyper-V. Why? Please see * https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=211746#c28 */ if (running_on_hyperv()) efi_verify_staging_size(&nr_pages); staging = get_staging_max(); #endif status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderData, nr_pages, &staging); if (EFI_ERROR(status)) { printf("failed to allocate staging area: %lu\n", EFI_ERROR_CODE(status)); return (status); } staging_base = staging; staging_end = staging + nr_pages * EFI_PAGE_SIZE; #if EFI_STAGING_2M_ALIGN /* * Round the kernel load address to a 2MiB value. This is needed * because the kernel builds a page table based on where it has * been loaded in physical address space. As the kernel will use * either a 1MiB or 2MiB page for this we need to make sure it * is correctly aligned for both cases. */ staging = roundup2(staging, M(2)); #endif return (0); } static bool efi_check_space(vm_offset_t end) { EFI_PHYSICAL_ADDRESS addr, new_base, new_staging; EFI_STATUS status; unsigned long nr_pages; end = roundup2(end, EFI_PAGE_SIZE); /* There is already enough space */ if (end + staging_slop <= staging_end) return (true); if (!boot_services_active) { if (end <= staging_end) return (true); panic("efi_check_space: cannot expand staging area " "after boot services were exited\n"); } /* * Add slop at the end: * 1. amd64 kernel expects to do some very early allocations * by carving out memory after kernend. Slop guarantees * that it does not ovewrite anything useful. * 2. It seems that initial calculation of the staging size * could be somewhat smaller than actually copying in after * boot services are exited. Slop avoids calling * BS->AllocatePages() when it cannot work. */ end += staging_slop; nr_pages = EFI_SIZE_TO_PAGES(end - staging_end); #if defined(__i386__) || defined(__amd64__) /* * i386 needs all memory to be allocated under the 1G boundary. * amd64 needs all memory to be allocated under the 1G or 4G boundary. */ if (end > get_staging_max()) goto before_staging; #endif /* Try to allocate more space after the previous allocation */ addr = staging_end; status = BS->AllocatePages(AllocateAddress, EfiLoaderData, nr_pages, &addr); if (!EFI_ERROR(status)) { staging_end = staging_end + nr_pages * EFI_PAGE_SIZE; return (true); } before_staging: /* Try allocating space before the previous allocation */ if (staging < nr_pages * EFI_PAGE_SIZE) goto expand; addr = staging - nr_pages * EFI_PAGE_SIZE; #if EFI_STAGING_2M_ALIGN /* See efi_copy_init for why this is needed */ addr = rounddown2(addr, M(2)); #endif nr_pages = EFI_SIZE_TO_PAGES(staging_base - addr); status = BS->AllocatePages(AllocateAddress, EfiLoaderData, nr_pages, &addr); if (!EFI_ERROR(status)) { /* * Move the old allocation and update the state so * translation still works. */ staging_base = addr; memmove((void *)(uintptr_t)staging_base, (void *)(uintptr_t)staging, staging_end - staging); stage_offset -= staging - staging_base; staging = staging_base; return (true); } expand: nr_pages = EFI_SIZE_TO_PAGES(end - (vm_offset_t)staging); #if EFI_STAGING_2M_ALIGN nr_pages += M(2) / EFI_PAGE_SIZE; #endif #if defined(__i386__) || defined(__amd64__) new_base = get_staging_max(); #endif status = BS->AllocatePages(EFI_ALLOC_METHOD, EfiLoaderData, nr_pages, &new_base); if (!EFI_ERROR(status)) { #if EFI_STAGING_2M_ALIGN new_staging = roundup2(new_base, M(2)); #else new_staging = new_base; #endif /* * Move the old allocation and update the state so * translation still works. */ memcpy((void *)(uintptr_t)new_staging, (void *)(uintptr_t)staging, staging_end - staging); BS->FreePages(staging_base, (staging_end - staging_base) / EFI_PAGE_SIZE); stage_offset -= staging - new_staging; staging = new_staging; staging_end = new_base + nr_pages * EFI_PAGE_SIZE; staging_base = new_base; return (true); } printf("efi_check_space: Unable to expand staging area\n"); return (false); } void * efi_translate(vm_offset_t ptr) { return ((void *)(ptr + stage_offset)); } ssize_t efi_copyin(const void *src, vm_offset_t dest, const size_t len) { if (!stage_offset_set) { stage_offset = (vm_offset_t)staging - dest; stage_offset_set = 1; } /* XXX: Callers do not check for failure. */ if (!efi_check_space(dest + stage_offset + len)) { errno = ENOMEM; return (-1); } bcopy(src, (void *)(dest + stage_offset), len); return (len); } ssize_t efi_copyout(const vm_offset_t src, void *dest, const size_t len) { /* XXX: Callers do not check for failure. */ if (src + stage_offset + len > staging_end) { errno = ENOMEM; return (-1); } bcopy((void *)(src + stage_offset), dest, len); return (len); } ssize_t efi_readin(readin_handle_t fd, vm_offset_t dest, const size_t len) { if (!stage_offset_set) { stage_offset = (vm_offset_t)staging - dest; stage_offset_set = 1; } if (!efi_check_space(dest + stage_offset + len)) { errno = ENOMEM; return (-1); } return (VECTX_READ(fd, (void *)(dest + stage_offset), len)); } void efi_copy_finish(void) { uint64_t *src, *dst, *last; src = (uint64_t *)(uintptr_t)staging; dst = (uint64_t *)(uintptr_t)(staging - stage_offset); last = (uint64_t *)(uintptr_t)staging_end; while (src < last) *dst++ = *src++; } void efi_copy_finish_nop(void) { }