/*- * Copyright (c) 1998 Michael Smith * Copyright (c) 2004, 2006 Marcel Moolenaar * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #ifdef EFI #include #include #else #include "kboot.h" #endif #include "bootstrap.h" #include "modinfo.h" #if defined(__amd64__) #include #endif #ifdef EFI #include "loader_efi.h" #include "gfx_fb.h" #endif #if defined(LOADER_FDT_SUPPORT) #include #endif #ifdef LOADER_GELI_SUPPORT #include "geliboot.h" #endif int bi_load(char *args, vm_offset_t *modulep, vm_offset_t *kernendp, bool exit_bs); static int bi_getboothowto(char *kargs) { #ifdef EFI const char *sw, *tmp; char *opts; int speed, port; char buf[50]; #endif char *console; int howto; howto = boot_parse_cmdline(kargs); howto |= boot_env_to_howto(); console = getenv("console"); if (console != NULL) { if (strcmp(console, "comconsole") == 0) howto |= RB_SERIAL; if (strcmp(console, "nullconsole") == 0) howto |= RB_MUTE; #ifdef EFI #if defined(__i386__) || defined(__amd64__) if (strcmp(console, "efi") == 0 && getenv("efi_8250_uid") != NULL && getenv("hw.uart.console") == NULL) { /* * If we found a 8250 com port and com speed, we need to * tell the kernel where the serial port is, and how * fast. Ideally, we'd get the port from ACPI, but that * isn't running in the loader. Do the next best thing * by allowing it to be set by a loader.conf variable, * either a EFI specific one, or the compatible * comconsole_port if not. PCI support is needed, but * for that we'd ideally refactor the * libi386/comconsole.c code to have identical behavior. * We only try to set the port for cases where we saw * the Serial(x) node when parsing, otherwise * specialized hardware that has Uart nodes will have a * bogus address set. * But if someone specifically setup hw.uart.console, * don't override that. */ speed = -1; port = -1; tmp = getenv("efi_com_speed"); if (tmp != NULL) speed = strtol(tmp, NULL, 0); tmp = getenv("efi_com_port"); if (tmp != NULL) port = strtol(tmp, NULL, 0); if (port <= 0) { tmp = getenv("comconsole_port"); if (tmp != NULL) port = strtol(tmp, NULL, 0); else { if (port == 0) port = 0x3f8; } } if (speed != -1 && port != -1) { snprintf(buf, sizeof(buf), "io:%d,br:%d", port, speed); env_setenv("hw.uart.console", EV_VOLATILE, buf, NULL, NULL); } } #endif #endif } return (howto); } #ifdef EFI static EFI_STATUS efi_do_vmap(EFI_MEMORY_DESCRIPTOR *mm, UINTN sz, UINTN mmsz, UINT32 mmver) { EFI_MEMORY_DESCRIPTOR *desc, *viter, *vmap; EFI_STATUS ret; int curr, ndesc, nset; nset = 0; desc = mm; ndesc = sz / mmsz; vmap = malloc(sz); if (vmap == NULL) /* This isn't really an EFI error case, but pretend it is */ return (EFI_OUT_OF_RESOURCES); viter = vmap; for (curr = 0; curr < ndesc; curr++, desc = NextMemoryDescriptor(desc, mmsz)) { if ((desc->Attribute & EFI_MEMORY_RUNTIME) != 0) { ++nset; desc->VirtualStart = desc->PhysicalStart; *viter = *desc; viter = NextMemoryDescriptor(viter, mmsz); } } ret = RS->SetVirtualAddressMap(nset * mmsz, mmsz, mmver, vmap); free(vmap); return (ret); } static int bi_load_efi_data(struct preloaded_file *kfp, bool exit_bs) { EFI_MEMORY_DESCRIPTOR *mm; EFI_PHYSICAL_ADDRESS addr = 0; EFI_STATUS status; const char *efi_novmap; size_t efisz; UINTN efi_mapkey; UINTN dsz, pages, retry, sz; UINT32 mmver; struct efi_map_header *efihdr; bool do_vmap; #if defined(__amd64__) || defined(__aarch64__) struct efi_fb efifb; efifb.fb_addr = gfx_state.tg_fb.fb_addr; efifb.fb_size = gfx_state.tg_fb.fb_size; efifb.fb_height = gfx_state.tg_fb.fb_height; efifb.fb_width = gfx_state.tg_fb.fb_width; efifb.fb_stride = gfx_state.tg_fb.fb_stride; efifb.fb_mask_red = gfx_state.tg_fb.fb_mask_red; efifb.fb_mask_green = gfx_state.tg_fb.fb_mask_green; efifb.fb_mask_blue = gfx_state.tg_fb.fb_mask_blue; efifb.fb_mask_reserved = gfx_state.tg_fb.fb_mask_reserved; if (efifb.fb_addr != 0) { printf("EFI framebuffer information:\n"); printf("addr, size 0x%jx, 0x%jx\n", efifb.fb_addr, efifb.fb_size); printf("dimensions %d x %d\n", efifb.fb_width, efifb.fb_height); printf("stride %d\n", efifb.fb_stride); printf("masks 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", efifb.fb_mask_red, efifb.fb_mask_green, efifb.fb_mask_blue, efifb.fb_mask_reserved); file_addmetadata(kfp, MODINFOMD_EFI_FB, sizeof(efifb), &efifb); } #endif do_vmap = true; efi_novmap = getenv("efi_disable_vmap"); if (efi_novmap != NULL) do_vmap = strcasecmp(efi_novmap, "YES") != 0; efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; /* * Assign size of EFI_MEMORY_DESCRIPTOR to keep compatible with * u-boot which doesn't fill this value when buffer for memory * descriptors is too small (eg. 0 to obtain memory map size) */ dsz = sizeof(EFI_MEMORY_DESCRIPTOR); /* * Allocate enough pages to hold the bootinfo block and the * memory map EFI will return to us. The memory map has an * unknown size, so we have to determine that first. Note that * the AllocatePages call can itself modify the memory map, so * we have to take that into account as well. The changes to * the memory map are caused by splitting a range of free * memory into two, so that one is marked as being loader * data. */ sz = 0; mm = NULL; /* * Matthew Garrett has observed at least one system changing the * memory map when calling ExitBootServices, causing it to return an * error, probably because callbacks are allocating memory. * So we need to retry calling it at least once. */ for (retry = 2; retry > 0; retry--) { for (;;) { status = BS->GetMemoryMap(&sz, mm, &efi_mapkey, &dsz, &mmver); if (!EFI_ERROR(status)) break; if (status != EFI_BUFFER_TOO_SMALL) { printf("%s: GetMemoryMap error %lu\n", __func__, EFI_ERROR_CODE(status)); return (EINVAL); } if (addr != 0) BS->FreePages(addr, pages); /* Add 10 descriptors to the size to allow for * fragmentation caused by calling AllocatePages */ sz += (10 * dsz); pages = EFI_SIZE_TO_PAGES(sz + efisz); status = BS->AllocatePages(AllocateAnyPages, EfiLoaderData, pages, &addr); if (EFI_ERROR(status)) { printf("%s: AllocatePages error %lu\n", __func__, EFI_ERROR_CODE(status)); return (ENOMEM); } /* * Read the memory map and stash it after bootinfo. Align the * memory map on a 16-byte boundary (the bootinfo block is page * aligned). */ efihdr = (struct efi_map_header *)(uintptr_t)addr; mm = (void *)((uint8_t *)efihdr + efisz); sz = (EFI_PAGE_SIZE * pages) - efisz; } if (!exit_bs) break; status = efi_exit_boot_services(efi_mapkey); if (!EFI_ERROR(status)) break; } if (retry == 0) { BS->FreePages(addr, pages); printf("ExitBootServices error %lu\n", EFI_ERROR_CODE(status)); return (EINVAL); } /* * This may be disabled by setting efi_disable_vmap in * loader.conf(5). By default we will setup the virtual * map entries. */ if (do_vmap) efi_do_vmap(mm, sz, dsz, mmver); efihdr->memory_size = sz; efihdr->descriptor_size = dsz; efihdr->descriptor_version = mmver; file_addmetadata(kfp, MODINFOMD_EFI_MAP, efisz + sz, efihdr); return (0); } #endif /* * Load the information expected by an amd64 kernel. * * - The 'boothowto' argument is constructed. * - The 'bootdev' argument is constructed. * - The 'bootinfo' struct is constructed, and copied into the kernel space. * - The kernel environment is copied into kernel space. * - Module metadata are formatted and placed in kernel space. */ int bi_load(char *args, vm_offset_t *modulep, vm_offset_t *kernendp, bool exit_bs) { struct preloaded_file *xp, *kfp; struct devdesc *rootdev; struct file_metadata *md; vm_offset_t addr; uint64_t kernend; #ifdef MODINFOMD_MODULEP uint64_t module; #endif uint64_t envp; vm_offset_t size; char *rootdevname; int howto; bool is64 = sizeof(long) == 8; #if defined(LOADER_FDT_SUPPORT) vm_offset_t dtbp; int dtb_size; #endif #if defined(__arm__) vm_offset_t vaddr; size_t i; /* * These metadata addreses must be converted for kernel after * relocation. */ uint32_t mdt[] = { MODINFOMD_SSYM, MODINFOMD_ESYM, MODINFOMD_KERNEND, MODINFOMD_ENVP, MODINFOMD_FONT, #if defined(LOADER_FDT_SUPPORT) MODINFOMD_DTBP #endif }; #endif howto = bi_getboothowto(args); /* * Allow the environment variable 'rootdev' to override the supplied * device. This should perhaps go to MI code and/or have $rootdev * tested/set by MI code before launching the kernel. */ rootdevname = getenv("rootdev"); archsw.arch_getdev((void**)(&rootdev), rootdevname, NULL); if (rootdev == NULL) { printf("Can't determine root device.\n"); return(EINVAL); } /* Try reading the /etc/fstab file to select the root device */ getrootmount(devformat(rootdev)); addr = 0; for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) { if (addr < xp->f_addr + xp->f_size) addr = xp->f_addr + xp->f_size; } /* Pad to a page boundary. */ addr = roundup(addr, PAGE_SIZE); addr = build_font_module(addr); /* Pad to a page boundary. */ addr = roundup(addr, PAGE_SIZE); /* Copy our environment. */ envp = addr; addr = md_copyenv(addr); /* Pad to a page boundary. */ addr = roundup(addr, PAGE_SIZE); #if defined(LOADER_FDT_SUPPORT) /* Handle device tree blob */ dtbp = addr; dtb_size = fdt_copy(addr); /* Pad to a page boundary */ if (dtb_size) addr += roundup(dtb_size, PAGE_SIZE); #endif kfp = file_findfile(NULL, "elf kernel"); if (kfp == NULL) kfp = file_findfile(NULL, "elf64 kernel"); if (kfp == NULL) panic("can't find kernel file"); kernend = 0; /* fill it in later */ /* Figure out the size and location of the metadata. */ *modulep = addr; file_addmetadata(kfp, MODINFOMD_HOWTO, sizeof(howto), &howto); file_addmetadata(kfp, MODINFOMD_ENVP, sizeof(envp), &envp); #if defined(LOADER_FDT_SUPPORT) if (dtb_size) file_addmetadata(kfp, MODINFOMD_DTBP, sizeof(dtbp), &dtbp); else printf("WARNING! Trying to fire up the kernel, but no " "device tree blob found!\n"); #endif file_addmetadata(kfp, MODINFOMD_KERNEND, sizeof(kernend), &kernend); #ifdef MODINFOMD_MODULEP module = *modulep; file_addmetadata(kfp, MODINFOMD_MODULEP, sizeof(module), &module); #endif #ifdef EFI file_addmetadata(kfp, MODINFOMD_FW_HANDLE, sizeof(ST), &ST); #endif #ifdef LOADER_GELI_SUPPORT geli_export_key_metadata(kfp); #endif #ifdef EFI bi_load_efi_data(kfp, exit_bs); #else bi_loadsmap(kfp); #endif size = md_copymodules(0, is64); /* Find the size of the modules */ kernend = roundup(addr + size, PAGE_SIZE); *kernendp = kernend; /* patch MODINFOMD_KERNEND */ md = file_findmetadata(kfp, MODINFOMD_KERNEND); bcopy(&kernend, md->md_data, sizeof kernend); #if defined(__arm__) *modulep -= __elfN(relocation_offset); /* Do relocation fixup on metadata of each module. */ for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) { for (i = 0; i < nitems(mdt); i++) { md = file_findmetadata(xp, mdt[i]); if (md) { bcopy(md->md_data, &vaddr, sizeof vaddr); vaddr -= __elfN(relocation_offset); bcopy(&vaddr, md->md_data, sizeof vaddr); } } } #endif /* Copy module list and metadata. */ (void)md_copymodules(addr, is64); return (0); }