.\" Copyright (c) 1983, 1991, 1993 .\" The Regents of the University of California. .\" Copyright (c) 2010-2011 The FreeBSD Foundation .\" All rights reserved. .\" .\" Portions of this documentation were written at the Centre for Advanced .\" Internet Architectures, Swinburne University of Technology, Melbourne, .\" Australia by David Hayes under sponsorship from the FreeBSD Foundation. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" From: @(#)tcp.4 8.1 (Berkeley) 6/5/93 .\" $FreeBSD$ .\" .Dd January 14, 2021 .Dt TCP 4 .Os .Sh NAME .Nm tcp .Nd Internet Transmission Control Protocol .Sh SYNOPSIS .In sys/types.h .In sys/socket.h .In netinet/in.h .In netinet/tcp.h .Ft int .Fn socket AF_INET SOCK_STREAM 0 .Sh DESCRIPTION The .Tn TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte-stream protocol used to support the .Dv SOCK_STREAM abstraction. .Tn TCP uses the standard Internet address format and, in addition, provides a per-host collection of .Dq "port addresses" . Thus, each address is composed of an Internet address specifying the host and network, with a specific .Tn TCP port on the host identifying the peer entity. .Pp Sockets utilizing the .Tn TCP protocol are either .Dq active or .Dq passive . Active sockets initiate connections to passive sockets. By default, .Tn TCP sockets are created active; to create a passive socket, the .Xr listen 2 system call must be used after binding the socket with the .Xr bind 2 system call. Only passive sockets may use the .Xr accept 2 call to accept incoming connections. Only active sockets may use the .Xr connect 2 call to initiate connections. .Pp Passive sockets may .Dq underspecify their location to match incoming connection requests from multiple networks. This technique, termed .Dq "wildcard addressing" , allows a single server to provide service to clients on multiple networks. To create a socket which listens on all networks, the Internet address .Dv INADDR_ANY must be bound. The .Tn TCP port may still be specified at this time; if the port is not specified, the system will assign one. Once a connection has been established, the socket's address is fixed by the peer entity's location. The address assigned to the socket is the address associated with the network interface through which packets are being transmitted and received. Normally, this address corresponds to the peer entity's network. .Pp .Tn TCP supports a number of socket options which can be set with .Xr setsockopt 2 and tested with .Xr getsockopt 2 : .Bl -tag -width ".Dv TCP_FUNCTION_BLK" .It Dv TCP_INFO Information about a socket's underlying TCP session may be retrieved by passing the read-only option .Dv TCP_INFO to .Xr getsockopt 2 . It accepts a single argument: a pointer to an instance of .Vt "struct tcp_info" . .Pp This API is subject to change; consult the source to determine which fields are currently filled out by this option. .Fx specific additions include send window size, receive window size, and bandwidth-controlled window space. .It Dv TCP_CCALGOOPT Set or query congestion control algorithm specific parameters. See .Xr mod_cc 4 for details. .It Dv TCP_CONGESTION Select or query the congestion control algorithm that TCP will use for the connection. See .Xr mod_cc 4 for details. .It Dv TCP_FUNCTION_BLK Select or query the set of functions that TCP will use for this connection. This allows a user to select an alternate TCP stack. The alternate TCP stack must already be loaded in the kernel. To list the available TCP stacks, see .Va functions_available in the .Sx MIB Variables section further down. To list the default TCP stack, see .Va functions_default in the .Sx MIB Variables section. .It Dv TCP_KEEPINIT This .Xr setsockopt 2 option accepts a per-socket timeout argument of .Vt "u_int" in seconds, for new, non-established .Tn TCP connections. For the global default in milliseconds see .Va keepinit in the .Sx MIB Variables section further down. .It Dv TCP_KEEPIDLE This .Xr setsockopt 2 option accepts an argument of .Vt "u_int" for the amount of time, in seconds, that the connection must be idle before keepalive probes (if enabled) are sent for the connection of this socket. If set on a listening socket, the value is inherited by the newly created socket upon .Xr accept 2 . For the global default in milliseconds see .Va keepidle in the .Sx MIB Variables section further down. .It Dv TCP_KEEPINTVL This .Xr setsockopt 2 option accepts an argument of .Vt "u_int" to set the per-socket interval, in seconds, between keepalive probes sent to a peer. If set on a listening socket, the value is inherited by the newly created socket upon .Xr accept 2 . For the global default in milliseconds see .Va keepintvl in the .Sx MIB Variables section further down. .It Dv TCP_KEEPCNT This .Xr setsockopt 2 option accepts an argument of .Vt "u_int" and allows a per-socket tuning of the number of probes sent, with no response, before the connection will be dropped. If set on a listening socket, the value is inherited by the newly created socket upon .Xr accept 2 . For the global default see the .Va keepcnt in the .Sx MIB Variables section further down. .It Dv TCP_NODELAY Under most circumstances, .Tn TCP sends data when it is presented; when outstanding data has not yet been acknowledged, it gathers small amounts of output to be sent in a single packet once an acknowledgement is received. For a small number of clients, such as window systems that send a stream of mouse events which receive no replies, this packetization may cause significant delays. The boolean option .Dv TCP_NODELAY defeats this algorithm. .It Dv TCP_MAXSEG By default, a sender- and .No receiver- Ns Tn TCP will negotiate among themselves to determine the maximum segment size to be used for each connection. The .Dv TCP_MAXSEG option allows the user to determine the result of this negotiation, and to reduce it if desired. .It Dv TCP_NOOPT .Tn TCP usually sends a number of options in each packet, corresponding to various .Tn TCP extensions which are provided in this implementation. The boolean option .Dv TCP_NOOPT is provided to disable .Tn TCP option use on a per-connection basis. .It Dv TCP_NOPUSH By convention, the .No sender- Ns Tn TCP will set the .Dq push bit, and begin transmission immediately (if permitted) at the end of every user call to .Xr write 2 or .Xr writev 2 . When this option is set to a non-zero value, .Tn TCP will delay sending any data at all until either the socket is closed, or the internal send buffer is filled. .It Dv TCP_MD5SIG This option enables the use of MD5 digests (also known as TCP-MD5) on writes to the specified socket. Outgoing traffic is digested; digests on incoming traffic are verified. When this option is enabled on a socket, all inbound and outgoing TCP segments must be signed with MD5 digests. .Pp One common use for this in a .Fx router deployment is to enable based routers to interwork with Cisco equipment at peering points. Support for this feature conforms to RFC 2385. .Pp In order for this option to function correctly, it is necessary for the administrator to add a tcp-md5 key entry to the system's security associations database (SADB) using the .Xr setkey 8 utility. This entry can only be specified on a per-host basis at this time. .Pp If an SADB entry cannot be found for the destination, the system does not send any outgoing segments and drops any inbound segments. .It Dv TCP_STATS Manage collection of connection level statistics using the .Xr stats 3 framework. .Pp Each dropped segment is taken into account in the TCP protocol statistics. .It Dv TCP_TXTLS_ENABLE Enable in-kernel Transport Layer Security (TLS) for data written to this socket. See .Xr ktls 4 for more details. .It Dv TCP_TXTLS_MODE The integer argument can be used to get or set the current TLS transmit mode of a socket. See .Xr ktls 4 for more details. .It Dv TCP_RXTLS_ENABLE Enable in-kernel TLS for data read from this socket. See .Xr ktls 4 for more details. .It Dv TCP_REUSPORT_LB_NUMA Changes NUMA affinity filtering for an established TCP listen socket. This option takes a single integer argument which specifies the NUMA domain to filter on for this listen socket. The argument can also have the follwing special values: .Bl -tag -width "Dv TCP_REUSPORT_LB_NUMA" .It Dv TCP_REUSPORT_LB_NUMA_NODOM Remove NUMA filtering for this listen socket. .It Dv TCP_REUSPORT_LB_NUMA_CURDOM Filter traffic associated with the domain where the calling thread is currently executing. This is typically used after a process or thread inherits a listen socket from its parent, and sets its CPU affinity to a particular core. .El .El .Pp The option level for the .Xr setsockopt 2 call is the protocol number for .Tn TCP , available from .Xr getprotobyname 3 , or .Dv IPPROTO_TCP . All options are declared in .In netinet/tcp.h . .Pp Options at the .Tn IP transport level may be used with .Tn TCP ; see .Xr ip 4 . Incoming connection requests that are source-routed are noted, and the reverse source route is used in responding. .Pp The default congestion control algorithm for .Tn TCP is .Xr cc_newreno 4 . Other congestion control algorithms can be made available using the .Xr mod_cc 4 framework. .Ss MIB Variables The .Tn TCP protocol implements a number of variables in the .Va net.inet.tcp branch of the .Xr sysctl 3 MIB. .Bl -tag -width ".Va TCPCTL_DO_RFC1323" .It Dv TCPCTL_DO_RFC1323 .Pq Va rfc1323 Implement the window scaling and timestamp options of RFC 1323/RFC 7323 (default is true). .It Va tolerate_missing_ts Tolerate the missing of timestamps (RFC 1323/RFC 7323) for .Tn TCP segments belonging to .Tn TCP connections for which support of .Tn TCP timestamps has been negotiated. (default is 0, i.e., the missing of timestamps is not tolerated). .It Dv TCPCTL_MSSDFLT .Pq Va mssdflt The default value used for the maximum segment size .Pq Dq MSS when no advice to the contrary is received from MSS negotiation. .It Dv TCPCTL_SENDSPACE .Pq Va sendspace Maximum .Tn TCP send window. .It Dv TCPCTL_RECVSPACE .Pq Va recvspace Maximum .Tn TCP receive window. .It Va log_in_vain Log any connection attempts to ports where there is not a socket accepting connections. The value of 1 limits the logging to .Tn SYN (connection establishment) packets only. That of 2 results in any .Tn TCP packets to closed ports being logged. Any value unlisted above disables the logging (default is 0, i.e., the logging is disabled). .It Va msl The Maximum Segment Lifetime, in milliseconds, for a packet. .It Va keepinit Timeout, in milliseconds, for new, non-established .Tn TCP connections. The default is 75000 msec. .It Va keepidle Amount of time, in milliseconds, that the connection must be idle before keepalive probes (if enabled) are sent. The default is 7200000 msec (2 hours). .It Va keepintvl The interval, in milliseconds, between keepalive probes sent to remote machines, when no response is received on a .Va keepidle probe. The default is 75000 msec. .It Va keepcnt Number of probes sent, with no response, before a connection is dropped. The default is 8 packets. .It Va always_keepalive Assume that .Dv SO_KEEPALIVE is set on all .Tn TCP connections, the kernel will periodically send a packet to the remote host to verify the connection is still up. .It Va icmp_may_rst Certain .Tn ICMP unreachable messages may abort connections in .Tn SYN-SENT state. .It Va do_tcpdrain Flush packets in the .Tn TCP reassembly queue if the system is low on mbufs. .It Va blackhole If enabled, disable sending of RST when a connection is attempted to a port where there is not a socket accepting connections. See .Xr blackhole 4 . .It Va delayed_ack Delay ACK to try and piggyback it onto a data packet. .It Va delacktime Maximum amount of time, in milliseconds, before a delayed ACK is sent. .It Va path_mtu_discovery Enable Path MTU Discovery. .It Va tcbhashsize Size of the .Tn TCP control-block hash table (read-only). This may be tuned using the kernel option .Dv TCBHASHSIZE or by setting .Va net.inet.tcp.tcbhashsize in the .Xr loader 8 . .It Va pcbcount Number of active process control blocks (read-only). .It Va syncookies Determines whether or not .Tn SYN cookies should be generated for outbound .Tn SYN-ACK packets. .Tn SYN cookies are a great help during .Tn SYN flood attacks, and are enabled by default. (See .Xr syncookies 4 . ) .It Va isn_reseed_interval The interval (in seconds) specifying how often the secret data used in RFC 1948 initial sequence number calculations should be reseeded. By default, this variable is set to zero, indicating that no reseeding will occur. Reseeding should not be necessary, and will break .Dv TIME_WAIT recycling for a few minutes. .It Va reass.cursegments The current total number of segments present in all reassembly queues. .It Va reass.maxsegments The maximum limit on the total number of segments across all reassembly queues. The limit can be adjusted as a tunable. .It Va reass.maxqueuelen The maximum number of segments allowed in each reassembly queue. By default, the system chooses a limit based on each TCP connection's receive buffer size and maximum segment size (MSS). The actual limit applied to a session's reassembly queue will be the lower of the system-calculated automatic limit and the user-specified .Va reass.maxqueuelen limit. .It Va rexmit_initial , rexmit_min , rexmit_slop Adjust the retransmit timer calculation for .Tn TCP . The slop is typically added to the raw calculation to take into account occasional variances that the .Tn SRTT (smoothed round-trip time) is unable to accommodate, while the minimum specifies an absolute minimum. While a number of .Tn TCP RFCs suggest a 1 second minimum, these RFCs tend to focus on streaming behavior, and fail to deal with the fact that a 1 second minimum has severe detrimental effects over lossy interactive connections, such as a 802.11b wireless link, and over very fast but lossy connections for those cases not covered by the fast retransmit code. For this reason, we use 200ms of slop and a near-0 minimum, which gives us an effective minimum of 200ms (similar to .Tn Linux ) . The initial value is used before an RTT measurement has been performed. .It Va initcwnd_segments Enable the ability to specify initial congestion window in number of segments. The default value is 10 as suggested by RFC 6928. Changing the value on fly would not affect connections using congestion window from the hostcache. Caution: This regulates the burst of packets allowed to be sent in the first RTT. The value should be relative to the link capacity. Start with small values for lower-capacity links. Large bursts can cause buffer overruns and packet drops if routers have small buffers or the link is experiencing congestion. .It Va newcwd Enable the New Congestion Window Validation mechanism as described in RFC 7661. This gently reduces the congestion window during periods, where TCP is application limited and the network bandwidth is not utilized completely. That prevents self-inflicted packet losses once the application starts to transmit data at a higher speed. .It Va rfc6675_pipe Calculate the bytes in flight using the algorithm described in RFC 6675, and is also a prerequisite to enable Proportional Rate Reduction. .It Va rfc3042 Enable the Limited Transmit algorithm as described in RFC 3042. It helps avoid timeouts on lossy links and also when the congestion window is small, as happens on short transfers. .It Va rfc3390 Enable support for RFC 3390, which allows for a variable-sized starting congestion window on new connections, depending on the maximum segment size. This helps throughput in general, but particularly affects short transfers and high-bandwidth large propagation-delay connections. .It Va sack.enable Enable support for RFC 2018, TCP Selective Acknowledgment option, which allows the receiver to inform the sender about all successfully arrived segments, allowing the sender to retransmit the missing segments only. .It Va sack.maxholes Maximum number of SACK holes per connection. Defaults to 128. .It Va sack.globalmaxholes Maximum number of SACK holes per system, across all connections. Defaults to 65536. .It Va maxtcptw When a TCP connection enters the .Dv TIME_WAIT state, its associated socket structure is freed, since it is of negligible size and use, and a new structure is allocated to contain a minimal amount of information necessary for sustaining a connection in this state, called the compressed TCP TIME_WAIT state. Since this structure is smaller than a socket structure, it can save a significant amount of system memory. The .Va net.inet.tcp.maxtcptw MIB variable controls the maximum number of these structures allocated. By default, it is initialized to .Va kern.ipc.maxsockets / 5. .It Va nolocaltimewait Suppress creating of compressed TCP TIME_WAIT states for connections in which both endpoints are local. .It Va fast_finwait2_recycle Recycle .Tn TCP .Dv FIN_WAIT_2 connections faster when the socket is marked as .Dv SBS_CANTRCVMORE (no user process has the socket open, data received on the socket cannot be read). The timeout used here is .Va finwait2_timeout . .It Va finwait2_timeout Timeout to use for fast recycling of .Tn TCP .Dv FIN_WAIT_2 connections. Defaults to 60 seconds. .It Va ecn.enable Enable support for TCP Explicit Congestion Notification (ECN). ECN allows a TCP sender to reduce the transmission rate in order to avoid packet drops. Settings: .Bl -tag -compact .It 0 Disable ECN. .It 1 Allow incoming connections to request ECN. Outgoing connections will request ECN. .It 2 Allow incoming connections to request ECN. Outgoing connections will not request ECN. .El .It Va ecn.maxretries Number of retries (SYN or SYN/ACK retransmits) before disabling ECN on a specific connection. This is needed to help with connection establishment when a broken firewall is in the network path. .It Va pmtud_blackhole_detection Enable automatic path MTU blackhole detection. In case of retransmits of MSS sized segments, the OS will lower the MSS to check if it's an MTU problem. If the current MSS is greater than the configured value to try .Po Va net.inet.tcp.pmtud_blackhole_mss and .Va net.inet.tcp.v6pmtud_blackhole_mss .Pc , it will be set to this value, otherwise, the MSS will be set to the default values .Po Va net.inet.tcp.mssdflt and .Va net.inet.tcp.v6mssdflt .Pc . Settings: .Bl -tag -compact .It 0 Disable path MTU blackhole detection. .It 1 Enable path MTU blackhole detection for IPv4 and IPv6. .It 2 Enable path MTU blackhole detection only for IPv4. .It 3 Enable path MTU blackhole detection only for IPv6. .El .It Va pmtud_blackhole_mss MSS to try for IPv4 if PMTU blackhole detection is turned on. .It Va v6pmtud_blackhole_mss MSS to try for IPv6 if PMTU blackhole detection is turned on. .It Va functions_available List of available TCP function blocks (TCP stacks). .It Va functions_default The default TCP function block (TCP stack). .It Va functions_inherit_listen_socket_stack Determines whether to inherit listen socket's tcp stack or use the current system default tcp stack, as defined by .Va functions_default . Default is true. .It Va insecure_rst Use criteria defined in RFC793 instead of RFC5961 for accepting RST segments. Default is false. .It Va insecure_syn Use criteria defined in RFC793 instead of RFC5961 for accepting SYN segments. Default is false. .It Va ts_offset_per_conn When initializing the TCP timestamps, use a per connection offset instead of a per host pair offset. Default is to use per connection offsets as recommended in RFC 7323. .It Va perconn_stats_enable Controls the default collection of statistics for all connections using the .Xr stats 3 framework. 0 disables, 1 enables, 2 enables random sampling across log id connection groups with all connections in a group receiving the same setting. .It Va perconn_stats_sample_rates A CSV list of template_spec=percent key-value pairs which controls the per template sampling rates when .Xr stats 3 sampling is enabled. .El .Sh ERRORS A socket operation may fail with one of the following errors returned: .Bl -tag -width Er .It Bq Er EISCONN when trying to establish a connection on a socket which already has one; .It Bo Er ENOBUFS Bc or Bo Er ENOMEM Bc when the system runs out of memory for an internal data structure; .It Bq Er ETIMEDOUT when a connection was dropped due to excessive retransmissions; .It Bq Er ECONNRESET when the remote peer forces the connection to be closed; .It Bq Er ECONNREFUSED when the remote peer actively refuses connection establishment (usually because no process is listening to the port); .It Bq Er EADDRINUSE when an attempt is made to create a socket with a port which has already been allocated; .It Bq Er EADDRNOTAVAIL when an attempt is made to create a socket with a network address for which no network interface exists; .It Bq Er EAFNOSUPPORT when an attempt is made to bind or connect a socket to a multicast address. .It Bq Er EINVAL when trying to change TCP function blocks at an invalid point in the session; .It Bq Er ENOENT when trying to use a TCP function block that is not available; .El .Sh SEE ALSO .Xr getsockopt 2 , .Xr socket 2 , .Xr stats 3 , .Xr sysctl 3 , .Xr blackhole 4 , .Xr inet 4 , .Xr intro 4 , .Xr ip 4 , .Xr ktls 4 , .Xr mod_cc 4 , .Xr siftr 4 , .Xr syncache 4 , .Xr tcp_bbr 4 , .Xr setkey 8 , .Xr tcp_functions 9 .Rs .%A "V. Jacobson" .%A "B. Braden" .%A "D. Borman" .%T "TCP Extensions for High Performance" .%O "RFC 1323" .Re .Rs .%A "D. Borman" .%A "B. Braden" .%A "V. Jacobson" .%A "R. Scheffenegger" .%T "TCP Extensions for High Performance" .%O "RFC 7323" .Re .Rs .%A "A. Heffernan" .%T "Protection of BGP Sessions via the TCP MD5 Signature Option" .%O "RFC 2385" .Re .Rs .%A "K. Ramakrishnan" .%A "S. Floyd" .%A "D. Black" .%T "The Addition of Explicit Congestion Notification (ECN) to IP" .%O "RFC 3168" .Re .Sh HISTORY The .Tn TCP protocol appeared in .Bx 4.2 . The RFC 1323 extensions for window scaling and timestamps were added in .Bx 4.4 . The .Dv TCP_INFO option was introduced in .Tn Linux 2.6 and is .Em subject to change .