.\" Copyright (c) 2001-2015 Mark R V Murray. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" .Dd June 30, 2015 .Dt RANDOM 4 .Os .Sh NAME .Nm random .Nd the entropy device .Sh SYNOPSIS .Cd "device random" .Sh DESCRIPTION The .Nm device returns an endless supply of random bytes when read. It also accepts and reads data as any ordinary file. .Pp The generator will start in an .Em unseeded state, and will block reads until it is seeded for the first time. This may cause trouble at system boot when keys and the like are generated from .Xr random 4 so steps should be taken to ensure a seeding as soon as possible. .Pp It is also possible to read random bytes by using the KERN_ARND sysctl. On the command line this could be done by .Pp .Dl "sysctl -x -B 16 kern.arandom" .Pp This sysctl will not return random bytes unless the .Xr random 4 device is seeded. .Pp This initial seeding of random number generators is a bootstrapping problem that needs very careful attention. In some cases, it may be difficult to find enough randomness to seed a random number generator until a system is fully operational, but the system requires random numbers to become fully operational. It is (or more accurately should be) critically important that the .Nm device is seeded before the first time it is used. In the case where a dummy or "blocking-only" device is used, it is the responsibility of the system architect to ensure that no blocking reads hold up critical processes. .Pp To see the current settings of the software .Nm device, use the command line: .Pp .Dl "sysctl kern.random" .Pp which results in something like: .Bd -literal -offset indent kern.random.fortuna.minpoolsize: 64 kern.random.harvest.mask_symbolic: [HIGH_PERFORMANCE], ... ,CACHED kern.random.harvest.mask_bin: 00111111111 kern.random.harvest.mask: 511 kern.random.random_sources: 'Intel Secure Key RNG' .Ed .Pp Other than .Dl kern.random.fortuna.minpoolsize and .Dl kern.random.harvest.mask all settings are read-only. .Pp The .Pa kern.random.fortuna.minpoolsize sysctl is used to set the seed threshhold. A smaller number gives a faster seed, but a less secure one. In practice, values between 64 and 256 are acceptable. .Pp The .Va kern.random.harvest.mask bitmask is used to select the possible entropy sources. A 0 (zero) value means the corresponding source is not considered as an entropy source. Set the bit to 1 (one) if you wish to use that source. The .Va kern.random.harvest.mask_bin and .Va kern.random.harvest.mask_symbolic sysctl can be used confirm that your choices are correct. Note that disabled items in the latter item are listed in square brackets. See .Xr random_harvest 9 for more on the harvesting of entropy. .Sh RANDOMNESS The use of randomness in the field of computing is a rather subtle issue because randomness means different things to different people. Consider generating a password randomly, simulating a coin tossing experiment or choosing a random back-off period when a server does not respond. Each of these tasks requires random numbers, but the random numbers in each case have different requirements. .Pp Generation of passwords, session keys and the like requires cryptographic randomness. A cryptographic random number generator should be designed so that its output is difficult to guess, even if a lot of auxiliary information is known (such as when it was seeded, subsequent or previous output, and so on). On .Fx , seeding for cryptographic random number generators is provided by the .Nm device, which provides real randomness. The .Xr arc4random 3 library call provides a pseudo-random sequence which is generally reckoned to be suitable for simple cryptographic use. The OpenSSL library also provides functions for managing randomness via functions such as .Xr RAND_bytes 3 and .Xr RAND_add 3 . Note that OpenSSL uses the .Nm device for seeding automatically. .Pp Randomness for simulation is required in engineering or scientific software and games. The first requirement of these applications is that the random numbers produced conform to some well-known, usually uniform, distribution. The sequence of numbers should also appear numerically uncorrelated, as simulation often assumes independence of its random inputs. Often it is desirable to reproduce the results of a simulation exactly, so that if the generator is seeded in the same way, it should produce the same results. A peripheral concern for simulation is the speed of a random number generator. .Pp Another issue in simulation is the size of the state associated with the random number generator, and how frequently it repeats itself. For example, a program which shuffles a pack of cards should have 52!\& possible outputs, which requires the random number generator to have 52!\& starting states. This means the seed should have at least log_2(52!) ~ 226 bits of state if the program is to stand a chance of outputting all possible sequences, and the program needs some unbiased way of generating these bits. Again, the .Nm device could be used for seeding here, but in practice, smaller seeds are usually considered acceptable. .Pp .Fx provides two families of functions which are considered suitable for simulation. The .Xr random 3 family of functions provides a random integer between 0 to .if t 2\u\s731\s10\d\(mi1. .if n (2**31)\(mi1. The functions .Xr srandom 3 , .Xr initstate 3 and .Xr setstate 3 are provided for deterministically setting the state of the generator and the function .Xr srandomdev 3 is provided for setting the state via the .Nm device. The .Xr drand48 3 family of functions are also provided, which provide random floating point numbers in various ranges. .Pp Randomness that is used for collision avoidance (for example, in certain network protocols) has slightly different semantics again. It is usually expected that the numbers will be uniform, as this produces the lowest chances of collision. Here again, the seeding of the generator is very important, as it is required that different instances of the generator produce independent sequences. However, the guessability or reproducibility of the sequence is unimportant, unlike the previous cases. .Pp .Fx does also provide the traditional .Xr rand 3 library call, for compatibility purposes. However, it is known to be poor for simulation and absolutely unsuitable for cryptographic purposes, so its use is discouraged. .Sh FILES .Bl -tag -width ".Pa /dev/random" .It Pa /dev/random .El .Sh SEE ALSO .Xr arc4random 3 , .Xr drand48 3 , .Xr rand 3 , .Xr RAND_add 3 , .Xr RAND_bytes 3 , .Xr random 3 , .Xr sysctl 8 , .Xr random 9 .Rs .%A Ferguson .%A Schneier .%A Kohno .%B Cryptography Engineering .%I Wiley .%O ISBN 978-0-470-47424-2 .Re .Sh HISTORY A .Nm device appeared in .Fx 2.2 . The current software implementation, introduced in .Fx 10.0 , is by .An Mark R V Murray , and is an implementation of the .Em Fortuna algorithm by Ferguson .Em et al . It replaces the previous .Em Yarrow implementation, introduced in .Fx 5.0 . The older .Em Yarrow algorithm remains available as a compile-time fallback.