/*- * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include <sys/types.h> #include <sys/param.h> #include <sys/ioctl.h> #include <sys/socket.h> #include <net/if.h> #include <net/sff8436.h> #include <net/sff8472.h> #include <math.h> #include <err.h> #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "ifconfig.h" struct i2c_info { int fd; /* fd to issue SIOCGI2C */ int error; /* Store first error */ int qsfp; /* True if transceiver is QSFP */ int do_diag; /* True if we need to request DDM */ struct ifreq *ifr; /* Pointer to pre-filled ifreq */ }; static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, uint8_t *buf); static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len); struct _nv { int v; const char *n; }; const char *find_value(struct _nv *x, int value); const char *find_zero_bit(struct _nv *x, int value, int sz); /* SFF-8472 Rev. 11.4 table 3.4: Connector values */ static struct _nv conn[] = { { 0x00, "Unknown" }, { 0x01, "SC" }, { 0x02, "Fibre Channel Style 1 copper" }, { 0x03, "Fibre Channel Style 2 copper" }, { 0x04, "BNC/TNC" }, { 0x05, "Fibre Channel coaxial" }, { 0x06, "FiberJack" }, { 0x07, "LC" }, { 0x08, "MT-RJ" }, { 0x09, "MU" }, { 0x0A, "SG" }, { 0x0B, "Optical pigtail" }, { 0x0C, "MPO Parallel Optic" }, { 0x20, "HSSDC II" }, { 0x21, "Copper pigtail" }, { 0x22, "RJ45" }, { 0x23, "No separate connector" }, /* SFF-8436 */ { 0, NULL } }; /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */ /* 10G Ethernet/IB compliance codes, byte 3 */ static struct _nv eth_10g[] = { { 0x80, "10G Base-ER" }, { 0x40, "10G Base-LRM" }, { 0x20, "10G Base-LR" }, { 0x10, "10G Base-SR" }, { 0x08, "1X SX" }, { 0x04, "1X LX" }, { 0x02, "1X Copper Active" }, { 0x01, "1X Copper Passive" }, { 0, NULL } }; /* Ethernet compliance codes, byte 6 */ static struct _nv eth_compat[] = { { 0x80, "BASE-PX" }, { 0x40, "BASE-BX10" }, { 0x20, "100BASE-FX" }, { 0x10, "100BASE-LX/LX10" }, { 0x08, "1000BASE-T" }, { 0x04, "1000BASE-CX" }, { 0x02, "1000BASE-LX" }, { 0x01, "1000BASE-SX" }, { 0, NULL } }; /* FC link length, byte 7 */ static struct _nv fc_len[] = { { 0x80, "very long distance" }, { 0x40, "short distance" }, { 0x20, "intermediate distance" }, { 0x10, "long distance" }, { 0x08, "medium distance" }, { 0, NULL } }; /* Channel/Cable technology, byte 7-8 */ static struct _nv cab_tech[] = { { 0x0400, "Shortwave laser (SA)" }, { 0x0200, "Longwave laser (LC)" }, { 0x0100, "Electrical inter-enclosure (EL)" }, { 0x80, "Electrical intra-enclosure (EL)" }, { 0x40, "Shortwave laser (SN)" }, { 0x20, "Shortwave laser (SL)" }, { 0x10, "Longwave laser (LL)" }, { 0x08, "Active Cable" }, { 0x04, "Passive Cable" }, { 0, NULL } }; /* FC Transmission media, byte 9 */ static struct _nv fc_media[] = { { 0x80, "Twin Axial Pair" }, { 0x40, "Twisted Pair" }, { 0x20, "Miniature Coax" }, { 0x10, "Viao Coax" }, { 0x08, "Miltimode, 62.5um" }, { 0x04, "Multimode, 50um" }, { 0x02, "" }, { 0x01, "Single Mode" }, { 0, NULL } }; /* FC Speed, byte 10 */ static struct _nv fc_speed[] = { { 0x80, "1200 MBytes/sec" }, { 0x40, "800 MBytes/sec" }, { 0x20, "1600 MBytes/sec" }, { 0x10, "400 MBytes/sec" }, { 0x08, "3200 MBytes/sec" }, { 0x04, "200 MBytes/sec" }, { 0x01, "100 MBytes/sec" }, { 0, NULL } }; /* SFF-8436 Rev. 4.8 table 33: Specification compliance */ /* 10/40G Ethernet compliance codes, byte 128 + 3 */ static struct _nv eth_1040g[] = { { 0x80, "Extended" }, { 0x40, "10GBASE-LRM" }, { 0x20, "10GBASE-LR" }, { 0x10, "10GBASE-SR" }, { 0x08, "40GBASE-CR4" }, { 0x04, "40GBASE-SR4" }, { 0x02, "40GBASE-LR4" }, { 0x01, "40G Active Cable" }, { 0, NULL } }; #define SFF_8636_EXT_COMPLIANCE 0x80 /* SFF-8024 Rev. 3.4 table 4.4: Extended Specification Compliance */ static struct _nv eth_extended_comp[] = { { 0xFF, "Reserved" }, { 0x1A, "2 lambda DWDM 100G" }, { 0x19, "100G ACC or 25GAUI C2M ACC" }, { 0x18, "100G AOC or 25GAUI C2M AOC" }, { 0x17, "100G CLR4" }, { 0x16, "10GBASE-T with SFI electrical interface" }, { 0x15, "G959.1 profile P1L1-2D2" }, { 0x14, "G959.1 profile P1S1-2D2" }, { 0x13, "G959.1 profile P1I1-2D1" }, { 0x12, "40G PSM4 Parallel SMF" }, { 0x11, "4 x 10GBASE-SR" }, { 0x10, "40GBASE-ER4" }, { 0x0F, "Reserved" }, { 0x0D, "25GBASE-CR CA-N" }, { 0x0C, "25GBASE-CR CA-S" }, { 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" }, { 0x0A, "Reserved" }, { 0x09, "100G CWDM4 MSA without FEC" }, { 0x08, "100G ACC (Active Copper Cable)" }, { 0x07, "100G PSM4 Parallel SMF" }, { 0x06, "100G CWDM4 MSA with FEC" }, { 0x05, "100GBASE-SR10" }, { 0x04, "100GBASE-ER4" }, { 0x03, "100GBASE-LR4" }, { 0x02, "100GBASE-SR4" }, { 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M ACC" }, { 0x00, "Unspecified" } }; /* SFF-8636 Rev. 2.5 table 6.3: Revision compliance */ static struct _nv rev_compl[] = { { 0x1, "SFF-8436 rev <=4.8" }, { 0x2, "SFF-8436 rev <=4.8" }, { 0x3, "SFF-8636 rev <=1.3" }, { 0x4, "SFF-8636 rev <=1.4" }, { 0x5, "SFF-8636 rev <=1.5" }, { 0x6, "SFF-8636 rev <=2.0" }, { 0x7, "SFF-8636 rev <=2.5" }, { 0x0, "Unspecified" } }; const char * find_value(struct _nv *x, int value) { for (; x->n != NULL; x++) if (x->v == value) return (x->n); return (NULL); } const char * find_zero_bit(struct _nv *x, int value, int sz) { int v, m; const char *s; v = 1; for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) { if ((value & v) == 0) continue; if ((s = find_value(x, value & v)) != NULL) { value &= ~v; return (s); } } return (NULL); } static void convert_sff_identifier(char *buf, size_t size, uint8_t value) { const char *x; x = NULL; if (value <= SFF_8024_ID_LAST) x = sff_8024_id[value]; else { if (value > 0x80) x = "Vendor specific"; else x = "Reserved"; } snprintf(buf, size, "%s", x); } static void convert_sff_connector(char *buf, size_t size, uint8_t value) { const char *x; if ((x = find_value(conn, value)) == NULL) { if (value >= 0x0D && value <= 0x1F) x = "Unallocated"; else if (value >= 0x24 && value <= 0x7F) x = "Unallocated"; else x = "Vendor specific"; } snprintf(buf, size, "%s", x); } static void convert_sff_rev_compliance(char *buf, size_t size, uint8_t value) { const char *x; if (value > 0x07) x = "Unallocated"; else x = find_value(rev_compl, value); snprintf(buf, size, "%s", x); } static void get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size) { uint8_t data; read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data); convert_sff_identifier(buf, size, data); } static void get_sfp_connector(struct i2c_info *ii, char *buf, size_t size) { uint8_t data; read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data); convert_sff_connector(buf, size, data); } static void get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size) { uint8_t data; read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data); convert_sff_identifier(buf, size, data); } static void get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size) { uint8_t data; read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data); convert_sff_connector(buf, size, data); } static void printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size) { char xbuf[12]; const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed; tech_class = NULL; tech_len = NULL; tech_tech = NULL; tech_media = NULL; tech_speed = NULL; /* Read bytes 3-10 at once */ read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]); /* Check 10G ethernet first */ tech_class = find_zero_bit(eth_10g, xbuf[3], 1); if (tech_class == NULL) { /* No match. Try 1G */ tech_class = find_zero_bit(eth_compat, xbuf[6], 1); } tech_len = find_zero_bit(fc_len, xbuf[7], 1); tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2); tech_media = find_zero_bit(fc_media, xbuf[9], 1); tech_speed = find_zero_bit(fc_speed, xbuf[10], 1); printf("Class: %s\n", tech_class); printf("Length: %s\n", tech_len); printf("Tech: %s\n", tech_tech); printf("Media: %s\n", tech_media); printf("Speed: %s\n", tech_speed); } static void get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) { const char *tech_class; uint8_t code; unsigned char qbuf[8]; read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, (uint8_t *)qbuf); /* Check 10G Ethernet/IB first */ read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); tech_class = find_zero_bit(eth_10g, code, 1); if (tech_class == NULL) { /* No match. Try Ethernet 1G */ read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 1, (caddr_t)&code); tech_class = find_zero_bit(eth_compat, code, 1); } if (tech_class == NULL) tech_class = "Unknown"; snprintf(buf, size, "%s", tech_class); } static void get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) { const char *tech_class; uint8_t code; read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code); /* Check for extended specification compliance */ if (code & SFF_8636_EXT_COMPLIANCE) { read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code); tech_class = find_value(eth_extended_comp, code); } else /* Check 10/40G Ethernet class only */ tech_class = find_zero_bit(eth_1040g, code, 1); if (tech_class == NULL) tech_class = "Unknown"; snprintf(buf, size, "%s", tech_class); } /* * Print SFF-8472/SFF-8436 string to supplied buffer. * All (vendor-specific) strings are padded right with '0x20'. */ static void convert_sff_name(char *buf, size_t size, char *xbuf) { char *p; for (p = &xbuf[16]; *(p - 1) == 0x20; p--) ; *p = '\0'; snprintf(buf, size, "%s", xbuf); } static void convert_sff_date(char *buf, size_t size, char *xbuf) { snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1], xbuf[2], xbuf[3], xbuf[4], xbuf[5]); } static void get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) { char xbuf[6]; memset(xbuf, 0, sizeof(xbuf)); /* Date code, see Table 3.8 for description */ read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf); convert_sff_date(buf, size, xbuf); } static void get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) { char xbuf[17]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf); convert_sff_name(buf, size, xbuf); } static void get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) { char xbuf[6]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf); convert_sff_date(buf, size, xbuf); } static void print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size) { char xbuf[80]; memset(xbuf, 0, sizeof(xbuf)); if (ii->qsfp != 0) { get_qsfp_vendor_name(ii, xbuf, 20); get_qsfp_vendor_pn(ii, &xbuf[20], 20); get_qsfp_vendor_sn(ii, &xbuf[40], 20); get_qsfp_vendor_date(ii, &xbuf[60], 20); } else { get_sfp_vendor_name(ii, xbuf, 20); get_sfp_vendor_pn(ii, &xbuf[20], 20); get_sfp_vendor_sn(ii, &xbuf[40], 20); get_sfp_vendor_date(ii, &xbuf[60], 20); } snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s", xbuf, &xbuf[20], &xbuf[40], &xbuf[60]); } /* * Converts internal templerature (SFF-8472, SFF-8436) * 16-bit unsigned value to human-readable representation: * * Internally measured Module temperature are represented * as a 16-bit signed twos complement value in increments of * 1/256 degrees Celsius, yielding a total range of –128C to +128C * that is considered valid between –40 and +125C. * */ static void convert_sff_temp(char *buf, size_t size, uint8_t *xbuf) { double d; d = (double)xbuf[0]; d += (double)xbuf[1] / 256; snprintf(buf, size, "%.2f C", d); } /* * Retrieves supplied voltage (SFF-8472, SFF-8436). * 16-bit usigned value, treated as range 0..+6.55 Volts */ static void convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf) { double d; d = (double)((xbuf[0] << 8) | xbuf[1]); snprintf(buf, size, "%.2f Volts", d / 10000); } /* * Converts value in @xbuf to both milliwats and dBm * human representation. */ static void convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf) { uint16_t mW; double dbm; mW = (xbuf[0] << 8) + xbuf[1]; /* Convert mw to dbm */ dbm = 10.0 * log10(1.0 * mW / 10000); /* * Assume internally-calibrated data. * This is always true for SFF-8346, and explicitly * checked for SFF-8472. */ /* Table 3.9, bit 5 is set, internally calibrated */ snprintf(buf, size, "%d.%02d mW (%.2f dBm)", mW / 10000, (mW % 10000) / 100, dbm); } static void get_sfp_temp(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf); convert_sff_temp(buf, size, xbuf); } static void get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf); convert_sff_voltage(buf, size, xbuf); } static int get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf); if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0)) return (-1); convert_sff_temp(buf, size, xbuf); return (0); } static void get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf); convert_sff_voltage(buf, size, xbuf); } static void get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf); convert_sff_power(ii, buf, size, xbuf); } static void get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf); convert_sff_power(ii, buf, size, xbuf); } static void get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf); convert_sff_power(ii, buf, size, xbuf); } static void get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan) { uint8_t xbuf[2]; memset(xbuf, 0, sizeof(xbuf)); read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf); convert_sff_power(ii, buf, size, xbuf); } static void get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size) { uint8_t xbuf; xbuf = 0; read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf); convert_sff_rev_compliance(buf, size, xbuf); } static uint32_t get_qsfp_br(struct i2c_info *ii) { uint8_t xbuf; uint32_t rate; xbuf = 0; read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf); rate = xbuf * 100; if (xbuf == 0xFF) { read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf); rate = xbuf * 250; } return (rate); } /* * Reads i2c data from opened kernel socket. */ static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, uint8_t *buf) { struct ifi2creq req; int i, l; if (ii->error != 0) return (ii->error); ii->ifr->ifr_data = (caddr_t)&req; i = 0; l = 0; memset(&req, 0, sizeof(req)); req.dev_addr = addr; req.offset = off; req.len = len; while (len > 0) { l = MIN(sizeof(req.data), len); req.len = l; if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) { ii->error = errno; return (errno); } memcpy(&buf[i], req.data, l); len -= l; i += l; req.offset += l; } return (0); } static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len) { unsigned char buf[16]; int i, read; while (len > 0) { memset(buf, 0, sizeof(buf)); read = MIN(sizeof(buf), len); read_i2c(ii, addr, off, read, buf); if (ii->error != 0) { fprintf(stderr, "Error reading i2c info\n"); return; } printf("\t"); for (i = 0; i < read; i++) printf("%02X ", buf[i]); printf("\n"); len -= read; off += read; } } static void print_qsfp_status(struct i2c_info *ii, int verbose) { char buf[80], buf2[40], buf3[40]; uint32_t bitrate; int i; ii->qsfp = 1; /* Transceiver type */ get_qsfp_identifier(ii, buf, sizeof(buf)); get_qsfp_transceiver_class(ii, buf2, sizeof(buf2)); get_qsfp_connector(ii, buf3, sizeof(buf3)); if (ii->error == 0) printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); print_sfp_vendor(ii, buf, sizeof(buf)); if (ii->error == 0) printf("\t%s\n", buf); if (verbose > 1) { get_qsfp_rev_compliance(ii, buf, sizeof(buf)); if (ii->error == 0) printf("\tcompliance level: %s\n", buf); bitrate = get_qsfp_br(ii); if (ii->error == 0 && bitrate > 0) printf("\tnominal bitrate: %u Mbps\n", bitrate); } /* * The standards in this area are not clear when the * additional measurements are present or not. Use a valid * temperature reading as an indicator for the presence of * voltage and TX/RX power measurements. */ if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) { get_qsfp_voltage(ii, buf2, sizeof(buf2)); printf("\tmodule temperature: %s voltage: %s\n", buf, buf2); for (i = 1; i <= 4; i++) { get_qsfp_rx_power(ii, buf, sizeof(buf), i); get_qsfp_tx_power(ii, buf2, sizeof(buf2), i); printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2); } } if (verbose > 2) { printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n"); dump_i2c_data(ii, SFF_8436_BASE, 128, 128); printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n"); dump_i2c_data(ii, SFF_8436_BASE, 0, 82); } } static void print_sfp_status(struct i2c_info *ii, int verbose) { char buf[80], buf2[40], buf3[40]; uint8_t diag_type, flags; /* Read diagnostic monitoring type */ read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); if (ii->error != 0) return; /* * Read monitoring data IFF it is supplied AND is * internally calibrated */ flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; if ((diag_type & flags) == flags) ii->do_diag = 1; /* Transceiver type */ get_sfp_identifier(ii, buf, sizeof(buf)); get_sfp_transceiver_class(ii, buf2, sizeof(buf2)); get_sfp_connector(ii, buf3, sizeof(buf3)); if (ii->error == 0) printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); print_sfp_vendor(ii, buf, sizeof(buf)); if (ii->error == 0) printf("\t%s\n", buf); if (verbose > 5) printf_sfp_transceiver_descr(ii, buf, sizeof(buf)); /* * Request current measurements iff they are provided: */ if (ii->do_diag != 0) { get_sfp_temp(ii, buf, sizeof(buf)); get_sfp_voltage(ii, buf2, sizeof(buf2)); printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2); get_sfp_rx_power(ii, buf, sizeof(buf)); get_sfp_tx_power(ii, buf2, sizeof(buf2)); printf("\tRX: %s TX: %s\n", buf, buf2); } if (verbose > 2) { printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n"); dump_i2c_data(ii, SFF_8472_BASE, 0, 128); } } void sfp_status(int s, struct ifreq *ifr, int verbose) { struct i2c_info ii; uint8_t id_byte; /* Prepare necessary into pass to i2c reader */ memset(&ii, 0, sizeof(ii)); ii.fd = s; ii.ifr = ifr; /* * Try to read byte 0 from i2c: * Both SFF-8472 and SFF-8436 use it as * 'identification byte'. * Stop reading status on zero as value - * this might happen in case of empty transceiver slot. */ id_byte = 0; read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte); if (ii.error != 0 || id_byte == 0) return; switch (id_byte) { case SFF_8024_ID_QSFP: case SFF_8024_ID_QSFPPLUS: case SFF_8024_ID_QSFP28: print_qsfp_status(&ii, verbose); break; default: print_sfp_status(&ii, verbose); } }