/* * Copyright (c) 1997-2007 Kenneth D. Merry * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "camcontrol.h" #ifdef WITH_NVME #include "nvmecontrol_ext.h" #endif typedef enum { CAM_CMD_NONE, CAM_CMD_DEVLIST, CAM_CMD_TUR, CAM_CMD_INQUIRY, CAM_CMD_STARTSTOP, CAM_CMD_RESCAN, CAM_CMD_READ_DEFECTS, CAM_CMD_MODE_PAGE, CAM_CMD_SCSI_CMD, CAM_CMD_DEVTREE, CAM_CMD_USAGE, CAM_CMD_DEBUG, CAM_CMD_RESET, CAM_CMD_FORMAT, CAM_CMD_TAG, CAM_CMD_RATE, CAM_CMD_DETACH, CAM_CMD_REPORTLUNS, CAM_CMD_READCAP, CAM_CMD_IDENTIFY, CAM_CMD_IDLE, CAM_CMD_STANDBY, CAM_CMD_SLEEP, CAM_CMD_SMP_CMD, CAM_CMD_SMP_RG, CAM_CMD_SMP_PC, CAM_CMD_SMP_PHYLIST, CAM_CMD_SMP_MANINFO, CAM_CMD_DOWNLOAD_FW, CAM_CMD_SECURITY, CAM_CMD_HPA, CAM_CMD_SANITIZE, CAM_CMD_PERSIST, CAM_CMD_APM, CAM_CMD_AAM, CAM_CMD_ATTRIB, CAM_CMD_OPCODES, CAM_CMD_REPROBE, CAM_CMD_ZONE, CAM_CMD_EPC, CAM_CMD_TIMESTAMP, CAM_CMD_MMCSD_CMD, CAM_CMD_POWER_MODE, CAM_CMD_DEVTYPE, CAM_CMD_AMA, CAM_CMD_DEPOP, CAM_CMD_REQSENSE } cam_cmd; typedef enum { CAM_ARG_NONE = 0x00000000, CAM_ARG_VERBOSE = 0x00000001, CAM_ARG_DEVICE = 0x00000002, CAM_ARG_BUS = 0x00000004, CAM_ARG_TARGET = 0x00000008, CAM_ARG_LUN = 0x00000010, CAM_ARG_EJECT = 0x00000020, CAM_ARG_UNIT = 0x00000040, /* unused 0x00000080 */ /* unused 0x00000100 */ /* unused 0x00000200 */ /* unused 0x00000400 */ /* unused 0x00000800 */ CAM_ARG_GET_SERIAL = 0x00001000, CAM_ARG_GET_STDINQ = 0x00002000, CAM_ARG_GET_XFERRATE = 0x00004000, CAM_ARG_INQ_MASK = 0x00007000, /* unused 0x00008000 */ /* unused 0x00010000 */ CAM_ARG_TIMEOUT = 0x00020000, CAM_ARG_CMD_IN = 0x00040000, CAM_ARG_CMD_OUT = 0x00080000, /* unused 0x00100000 */ CAM_ARG_ERR_RECOVER = 0x00200000, CAM_ARG_RETRIES = 0x00400000, CAM_ARG_START_UNIT = 0x00800000, CAM_ARG_DEBUG_INFO = 0x01000000, CAM_ARG_DEBUG_TRACE = 0x02000000, CAM_ARG_DEBUG_SUBTRACE = 0x04000000, CAM_ARG_DEBUG_CDB = 0x08000000, CAM_ARG_DEBUG_XPT = 0x10000000, CAM_ARG_DEBUG_PERIPH = 0x20000000, CAM_ARG_DEBUG_PROBE = 0x40000000, /* unused 0x80000000 */ } cam_argmask; struct camcontrol_opts { const char *optname; uint32_t cmdnum; cam_argmask argnum; const char *subopt; }; struct ata_set_max_pwd { uint16_t reserved1; uint8_t password[32]; uint16_t reserved2[239]; }; static struct scsi_nv task_attrs[] = { { "simple", MSG_SIMPLE_Q_TAG }, { "head", MSG_HEAD_OF_Q_TAG }, { "ordered", MSG_ORDERED_Q_TAG }, { "iwr", MSG_IGN_WIDE_RESIDUE }, { "aca", MSG_ACA_TASK } }; static const char scsicmd_opts[] = "a:c:dfi:o:r"; static const char readdefect_opts[] = "f:GPqsS:X"; static const char negotiate_opts[] = "acD:M:O:qR:T:UW:"; static const char smprg_opts[] = "l"; static const char smppc_opts[] = "a:A:d:lm:M:o:p:s:S:T:"; static const char smpphylist_opts[] = "lq"; static char pwd_opt; static struct camcontrol_opts option_table[] = { {"tur", CAM_CMD_TUR, CAM_ARG_NONE, NULL}, {"inquiry", CAM_CMD_INQUIRY, CAM_ARG_NONE, "DSR"}, {"identify", CAM_CMD_IDENTIFY, CAM_ARG_NONE, NULL}, {"start", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT, NULL}, {"stop", CAM_CMD_STARTSTOP, CAM_ARG_NONE, NULL}, {"load", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT | CAM_ARG_EJECT, NULL}, {"eject", CAM_CMD_STARTSTOP, CAM_ARG_EJECT, NULL}, {"reportluns", CAM_CMD_REPORTLUNS, CAM_ARG_NONE, "clr:"}, {"readcapacity", CAM_CMD_READCAP, CAM_ARG_NONE, "bhHlNqs"}, {"reprobe", CAM_CMD_REPROBE, CAM_ARG_NONE, NULL}, {"rescan", CAM_CMD_RESCAN, CAM_ARG_NONE, NULL}, {"reset", CAM_CMD_RESET, CAM_ARG_NONE, NULL}, {"cmd", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts}, {"mmcsdcmd", CAM_CMD_MMCSD_CMD, CAM_ARG_NONE, "c:a:F:f:Wb:l:41S:I"}, {"command", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts}, {"smpcmd", CAM_CMD_SMP_CMD, CAM_ARG_NONE, "r:R:"}, {"smprg", CAM_CMD_SMP_RG, CAM_ARG_NONE, smprg_opts}, {"smpreportgeneral", CAM_CMD_SMP_RG, CAM_ARG_NONE, smprg_opts}, {"smppc", CAM_CMD_SMP_PC, CAM_ARG_NONE, smppc_opts}, {"smpphycontrol", CAM_CMD_SMP_PC, CAM_ARG_NONE, smppc_opts}, {"smpplist", CAM_CMD_SMP_PHYLIST, CAM_ARG_NONE, smpphylist_opts}, {"smpphylist", CAM_CMD_SMP_PHYLIST, CAM_ARG_NONE, smpphylist_opts}, {"smpmaninfo", CAM_CMD_SMP_MANINFO, CAM_ARG_NONE, "l"}, {"defects", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts}, {"defectlist", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts}, {"devlist", CAM_CMD_DEVTREE, CAM_ARG_NONE, "-b"}, {"devtype", CAM_CMD_DEVTYPE, CAM_ARG_NONE, ""}, {"periphlist", CAM_CMD_DEVLIST, CAM_ARG_NONE, NULL}, {"modepage", CAM_CMD_MODE_PAGE, CAM_ARG_NONE, "6bdelm:DLP:"}, {"tags", CAM_CMD_TAG, CAM_ARG_NONE, "N:q"}, {"negotiate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts}, {"rate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts}, {"debug", CAM_CMD_DEBUG, CAM_ARG_NONE, "IPTSXcp"}, {"format", CAM_CMD_FORMAT, CAM_ARG_NONE, "qrwy"}, {"sanitize", CAM_CMD_SANITIZE, CAM_ARG_NONE, "a:c:IP:qrUwy"}, {"idle", CAM_CMD_IDLE, CAM_ARG_NONE, "t:"}, {"standby", CAM_CMD_STANDBY, CAM_ARG_NONE, "t:"}, {"sleep", CAM_CMD_SLEEP, CAM_ARG_NONE, ""}, {"powermode", CAM_CMD_POWER_MODE, CAM_ARG_NONE, ""}, {"apm", CAM_CMD_APM, CAM_ARG_NONE, "l:"}, {"aam", CAM_CMD_AAM, CAM_ARG_NONE, "l:"}, {"fwdownload", CAM_CMD_DOWNLOAD_FW, CAM_ARG_NONE, "f:qsy"}, {"security", CAM_CMD_SECURITY, CAM_ARG_NONE, "d:e:fh:k:l:qs:T:U:y"}, {"hpa", CAM_CMD_HPA, CAM_ARG_NONE, "Pflp:qs:U:y"}, {"ama", CAM_CMD_AMA, CAM_ARG_NONE, "fqs:"}, {"persist", CAM_CMD_PERSIST, CAM_ARG_NONE, "ai:I:k:K:o:ps:ST:U"}, {"attrib", CAM_CMD_ATTRIB, CAM_ARG_NONE, "a:ce:F:p:r:s:T:w:V:"}, {"opcodes", CAM_CMD_OPCODES, CAM_ARG_NONE, "No:s:T"}, {"zone", CAM_CMD_ZONE, CAM_ARG_NONE, "ac:l:No:P:"}, {"epc", CAM_CMD_EPC, CAM_ARG_NONE, "c:dDeHp:Pr:sS:T:"}, {"timestamp", CAM_CMD_TIMESTAMP, CAM_ARG_NONE, "f:mrsUT:"}, {"depop", CAM_CMD_DEPOP, CAM_ARG_NONE, "ac:de:ls"}, {"sense", CAM_CMD_REQSENSE, CAM_ARG_NONE, "Dx"}, {"help", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {"-?", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {"-h", CAM_CMD_USAGE, CAM_ARG_NONE, NULL}, {NULL, 0, 0, NULL} }; struct cam_devitem { struct device_match_result dev_match; int num_periphs; struct periph_match_result *periph_matches; struct scsi_vpd_device_id *device_id; int device_id_len; STAILQ_ENTRY(cam_devitem) links; }; struct cam_devlist { STAILQ_HEAD(, cam_devitem) dev_queue; path_id_t path_id; }; static cam_argmask arglist; static const char *devtype_names[] = { "none", "scsi", "satl", "ata", "nvme", "mmcsd", "unknown", }; camcontrol_optret getoption(struct camcontrol_opts *table, char *arg, uint32_t *cmdnum, cam_argmask *argnum, const char **subopt); static int getdevlist(struct cam_device *device); static int getdevtree(int argc, char **argv, char *combinedopt); static int getdevtype(struct cam_device *device); static int print_dev_scsi(struct device_match_result *dev_result, char *tmpstr); static int print_dev_ata(struct device_match_result *dev_result, char *tmpstr); static int print_dev_semb(struct device_match_result *dev_result, char *tmpstr); static int print_dev_mmcsd(struct device_match_result *dev_result, char *tmpstr); #ifdef WITH_NVME static int print_dev_nvme(struct device_match_result *dev_result, char *tmpstr); #endif static int requestsense(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int testunitready(struct cam_device *device, int task_attr, int retry_count, int timeout, int quiet); static int scsistart(struct cam_device *device, int startstop, int loadeject, int task_attr, int retry_count, int timeout); static int scsiinquiry(struct cam_device *device, int task_attr, int retry_count, int timeout); static int scsiserial(struct cam_device *device, int task_attr, int retry_count, int timeout); static int parse_btl(char *tstr, path_id_t *bus, target_id_t *target, lun_id_t *lun, cam_argmask *arglst); static int reprobe(struct cam_device *device); static int dorescan_or_reset(int argc, char **argv, int rescan); static int rescan_or_reset_bus(path_id_t bus, int rescan); static int scanlun_or_reset_dev(path_id_t bus, target_id_t target, lun_id_t lun, int scan); static int readdefects(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static void modepage(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int smpcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int mmcsdcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpreportgeneral(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpphycontrol(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int smpmaninfo(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int getdevid(struct cam_devitem *item); static int buildbusdevlist(struct cam_devlist *devlist); static void freebusdevlist(struct cam_devlist *devlist); static struct cam_devitem *findsasdevice(struct cam_devlist *devlist, uint64_t sasaddr); static int smpphylist(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int tagcontrol(struct cam_device *device, int argc, char **argv, char *combinedopt); static void cts_print(struct cam_device *device, struct ccb_trans_settings *cts); static void cpi_print(struct ccb_pathinq *cpi); static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi); static int get_cgd(struct cam_device *device, struct ccb_getdev *cgd); static int get_print_cts(struct cam_device *device, int user_settings, int quiet, struct ccb_trans_settings *cts); static int ratecontrol(struct cam_device *device, int task_attr, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int scsiformat(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int sanitize(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsireportluns(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int scsireadcapacity(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout); static int atapm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout); static int atasecurity(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int atahpa(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int ataama(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt); static int scsiprintoneopcode(struct cam_device *device, int req_opcode, int sa_set, int req_sa, uint8_t *buf, uint32_t valid_len); static int scsiprintopcodes(struct cam_device *device, int td_req, uint8_t *buf, uint32_t valid_len); static int scsiopcodes(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout, int verbose); #ifndef min #define min(a,b) (((a)<(b))?(a):(b)) #endif #ifndef max #define max(a,b) (((a)>(b))?(a):(b)) #endif camcontrol_optret getoption(struct camcontrol_opts *table, char *arg, uint32_t *cmdnum, cam_argmask *argnum, const char **subopt) { struct camcontrol_opts *opts; int num_matches = 0; for (opts = table; (opts != NULL) && (opts->optname != NULL); opts++) { if (strncmp(opts->optname, arg, strlen(arg)) == 0) { *cmdnum = opts->cmdnum; *argnum = opts->argnum; *subopt = opts->subopt; if (++num_matches > 1) return (CC_OR_AMBIGUOUS); } } if (num_matches > 0) return (CC_OR_FOUND); else return (CC_OR_NOT_FOUND); } static int getdevlist(struct cam_device *device) { union ccb *ccb; char status[32]; int error = 0; ccb = cam_getccb(device); ccb->ccb_h.func_code = XPT_GDEVLIST; ccb->ccb_h.flags = CAM_DIR_NONE; ccb->ccb_h.retry_count = 1; ccb->cgdl.index = 0; ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) { if (cam_send_ccb(device, ccb) < 0) { warn("error getting device list"); cam_freeccb(ccb); return (1); } status[0] = '\0'; switch (ccb->cgdl.status) { case CAM_GDEVLIST_MORE_DEVS: strcpy(status, "MORE"); break; case CAM_GDEVLIST_LAST_DEVICE: strcpy(status, "LAST"); break; case CAM_GDEVLIST_LIST_CHANGED: strcpy(status, "CHANGED"); break; case CAM_GDEVLIST_ERROR: strcpy(status, "ERROR"); error = 1; break; } fprintf(stdout, "%s%d: generation: %d index: %d status: %s\n", ccb->cgdl.periph_name, ccb->cgdl.unit_number, ccb->cgdl.generation, ccb->cgdl.index, status); /* * If the list has changed, we need to start over from the * beginning. */ if (ccb->cgdl.status == CAM_GDEVLIST_LIST_CHANGED) ccb->cgdl.index = 0; } cam_freeccb(ccb); return (error); } static int getdevtree(int argc, char **argv, char *combinedopt) { union ccb ccb; int bufsize, fd; unsigned int i; int need_close = 0; int error = 0; int skip_device = 0; int busonly = 0; int c; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'b': if ((arglist & CAM_ARG_VERBOSE) == 0) busonly = 1; break; default: break; } } if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("couldn't open %s", XPT_DEVICE); return (1); } bzero(&ccb, sizeof(union ccb)); ccb.ccb_h.path_id = CAM_XPT_PATH_ID; ccb.ccb_h.target_id = CAM_TARGET_WILDCARD; ccb.ccb_h.target_lun = CAM_LUN_WILDCARD; ccb.ccb_h.func_code = XPT_DEV_MATCH; bufsize = sizeof(struct dev_match_result) * 100; ccb.cdm.match_buf_len = bufsize; ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize); if (ccb.cdm.matches == NULL) { warnx("can't malloc memory for matches"); close(fd); return (1); } ccb.cdm.num_matches = 0; /* * We fetch all nodes, since we display most of them in the default * case, and all in the verbose case. */ ccb.cdm.num_patterns = 0; ccb.cdm.pattern_buf_len = 0; /* * We do the ioctl multiple times if necessary, in case there are * more than 100 nodes in the EDT. */ do { if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("error sending CAMIOCOMMAND ioctl"); error = 1; break; } if ((ccb.ccb_h.status != CAM_REQ_CMP) || ((ccb.cdm.status != CAM_DEV_MATCH_LAST) && (ccb.cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", ccb.ccb_h.status, ccb.cdm.status); error = 1; break; } for (i = 0; i < ccb.cdm.num_matches; i++) { switch (ccb.cdm.matches[i].type) { case DEV_MATCH_BUS: { struct bus_match_result *bus_result; /* * Only print the bus information if the * user turns on the verbose flag. */ if ((busonly == 0) && (arglist & CAM_ARG_VERBOSE) == 0) break; bus_result = &ccb.cdm.matches[i].result.bus_result; if (need_close) { fprintf(stdout, ")\n"); need_close = 0; } fprintf(stdout, "scbus%d on %s%d bus %d%s\n", bus_result->path_id, bus_result->dev_name, bus_result->unit_number, bus_result->bus_id, (busonly ? "" : ":")); break; } case DEV_MATCH_DEVICE: { struct device_match_result *dev_result; char tmpstr[256]; if (busonly == 1) break; dev_result = &ccb.cdm.matches[i].result.device_result; if ((dev_result->flags & DEV_RESULT_UNCONFIGURED) && ((arglist & CAM_ARG_VERBOSE) == 0)) { skip_device = 1; break; } else skip_device = 0; if (dev_result->protocol == PROTO_SCSI) { if (print_dev_scsi(dev_result, &tmpstr[0]) != 0) { skip_device = 1; break; } } else if (dev_result->protocol == PROTO_ATA || dev_result->protocol == PROTO_SATAPM) { if (print_dev_ata(dev_result, &tmpstr[0]) != 0) { skip_device = 1; break; } } else if (dev_result->protocol == PROTO_MMCSD){ if (print_dev_mmcsd(dev_result, &tmpstr[0]) != 0) { skip_device = 1; break; } } else if (dev_result->protocol == PROTO_SEMB) { if (print_dev_semb(dev_result, &tmpstr[0]) != 0) { skip_device = 1; break; } #ifdef WITH_NVME } else if (dev_result->protocol == PROTO_NVME) { if (print_dev_nvme(dev_result, &tmpstr[0]) != 0) { skip_device = 1; break; } #endif } else { sprintf(tmpstr, "<>"); } if (need_close) { fprintf(stdout, ")\n"); need_close = 0; } fprintf(stdout, "%-33s at scbus%d " "target %d lun %jx (", tmpstr, dev_result->path_id, dev_result->target_id, (uintmax_t)dev_result->target_lun); need_close = 1; break; } case DEV_MATCH_PERIPH: { struct periph_match_result *periph_result; periph_result = &ccb.cdm.matches[i].result.periph_result; if (busonly || skip_device != 0) break; if (need_close > 1) fprintf(stdout, ","); fprintf(stdout, "%s%d", periph_result->periph_name, periph_result->unit_number); need_close++; break; } default: fprintf(stdout, "unknown match type\n"); break; } } } while ((ccb.ccb_h.status == CAM_REQ_CMP) && (ccb.cdm.status == CAM_DEV_MATCH_MORE)); if (need_close) fprintf(stdout, ")\n"); close(fd); return (error); } static int getdevtype(struct cam_device *cam_dev) { camcontrol_devtype dt; int error; /* * Get the device type and report it, request no I/O be done to do this. */ error = get_device_type(cam_dev, -1, 0, 0, &dt); if (error != 0 || (unsigned)dt > CC_DT_UNKNOWN) { fprintf(stdout, "illegal\n"); return (1); } fprintf(stdout, "%s\n", devtype_names[dt]); return (0); } static int print_dev_scsi(struct device_match_result *dev_result, char *tmpstr) { char vendor[16], product[48], revision[16]; cam_strvis(vendor, dev_result->inq_data.vendor, sizeof(dev_result->inq_data.vendor), sizeof(vendor)); cam_strvis(product, dev_result->inq_data.product, sizeof(dev_result->inq_data.product), sizeof(product)); cam_strvis(revision, dev_result->inq_data.revision, sizeof(dev_result->inq_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s %s>", vendor, product, revision); return (0); } static int print_dev_ata(struct device_match_result *dev_result, char *tmpstr) { char product[48], revision[16]; cam_strvis(product, dev_result->ident_data.model, sizeof(dev_result->ident_data.model), sizeof(product)); cam_strvis(revision, dev_result->ident_data.revision, sizeof(dev_result->ident_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s>", product, revision); return (0); } static int print_dev_semb(struct device_match_result *dev_result, char *tmpstr) { struct sep_identify_data *sid; char vendor[16], product[48], revision[16], fw[5]; sid = (struct sep_identify_data *)&dev_result->ident_data; cam_strvis(vendor, sid->vendor_id, sizeof(sid->vendor_id), sizeof(vendor)); cam_strvis(product, sid->product_id, sizeof(sid->product_id), sizeof(product)); cam_strvis(revision, sid->product_rev, sizeof(sid->product_rev), sizeof(revision)); cam_strvis(fw, sid->firmware_rev, sizeof(sid->firmware_rev), sizeof(fw)); sprintf(tmpstr, "<%s %s %s %s>", vendor, product, revision, fw); return (0); } static int print_dev_mmcsd(struct device_match_result *dev_result, char *tmpstr) { union ccb *ccb; struct ccb_dev_advinfo *advi; struct cam_device *dev; struct mmc_params mmc_ident_data; dev = cam_open_btl(dev_result->path_id, dev_result->target_id, dev_result->target_lun, O_RDWR, NULL); if (dev == NULL) { warnx("%s", cam_errbuf); return (1); } ccb = cam_getccb(dev); if (ccb == NULL) { warnx("couldn't allocate CCB"); cam_close_device(dev); return (1); } advi = &ccb->cdai; advi->ccb_h.flags = CAM_DIR_IN; advi->ccb_h.func_code = XPT_DEV_ADVINFO; advi->flags = CDAI_FLAG_NONE; advi->buftype = CDAI_TYPE_MMC_PARAMS; advi->bufsiz = sizeof(struct mmc_params); advi->buf = (uint8_t *)&mmc_ident_data; if (cam_send_ccb(dev, ccb) < 0) { warn("error sending XPT_DEV_ADVINFO CCB"); cam_freeccb(ccb); cam_close_device(dev); return (1); } if (strlen(mmc_ident_data.model) > 0) { sprintf(tmpstr, "<%s>", mmc_ident_data.model); } else { sprintf(tmpstr, "<%s card>", mmc_ident_data.card_features & CARD_FEATURE_SDIO ? "SDIO" : "unknown"); } cam_freeccb(ccb); cam_close_device(dev); return (0); } #ifdef WITH_NVME static int nvme_get_cdata(struct cam_device *dev, struct nvme_controller_data *cdata) { union ccb *ccb; struct ccb_dev_advinfo *advi; ccb = cam_getccb(dev); if (ccb == NULL) { warnx("couldn't allocate CCB"); cam_close_device(dev); return (1); } advi = &ccb->cdai; advi->ccb_h.flags = CAM_DIR_IN; advi->ccb_h.func_code = XPT_DEV_ADVINFO; advi->flags = CDAI_FLAG_NONE; advi->buftype = CDAI_TYPE_NVME_CNTRL; advi->bufsiz = sizeof(struct nvme_controller_data); advi->buf = (uint8_t *)cdata; if (cam_send_ccb(dev, ccb) < 0) { warn("error sending XPT_DEV_ADVINFO CCB"); cam_freeccb(ccb); cam_close_device(dev); return(1); } if (advi->ccb_h.status != CAM_REQ_CMP) { warnx("got CAM error %#x", advi->ccb_h.status); cam_freeccb(ccb); cam_close_device(dev); return(1); } cam_freeccb(ccb); return 0; } static int print_dev_nvme(struct device_match_result *dev_result, char *tmpstr) { struct cam_device *dev; struct nvme_controller_data cdata; char vendor[64], product[64]; dev = cam_open_btl(dev_result->path_id, dev_result->target_id, dev_result->target_lun, O_RDWR, NULL); if (dev == NULL) { warnx("%s", cam_errbuf); return (1); } if (nvme_get_cdata(dev, &cdata)) return (1); cam_strvis(vendor, cdata.mn, sizeof(cdata.mn), sizeof(vendor)); cam_strvis(product, cdata.fr, sizeof(cdata.fr), sizeof(product)); sprintf(tmpstr, "<%s %s>", vendor, product); cam_close_device(dev); return (0); } #endif static int requestsense(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { int c; int descriptor_sense = 0; int do_hexdump = 0; struct scsi_sense_data sense; union ccb *ccb = NULL; int error = 0; size_t returned_bytes; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'D': descriptor_sense = 1; break; case 'x': do_hexdump = 1; break; default: break; } } ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } /* cam_getccb cleans up the header, caller has to zero the payload */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); bzero(&sense, sizeof(sense)); scsi_request_sense(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*data_ptr*/ (void *)&sense, /*dxfer_len*/ sizeof(sense), /*tag_action*/ task_attr, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 60000); if (descriptor_sense != 0) { struct scsi_request_sense *cdb; cdb = (struct scsi_request_sense *)&ccb->csio.cdb_io.cdb_bytes; cdb->byte2 |= SRS_DESC; } ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending REQUEST SENSE command"); cam_freeccb(ccb); error = 1; goto bailout; } /* * REQUEST SENSE is not generally supposed to fail. But there can * be transport or other errors that might cause it to fail. It * may also fail if the user asks for descriptor sense and the * device doesn't support it. So we check the CCB status here to see. */ if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("REQUEST SENSE failed"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto bailout; } returned_bytes = ccb->csio.dxfer_len - ccb->csio.resid; if (do_hexdump != 0) { hexdump(&sense, returned_bytes, NULL, 0); } else { char path_str[80]; struct sbuf *sb; cam_path_string(device, path_str, sizeof(path_str)); sb = sbuf_new_auto(); if (sb == NULL) { warnx("%s: cannot allocate sbuf", __func__); error = 1; goto bailout; } scsi_sense_only_sbuf(&sense, returned_bytes, sb, path_str, &device->inq_data, scsiio_cdb_ptr(&ccb->csio), ccb->csio.cdb_len); sbuf_finish(sb); printf("%s", sbuf_data(sb)); sbuf_delete(sb); } bailout: if (ccb != NULL) cam_freeccb(ccb); return (error); } static int testunitready(struct cam_device *device, int task_attr, int retry_count, int timeout, int quiet) { int error = 0; union ccb *ccb; ccb = cam_getccb(device); scsi_test_unit_ready(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { if (quiet == 0) warn("error sending TEST UNIT READY command"); cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { if (quiet == 0) fprintf(stdout, "Unit is ready\n"); } else { if (quiet == 0) fprintf(stdout, "Unit is not ready\n"); error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); return (error); } static int scsistart(struct cam_device *device, int startstop, int loadeject, int task_attr, int retry_count, int timeout) { union ccb *ccb; int error = 0; ccb = cam_getccb(device); /* * If we're stopping, send an ordered tag so the drive in question * will finish any previously queued writes before stopping. If * the device isn't capable of tagged queueing, or if tagged * queueing is turned off, the tag action is a no-op. We override * the default simple tag, although this also has the effect of * overriding the user's wishes if he wanted to specify a simple * tag. */ if ((startstop == 0) && (task_attr == MSG_SIMPLE_Q_TAG)) task_attr = MSG_ORDERED_Q_TAG; scsi_start_stop(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* start/stop */ startstop, /* load_eject */ loadeject, /* immediate */ 0, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 120000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending START STOP UNIT command"); cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) if (startstop) { fprintf(stdout, "Unit started successfully"); if (loadeject) fprintf(stdout,", Media loaded\n"); else fprintf(stdout,"\n"); } else { fprintf(stdout, "Unit stopped successfully"); if (loadeject) fprintf(stdout, ", Media ejected\n"); else fprintf(stdout, "\n"); } else { error = 1; if (startstop) fprintf(stdout, "Error received from start unit command\n"); else fprintf(stdout, "Error received from stop unit command\n"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); return (error); } int scsidoinquiry(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { int c; int error = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'D': arglist |= CAM_ARG_GET_STDINQ; break; case 'R': arglist |= CAM_ARG_GET_XFERRATE; break; case 'S': arglist |= CAM_ARG_GET_SERIAL; break; default: break; } } /* * If the user didn't specify any inquiry options, he wants all of * them. */ if ((arglist & CAM_ARG_INQ_MASK) == 0) arglist |= CAM_ARG_INQ_MASK; if (arglist & CAM_ARG_GET_STDINQ) error = scsiinquiry(device, task_attr, retry_count, timeout); if (error != 0) return (error); if (arglist & CAM_ARG_GET_SERIAL) scsiserial(device, task_attr, retry_count, timeout); if (arglist & CAM_ARG_GET_XFERRATE) error = camxferrate(device); return (error); } static int scsiinquiry(struct cam_device *device, int task_attr, int retry_count, int timeout) { union ccb *ccb; struct scsi_inquiry_data *inq_buf; int error = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } inq_buf = (struct scsi_inquiry_data *)malloc( sizeof(struct scsi_inquiry_data)); if (inq_buf == NULL) { cam_freeccb(ccb); warnx("can't malloc memory for inquiry\n"); return (1); } bzero(inq_buf, sizeof(*inq_buf)); /* * Note that although the size of the inquiry buffer is the full * 256 bytes specified in the SCSI spec, we only tell the device * that we have allocated SHORT_INQUIRY_LENGTH bytes. There are * two reasons for this: * * - The SCSI spec says that when a length field is only 1 byte, * a value of 0 will be interpreted as 256. Therefore * scsi_inquiry() will convert an inq_len (which is passed in as * a uint32_t, but the field in the CDB is only 1 byte) of 256 * to 0. Evidently, very few devices meet the spec in that * regard. Some devices, like many Seagate disks, take the 0 as * 0, and don't return any data. One Pioneer DVD-R drive * returns more data than the command asked for. * * So, since there are numerous devices that just don't work * right with the full inquiry size, we don't send the full size. * * - The second reason not to use the full inquiry data length is * that we don't need it here. The only reason we issue a * standard inquiry is to get the vendor name, device name, * and revision so scsi_print_inquiry() can print them. * * If, at some point in the future, more inquiry data is needed for * some reason, this code should use a procedure similar to the * probe code. i.e., issue a short inquiry, and determine from * the additional length passed back from the device how much * inquiry data the device supports. Once the amount the device * supports is determined, issue an inquiry for that amount and no * more. * * KDM, 2/18/2000 */ scsi_inquiry(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* inq_buf */ (uint8_t *)inq_buf, /* inq_len */ SHORT_INQUIRY_LENGTH, /* evpd */ 0, /* page_code */ 0, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending INQUIRY command"); cam_freeccb(ccb); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); if (error != 0) { free(inq_buf); return (error); } fprintf(stdout, "%s%d: ", device->device_name, device->dev_unit_num); scsi_print_inquiry(inq_buf); free(inq_buf); return (0); } static int scsiserial(struct cam_device *device, int task_attr, int retry_count, int timeout) { union ccb *ccb; struct scsi_vpd_unit_serial_number *serial_buf; char serial_num[SVPD_SERIAL_NUM_SIZE + 1]; int error = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } serial_buf = (struct scsi_vpd_unit_serial_number *) malloc(sizeof(*serial_buf)); if (serial_buf == NULL) { cam_freeccb(ccb); warnx("can't malloc memory for serial number"); return (1); } scsi_inquiry(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /* tag_action */ task_attr, /* inq_buf */ (uint8_t *)serial_buf, /* inq_len */ sizeof(*serial_buf), /* evpd */ 1, /* page_code */ SVPD_UNIT_SERIAL_NUMBER, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending INQUIRY command"); cam_freeccb(ccb); free(serial_buf); return (1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } cam_freeccb(ccb); if (error != 0) { free(serial_buf); return (error); } bcopy(serial_buf->serial_num, serial_num, serial_buf->length); serial_num[serial_buf->length] = '\0'; if ((arglist & CAM_ARG_GET_STDINQ) || (arglist & CAM_ARG_GET_XFERRATE)) fprintf(stdout, "%s%d: Serial Number ", device->device_name, device->dev_unit_num); fprintf(stdout, "%.60s\n", serial_num); free(serial_buf); return (0); } int camxferrate(struct cam_device *device) { struct ccb_pathinq cpi; uint32_t freq = 0; uint32_t speed = 0; union ccb *ccb; u_int mb; int retval = 0; if ((retval = get_cpi(device, &cpi)) != 0) return (1); ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char error_string[] = "error getting transfer settings"; if (retval < 0) warn(error_string); else warnx(error_string); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto xferrate_bailout; } speed = cpi.base_transfer_speed; freq = 0; if (ccb->cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &ccb->cts.xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) { freq = scsi_calc_syncsrate(spi->sync_period); speed = freq; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { speed *= (0x01 << spi->bus_width); } } else if (ccb->cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &ccb->cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_SPEED) speed = fc->bitrate; } else if (ccb->cts.transport == XPORT_SAS) { struct ccb_trans_settings_sas *sas = &ccb->cts.xport_specific.sas; if (sas->valid & CTS_SAS_VALID_SPEED) speed = sas->bitrate; } else if (ccb->cts.transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &ccb->cts.xport_specific.ata; if (pata->valid & CTS_ATA_VALID_MODE) speed = ata_mode2speed(pata->mode); } else if (ccb->cts.transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &ccb->cts.xport_specific.sata; if (sata->valid & CTS_SATA_VALID_REVISION) speed = ata_revision2speed(sata->revision); } mb = speed / 1000; if (mb > 0) { fprintf(stdout, "%s%d: %d.%03dMB/s transfers", device->device_name, device->dev_unit_num, mb, speed % 1000); } else { fprintf(stdout, "%s%d: %dKB/s transfers", device->device_name, device->dev_unit_num, speed); } if (ccb->cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &ccb->cts.xport_specific.spi; if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) fprintf(stdout, " (%d.%03dMHz, offset %d", freq / 1000, freq % 1000, spi->sync_offset); if (((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) && (spi->bus_width > 0)) { if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) { fprintf(stdout, ", "); } else { fprintf(stdout, " ("); } fprintf(stdout, "%dbit)", 8 * (0x01 << spi->bus_width)); } else if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0) && (spi->sync_offset != 0)) { fprintf(stdout, ")"); } } else if (ccb->cts.transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &ccb->cts.xport_specific.ata; printf(" ("); if (pata->valid & CTS_ATA_VALID_MODE) printf("%s, ", ata_mode2string(pata->mode)); if ((pata->valid & CTS_ATA_VALID_ATAPI) && pata->atapi != 0) printf("ATAPI %dbytes, ", pata->atapi); if (pata->valid & CTS_ATA_VALID_BYTECOUNT) printf("PIO %dbytes", pata->bytecount); printf(")"); } else if (ccb->cts.transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &ccb->cts.xport_specific.sata; printf(" ("); if (sata->valid & CTS_SATA_VALID_REVISION) printf("SATA %d.x, ", sata->revision); else printf("SATA, "); if (sata->valid & CTS_SATA_VALID_MODE) printf("%s, ", ata_mode2string(sata->mode)); if ((sata->valid & CTS_SATA_VALID_ATAPI) && sata->atapi != 0) printf("ATAPI %dbytes, ", sata->atapi); if (sata->valid & CTS_SATA_VALID_BYTECOUNT) printf("PIO %dbytes", sata->bytecount); printf(")"); } if (ccb->cts.protocol == PROTO_SCSI) { struct ccb_trans_settings_scsi *scsi = &ccb->cts.proto_specific.scsi; if (scsi->valid & CTS_SCSI_VALID_TQ) { if (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) { fprintf(stdout, ", Command Queueing Enabled"); } } } fprintf(stdout, "\n"); xferrate_bailout: cam_freeccb(ccb); return (retval); } static void atahpa_print(struct ata_params *parm, u_int64_t hpasize, int header) { uint32_t lbasize = (uint32_t)parm->lba_size_1 | ((uint32_t)parm->lba_size_2 << 16); u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | ((u_int64_t)parm->lba_size48_2 << 16) | ((u_int64_t)parm->lba_size48_3 << 32) | ((u_int64_t)parm->lba_size48_4 << 48); if (header) { printf("\nFeature " "Support Enabled Value\n"); } printf("Host Protected Area (HPA) "); if (parm->support.command1 & ATA_SUPPORT_PROTECTED) { u_int64_t lba = lbasize48 ? lbasize48 : lbasize; printf("yes %s %ju/%ju\n", (hpasize > lba) ? "yes" : "no ", lba, hpasize); printf("HPA - Security "); if (parm->support.command2 & ATA_SUPPORT_MAXSECURITY) printf("yes %s\n", (parm->enabled.command2 & ATA_SUPPORT_MAXSECURITY) ? "yes" : "no "); else printf("no\n"); } else { printf("no\n"); } } static void ataama_print(struct ata_params *parm, u_int64_t nativesize, int header) { uint32_t lbasize = (uint32_t)parm->lba_size_1 | ((uint32_t)parm->lba_size_2 << 16); u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | ((u_int64_t)parm->lba_size48_2 << 16) | ((u_int64_t)parm->lba_size48_3 << 32) | ((u_int64_t)parm->lba_size48_4 << 48); if (header) { printf("\nFeature " "Support Enabled Value\n"); } printf("Accessible Max Address Config "); if (parm->support2 & ATA_SUPPORT_AMAX_ADDR) { u_int64_t lba = lbasize48 ? lbasize48 : lbasize; printf("yes %s %ju/%ju\n", (nativesize > lba) ? "yes" : "no ", lba, nativesize); } else { printf("no\n"); } } static int atasata(struct ata_params *parm) { if (parm->satacapabilities != 0xffff && parm->satacapabilities != 0x0000) return 1; return 0; } static void atacapprint(struct ata_params *parm) { const char *proto; uint32_t lbasize = (uint32_t)parm->lba_size_1 | ((uint32_t)parm->lba_size_2 << 16); u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) | ((u_int64_t)parm->lba_size48_2 << 16) | ((u_int64_t)parm->lba_size48_3 << 32) | ((u_int64_t)parm->lba_size48_4 << 48); printf("\n"); printf("protocol "); proto = (parm->config == ATA_PROTO_CFA) ? "CFA" : (parm->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; if (ata_version(parm->version_major) == 0) { printf("%s", proto); } else if (ata_version(parm->version_major) <= 7) { printf("%s-%d", proto, ata_version(parm->version_major)); } else if (ata_version(parm->version_major) == 8) { printf("%s8-ACS", proto); } else { printf("ACS-%d %s", ata_version(parm->version_major) - 7, proto); } if (parm->satacapabilities && parm->satacapabilities != 0xffff) { if (parm->satacapabilities & ATA_SATA_GEN3) printf(" SATA 3.x\n"); else if (parm->satacapabilities & ATA_SATA_GEN2) printf(" SATA 2.x\n"); else if (parm->satacapabilities & ATA_SATA_GEN1) printf(" SATA 1.x\n"); else printf(" SATA\n"); } else printf("\n"); printf("device model %.40s\n", parm->model); printf("firmware revision %.8s\n", parm->revision); printf("serial number %.20s\n", parm->serial); if (parm->enabled.extension & ATA_SUPPORT_64BITWWN) { printf("WWN %04x%04x%04x%04x\n", parm->wwn[0], parm->wwn[1], parm->wwn[2], parm->wwn[3]); } printf("additional product id %.8s\n", parm->product_id); if (parm->enabled.extension & ATA_SUPPORT_MEDIASN) { printf("media serial number %.30s\n", parm->media_serial); } printf("cylinders %d\n", parm->cylinders); printf("heads %d\n", parm->heads); printf("sectors/track %d\n", parm->sectors); printf("sector size logical %u, physical %lu, offset %lu\n", ata_logical_sector_size(parm), (unsigned long)ata_physical_sector_size(parm), (unsigned long)ata_logical_sector_offset(parm)); if (parm->config == ATA_PROTO_CFA || (parm->support.command2 & ATA_SUPPORT_CFA)) printf("CFA supported\n"); printf("LBA%ssupported ", parm->capabilities1 & ATA_SUPPORT_LBA ? " " : " not "); if (lbasize) printf("%d sectors\n", lbasize); else printf("\n"); printf("LBA48%ssupported ", parm->support.command2 & ATA_SUPPORT_ADDRESS48 ? " " : " not "); if (lbasize48) printf("%ju sectors\n", (uintmax_t)lbasize48); else printf("\n"); printf("PIO supported PIO"); switch (ata_max_pmode(parm)) { case ATA_PIO4: printf("4"); break; case ATA_PIO3: printf("3"); break; case ATA_PIO2: printf("2"); break; case ATA_PIO1: printf("1"); break; default: printf("0"); } if ((parm->capabilities1 & ATA_SUPPORT_IORDY) == 0) printf(" w/o IORDY"); printf("\n"); printf("DMA%ssupported ", parm->capabilities1 & ATA_SUPPORT_DMA ? " " : " not "); if (parm->capabilities1 & ATA_SUPPORT_DMA) { if (parm->mwdmamodes & 0xff) { printf("WDMA"); if (parm->mwdmamodes & 0x04) printf("2"); else if (parm->mwdmamodes & 0x02) printf("1"); else if (parm->mwdmamodes & 0x01) printf("0"); printf(" "); } if ((parm->atavalid & ATA_FLAG_88) && (parm->udmamodes & 0xff)) { printf("UDMA"); if (parm->udmamodes & 0x40) printf("6"); else if (parm->udmamodes & 0x20) printf("5"); else if (parm->udmamodes & 0x10) printf("4"); else if (parm->udmamodes & 0x08) printf("3"); else if (parm->udmamodes & 0x04) printf("2"); else if (parm->udmamodes & 0x02) printf("1"); else if (parm->udmamodes & 0x01) printf("0"); printf(" "); } } printf("\n"); if (parm->media_rotation_rate == 1) { printf("media RPM non-rotating\n"); } else if (parm->media_rotation_rate >= 0x0401 && parm->media_rotation_rate <= 0xFFFE) { printf("media RPM %d\n", parm->media_rotation_rate); } printf("Zoned-Device Commands "); switch (parm->support3 & ATA_SUPPORT_ZONE_MASK) { case ATA_SUPPORT_ZONE_DEV_MANAGED: printf("device managed\n"); break; case ATA_SUPPORT_ZONE_HOST_AWARE: printf("host aware\n"); break; default: printf("no\n"); } printf("\nFeature " "Support Enabled Value Vendor\n"); printf("read ahead %s %s\n", parm->support.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no"); printf("write cache %s %s\n", parm->support.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no"); printf("flush cache %s %s\n", parm->support.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no"); printf("Native Command Queuing (NCQ) "); if (atasata(parm) && (parm->satacapabilities & ATA_SUPPORT_NCQ)) { printf("yes %d tags\n", ATA_QUEUE_LEN(parm->queue) + 1); printf("NCQ Priority Information %s\n", parm->satacapabilities & ATA_SUPPORT_NCQ_PRIO ? "yes" : "no"); printf("NCQ Non-Data Command %s\n", parm->satacapabilities2 & ATA_SUPPORT_NCQ_NON_DATA ? "yes" : "no"); printf("NCQ Streaming %s\n", parm->satacapabilities2 & ATA_SUPPORT_NCQ_STREAM ? "yes" : "no"); printf("Receive & Send FPDMA Queued %s\n", parm->satacapabilities2 & ATA_SUPPORT_RCVSND_FPDMA_QUEUED ? "yes" : "no"); printf("NCQ Autosense %s\n", parm->satasupport & ATA_SUPPORT_NCQ_AUTOSENSE ? "yes" : "no"); } else printf("no\n"); printf("SMART %s %s\n", parm->support.command1 & ATA_SUPPORT_SMART ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_SMART ? "yes" : "no"); printf("security %s %s\n", parm->support.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no"); printf("power management %s %s\n", parm->support.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no", parm->enabled.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no"); printf("microcode download %s %s\n", parm->support.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no"); printf("advanced power management %s %s", parm->support.command2 & ATA_SUPPORT_APM ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_APM ? "yes" : "no"); if (parm->support.command2 & ATA_SUPPORT_APM) { printf(" %d/0x%02X\n", parm->apm_value & 0xff, parm->apm_value & 0xff); } else printf("\n"); printf("automatic acoustic management %s %s", parm->support.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no", parm->enabled.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no"); if (parm->support.command2 & ATA_SUPPORT_AUTOACOUSTIC) { printf(" %d/0x%02X %d/0x%02X\n", ATA_ACOUSTIC_CURRENT(parm->acoustic), ATA_ACOUSTIC_CURRENT(parm->acoustic), ATA_ACOUSTIC_VENDOR(parm->acoustic), ATA_ACOUSTIC_VENDOR(parm->acoustic)); } else printf("\n"); printf("media status notification %s %s\n", parm->support.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no"); printf("power-up in Standby %s %s\n", parm->support.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no", parm->enabled.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no"); printf("write-read-verify %s %s", parm->support2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no"); if (parm->support2 & ATA_SUPPORT_WRITEREADVERIFY) { printf(" %d/0x%x\n", parm->wrv_mode, parm->wrv_mode); } else printf("\n"); printf("unload %s %s\n", parm->support.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no", parm->enabled.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no"); printf("general purpose logging %s %s\n", parm->support.extension & ATA_SUPPORT_GENLOG ? "yes" : "no", parm->enabled.extension & ATA_SUPPORT_GENLOG ? "yes" : "no"); printf("free-fall %s %s\n", parm->support2 & ATA_SUPPORT_FREEFALL ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_FREEFALL ? "yes" : "no"); printf("sense data reporting %s %s\n", parm->support2 & ATA_SUPPORT_SENSE_REPORT ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_SENSE_REPORT ? "yes" : "no"); printf("extended power conditions %s %s\n", parm->support2 & ATA_SUPPORT_EPC ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_EPC ? "yes" : "no"); printf("device statistics notification %s %s\n", parm->support2 & ATA_SUPPORT_DSN ? "yes" : "no", parm->enabled2 & ATA_SUPPORT_DSN ? "yes" : "no"); printf("Data Set Management (DSM/TRIM) "); if (parm->support_dsm & ATA_SUPPORT_DSM_TRIM) { printf("yes\n"); printf("DSM - max 512byte blocks "); if (parm->max_dsm_blocks == 0x00) printf("yes not specified\n"); else printf("yes %d\n", parm->max_dsm_blocks); printf("DSM - deterministic read "); if (parm->support3 & ATA_SUPPORT_DRAT) { if (parm->support3 & ATA_SUPPORT_RZAT) printf("yes zeroed\n"); else printf("yes any value\n"); } else { printf("no\n"); } } else { printf("no\n"); } printf("Trusted Computing %s\n", ((parm->tcg & 0xc000) == 0x4000) && (parm->tcg & ATA_SUPPORT_TCG) ? "yes" : "no"); printf("encrypts all user data %s\n", parm->support3 & ATA_ENCRYPTS_ALL_USER_DATA ? "yes" : "no"); printf("Sanitize "); if (parm->multi & ATA_SUPPORT_SANITIZE) { printf("yes\t\t%s%s%s\n", parm->multi & ATA_SUPPORT_BLOCK_ERASE_EXT ? "block, " : "", parm->multi & ATA_SUPPORT_OVERWRITE_EXT ? "overwrite, " : "", parm->multi & ATA_SUPPORT_CRYPTO_SCRAMBLE_EXT ? "crypto" : ""); printf("Sanitize - commands allowed %s\n", parm->multi & ATA_SUPPORT_SANITIZE_ALLOWED ? "yes" : "no"); printf("Sanitize - antifreeze lock %s\n", parm->multi & ATA_SUPPORT_ANTIFREEZE_LOCK_EXT ? "yes" : "no"); } else { printf("no\n"); } } static int scsi_cam_pass_16_send(struct cam_device *device, union ccb *ccb) { struct ata_pass_16 *ata_pass_16; struct ata_cmd ata_cmd; ata_pass_16 = (struct ata_pass_16 *)ccb->csio.cdb_io.cdb_bytes; ata_cmd.command = ata_pass_16->command; ata_cmd.control = ata_pass_16->control; ata_cmd.features = ata_pass_16->features; if (arglist & CAM_ARG_VERBOSE) { warnx("sending ATA %s via pass_16 with timeout of %u msecs", ata_op_string(&ata_cmd), ccb->csio.ccb_h.timeout); } /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending ATA %s via pass_16", ata_op_string(&ata_cmd)); return (1); } /* * Consider any non-CAM_REQ_CMP status as error and report it here, * unless caller set AP_FLAG_CHK_COND, in which case it is responsible. */ if (!(ata_pass_16->flags & AP_FLAG_CHK_COND) && (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("ATA %s via pass_16 failed", ata_op_string(&ata_cmd)); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } return (0); } static int ata_cam_send(struct cam_device *device, union ccb *ccb) { if (arglist & CAM_ARG_VERBOSE) { warnx("sending ATA %s with timeout of %u msecs", ata_op_string(&(ccb->ataio.cmd)), ccb->ataio.ccb_h.timeout); } /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending ATA %s", ata_op_string(&(ccb->ataio.cmd))); return (1); } /* * Consider any non-CAM_REQ_CMP status as error and report it here, * unless caller set AP_FLAG_CHK_COND, in which case it is responsible. */ if (!(ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT) && (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("ATA %s failed", ata_op_string(&(ccb->ataio.cmd))); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } return (1); } return (0); } static int ata_do_pass_16(struct cam_device *device, union ccb *ccb, int retries, uint32_t flags, uint8_t protocol, uint8_t ata_flags, uint8_t tag_action, uint8_t command, uint16_t features, u_int64_t lba, uint16_t sector_count, uint8_t *data_ptr, uint16_t dxfer_len, int timeout) { if (data_ptr != NULL) { if (flags & CAM_DIR_OUT) ata_flags |= AP_FLAG_TDIR_TO_DEV; else ata_flags |= AP_FLAG_TDIR_FROM_DEV; } else { ata_flags |= AP_FLAG_TLEN_NO_DATA; } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_ata_pass_16(&ccb->csio, retries, NULL, flags, tag_action, protocol, ata_flags, features, sector_count, lba, command, /*control*/0, data_ptr, dxfer_len, /*sense_len*/SSD_FULL_SIZE, timeout); return scsi_cam_pass_16_send(device, ccb); } static int ata_try_pass_16(struct cam_device *device) { struct ccb_pathinq cpi; if (get_cpi(device, &cpi) != 0) { warnx("couldn't get CPI"); return (-1); } if (cpi.protocol == PROTO_SCSI) { /* possibly compatible with pass_16 */ return (1); } /* likely not compatible with pass_16 */ return (0); } static int ata_do_cmd(struct cam_device *device, union ccb *ccb, int retries, uint32_t flags, uint8_t protocol, uint8_t ata_flags, uint8_t tag_action, uint8_t command, uint16_t features, u_int64_t lba, uint16_t sector_count, uint8_t *data_ptr, uint16_t dxfer_len, int timeout, int force48bit) { int retval; retval = ata_try_pass_16(device); if (retval == -1) return (1); if (retval == 1) { return (ata_do_pass_16(device, ccb, retries, flags, protocol, ata_flags, tag_action, command, features, lba, sector_count, data_ptr, dxfer_len, timeout)); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->ataio); cam_fill_ataio(&ccb->ataio, retries, NULL, flags, tag_action, data_ptr, dxfer_len, timeout); if (force48bit || lba > ATA_MAX_28BIT_LBA) ata_48bit_cmd(&ccb->ataio, command, features, lba, sector_count); else ata_28bit_cmd(&ccb->ataio, command, features, lba, sector_count); if (ata_flags & AP_FLAG_CHK_COND) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; return ata_cam_send(device, ccb); } static void dump_data(uint16_t *ptr, uint32_t len) { u_int i; for (i = 0; i < len / 2; i++) { if ((i % 8) == 0) printf(" %3d: ", i); printf("%04hx ", ptr[i]); if ((i % 8) == 7) printf("\n"); } if ((i % 8) != 7) printf("\n"); } static int atahpa_proc_resp(struct cam_device *device, union ccb *ccb, u_int64_t *hpasize) { uint8_t error = 0, ata_device = 0, status = 0; uint16_t count = 0; uint64_t lba = 0; int retval; retval = get_ata_status(device, ccb, &error, &count, &lba, &ata_device, &status); if (retval == 1) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } warnx("Can't get ATA command status"); return (retval); } if (status & ATA_STATUS_ERROR) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } if (error & ATA_ERROR_ID_NOT_FOUND) { warnx("Max address has already been set since " "last power-on or hardware reset"); } else if (hpasize == NULL) warnx("Command failed with ATA error"); return (1); } if (hpasize != NULL) { if (retval == 2 || retval == 6) return (1); *hpasize = lba + 1; } return (0); } static int ata_read_native_max(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, struct ata_params *parm, u_int64_t *hpasize) { int error; u_int cmd, is48bit; uint8_t protocol; is48bit = parm->support.command2 & ATA_SUPPORT_ADDRESS48; protocol = AP_PROTO_NON_DATA; if (is48bit) { cmd = ATA_READ_NATIVE_MAX_ADDRESS48; protocol |= AP_EXTEND; } else { cmd = ATA_READ_NATIVE_MAX_ADDRESS; } error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 5000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, hpasize); } static int atahpa_set_max(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, int is48bit, u_int64_t maxsize, int persist) { int error; u_int cmd; uint8_t protocol; protocol = AP_PROTO_NON_DATA; if (is48bit) { cmd = ATA_SET_MAX_ADDRESS48; protocol |= AP_EXTEND; } else { cmd = ATA_SET_MAX_ADDRESS; } /* lba's are zero indexed so the max lba is requested max - 1 */ if (maxsize) maxsize--; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_MAX_ADDR, /*lba*/maxsize, /*sector_count*/persist, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit); if (error) return (error); return atahpa_proc_resp(device, ccb, NULL); } static int atahpa_password(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, int is48bit, struct ata_set_max_pwd *pwd) { u_int cmd; uint8_t protocol; protocol = AP_PROTO_PIO_OUT; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; return (ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/protocol, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_SET_PWD, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t*)pwd, /*dxfer_len*/sizeof(*pwd), timeout ? timeout : 1000, is48bit)); } static int atahpa_lock(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, int is48bit) { u_int cmd; uint8_t protocol; protocol = AP_PROTO_NON_DATA; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; return (ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_LOCK, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit)); } static int atahpa_unlock(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, int is48bit, struct ata_set_max_pwd *pwd) { u_int cmd; uint8_t protocol; protocol = AP_PROTO_PIO_OUT; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; return (ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/protocol, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_UNLOCK, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t*)pwd, /*dxfer_len*/sizeof(*pwd), timeout ? timeout : 1000, is48bit)); } static int atahpa_freeze_lock(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, int is48bit) { u_int cmd; uint8_t protocol; protocol = AP_PROTO_NON_DATA; cmd = (is48bit) ? ATA_SET_MAX_ADDRESS48 : ATA_SET_MAX_ADDRESS; return (ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/protocol, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/ATA_HPA_FEAT_FREEZE, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 1000, is48bit)); } static int ata_get_native_max(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, u_int64_t *nativesize) { int error; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_AMAX_ADDR, /*features*/ATA_AMAX_ADDR_GET, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 30 * 1000, /*force48bit*/1); if (error) return (error); return atahpa_proc_resp(device, ccb, nativesize); } static int ataama_set(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb, u_int64_t maxsize) { int error; /* lba's are zero indexed so the max lba is requested max - 1 */ if (maxsize) maxsize--; error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, /*ata_flags*/AP_FLAG_CHK_COND, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_AMAX_ADDR, /*features*/ATA_AMAX_ADDR_SET, /*lba*/maxsize, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 30 * 1000, /*force48bit*/1); if (error) return (error); return atahpa_proc_resp(device, ccb, NULL); } static int ataama_freeze(struct cam_device *device, int retry_count, uint32_t timeout, union ccb *ccb) { return (ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_AMAX_ADDR, /*features*/ATA_AMAX_ADDR_FREEZE, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, timeout ? timeout : 30 * 1000, /*force48bit*/1)); } int ata_do_identify(struct cam_device *device, int retry_count, int timeout, union ccb *ccb, struct ata_params** ident_bufp) { struct ata_params *ident_buf; struct ccb_pathinq cpi; struct ccb_getdev cgd; u_int i, error; int16_t *ptr; uint8_t command, retry_command; if (get_cpi(device, &cpi) != 0) { warnx("couldn't get CPI"); return (-1); } /* Neither PROTO_ATAPI or PROTO_SATAPM are used in cpi.protocol */ if (cpi.protocol == PROTO_ATA) { if (get_cgd(device, &cgd) != 0) { warnx("couldn't get CGD"); return (-1); } command = (cgd.protocol == PROTO_ATA) ? ATA_ATA_IDENTIFY : ATA_ATAPI_IDENTIFY; retry_command = 0; } else { /* We don't know which for sure so try both */ command = ATA_ATA_IDENTIFY; retry_command = ATA_ATAPI_IDENTIFY; } ptr = (uint16_t *)calloc(1, sizeof(struct ata_params)); if (ptr == NULL) { warnx("can't calloc memory for identify\n"); return (1); } retry: error = ata_do_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_IN, /*protocol*/AP_PROTO_PIO_IN, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/command, /*features*/0, /*lba*/0, /*sector_count*/sizeof(struct ata_params) / 512, /*data_ptr*/(uint8_t *)ptr, /*dxfer_len*/sizeof(struct ata_params), /*timeout*/timeout ? timeout : 30 * 1000, /*force48bit*/0); if (error != 0) { if (retry_command != 0) { command = retry_command; retry_command = 0; goto retry; } free(ptr); return (1); } ident_buf = (struct ata_params *)ptr; ata_param_fixup(ident_buf); error = 1; for (i = 0; i < sizeof(struct ata_params) / 2; i++) { if (ptr[i] != 0) error = 0; } /* check for invalid (all zero) response */ if (error != 0) { warnx("Invalid identify response detected"); free(ptr); return (error); } *ident_bufp = ident_buf; return (0); } static int ataidentify(struct cam_device *device, int retry_count, int timeout) { union ccb *ccb; struct ata_params *ident_buf; u_int64_t hpasize = 0, nativesize = 0; if ((ccb = cam_getccb(device)) == NULL) { warnx("couldn't allocate CCB"); return (1); } if (ata_do_identify(device, retry_count, timeout, ccb, &ident_buf) != 0) { cam_freeccb(ccb); return (1); } if (arglist & CAM_ARG_VERBOSE) { printf("%s%d: Raw identify data:\n", device->device_name, device->dev_unit_num); dump_data((uint16_t *)ident_buf, sizeof(struct ata_params)); } if (ident_buf->support.command1 & ATA_SUPPORT_PROTECTED) { ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize); } if (ident_buf->support2 & ATA_SUPPORT_AMAX_ADDR) { ata_get_native_max(device, retry_count, timeout, ccb, &nativesize); } printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); atacapprint(ident_buf); atahpa_print(ident_buf, hpasize, 0); ataama_print(ident_buf, nativesize, 0); free(ident_buf); cam_freeccb(ccb); return (0); } #ifdef WITH_NVME static int nvmeidentify(struct cam_device *device, int retry_count __unused, int timeout __unused) { struct nvme_controller_data cdata; if (nvme_get_cdata(device, &cdata)) return (1); nvme_print_controller(&cdata); return (0); } #endif static int identify(struct cam_device *device, int retry_count, int timeout) { #ifdef WITH_NVME struct ccb_pathinq cpi; if (get_cpi(device, &cpi) != 0) { warnx("couldn't get CPI"); return (-1); } if (cpi.protocol == PROTO_NVME) { return (nvmeidentify(device, retry_count, timeout)); } #endif return (ataidentify(device, retry_count, timeout)); } enum { ATA_SECURITY_ACTION_PRINT, ATA_SECURITY_ACTION_FREEZE, ATA_SECURITY_ACTION_UNLOCK, ATA_SECURITY_ACTION_DISABLE, ATA_SECURITY_ACTION_ERASE, ATA_SECURITY_ACTION_ERASE_ENHANCED, ATA_SECURITY_ACTION_SET_PASSWORD }; static void atasecurity_print_time(uint16_t tw) { if (tw == 0) printf("unspecified"); else if (tw >= 255) printf("> 508 min"); else printf("%i min", 2 * tw); } static uint32_t atasecurity_erase_timeout_msecs(uint16_t timeout) { if (timeout == 0) return 2 * 3600 * 1000; /* default: two hours */ else if (timeout > 255) return (508 + 60) * 60 * 1000; /* spec says > 508 minutes */ return ((2 * timeout) + 5) * 60 * 1000; /* add a 5min margin */ } static void atasecurity_notify(uint8_t command, struct ata_security_password *pwd) { struct ata_cmd cmd; bzero(&cmd, sizeof(cmd)); cmd.command = command; printf("Issuing %s", ata_op_string(&cmd)); if (pwd != NULL) { /* pwd->password may not be null terminated */ char pass[sizeof(pwd->password)+1]; strlcpy(pass, pwd->password, sizeof(pass)); printf(" password='%s', user='%s'", pass, (pwd->ctrl & ATA_SECURITY_PASSWORD_MASTER) ? "master" : "user"); if (command == ATA_SECURITY_SET_PASSWORD) { printf(", mode='%s'", (pwd->ctrl & ATA_SECURITY_LEVEL_MAXIMUM) ? "maximum" : "high"); } } printf("\n"); } static int atasecurity_freeze(struct cam_device *device, union ccb *ccb, int retry_count, uint32_t timeout, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_FREEZE_LOCK, NULL); return ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_FREEZE_LOCK, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout, /*force48bit*/0); } static int atasecurity_unlock(struct cam_device *device, union ccb *ccb, int retry_count, uint32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_UNLOCK, pwd); return ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_UNLOCK, /*features*/0, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*force48bit*/0); } static int atasecurity_disable(struct cam_device *device, union ccb *ccb, int retry_count, uint32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_DISABLE_PASSWORD, pwd); return ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_DISABLE_PASSWORD, /*features*/0, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*force48bit*/0); } static int atasecurity_erase_confirm(struct cam_device *device, struct ata_params* ident_buf) { printf("\nYou are about to ERASE ALL DATA from the following" " device:\n%s%d,%s%d: ", device->device_name, device->dev_unit_num, device->given_dev_name, device->given_unit_number); ata_print_ident(ident_buf); for(;;) { char str[50]; printf("\nAre you SURE you want to ERASE ALL DATA? (yes/no) "); if (fgets(str, sizeof(str), stdin) != NULL) { if (strncasecmp(str, "yes", 3) == 0) { return (1); } else if (strncasecmp(str, "no", 2) == 0) { return (0); } else { printf("Please answer \"yes\" or " "\"no\"\n"); } } } /* NOTREACHED */ return (0); } static int atasecurity_erase(struct cam_device *device, union ccb *ccb, int retry_count, uint32_t timeout, uint32_t erase_timeout, struct ata_security_password *pwd, int quiet) { int error; if (quiet == 0) atasecurity_notify(ATA_SECURITY_ERASE_PREPARE, NULL); error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_ERASE_PREPARE, /*features*/0, /*lba*/0, /*sector_count*/0, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout, /*force48bit*/0); if (error != 0) return error; if (quiet == 0) atasecurity_notify(ATA_SECURITY_ERASE_UNIT, pwd); error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_ERASE_UNIT, /*features*/0, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/erase_timeout, /*force48bit*/0); if (error == 0 && quiet == 0) printf("\nErase Complete\n"); return error; } static int atasecurity_set_password(struct cam_device *device, union ccb *ccb, int retry_count, uint32_t timeout, struct ata_security_password *pwd, int quiet) { if (quiet == 0) atasecurity_notify(ATA_SECURITY_SET_PASSWORD, pwd); return ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_OUT, /*protocol*/AP_PROTO_PIO_OUT, /*ata_flags*/AP_FLAG_BYT_BLOK_BLOCKS | AP_FLAG_TLEN_SECT_CNT, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SECURITY_SET_PASSWORD, /*features*/0, /*lba*/0, /*sector_count*/sizeof(*pwd) / 512, /*data_ptr*/(uint8_t *)pwd, /*dxfer_len*/sizeof(*pwd), /*timeout*/timeout, /*force48bit*/0); } static void atasecurity_print(struct ata_params *parm) { printf("\nSecurity Option Value\n"); if (arglist & CAM_ARG_VERBOSE) { printf("status %04x\n", parm->security_status); } printf("supported %s\n", parm->security_status & ATA_SECURITY_SUPPORTED ? "yes" : "no"); if (!(parm->security_status & ATA_SECURITY_SUPPORTED)) return; printf("enabled %s\n", parm->security_status & ATA_SECURITY_ENABLED ? "yes" : "no"); printf("drive locked %s\n", parm->security_status & ATA_SECURITY_LOCKED ? "yes" : "no"); printf("security config frozen %s\n", parm->security_status & ATA_SECURITY_FROZEN ? "yes" : "no"); printf("count expired %s\n", parm->security_status & ATA_SECURITY_COUNT_EXP ? "yes" : "no"); printf("security level %s\n", parm->security_status & ATA_SECURITY_LEVEL ? "maximum" : "high"); printf("enhanced erase supported %s\n", parm->security_status & ATA_SECURITY_ENH_SUPP ? "yes" : "no"); printf("erase time "); atasecurity_print_time(parm->erase_time); printf("\n"); printf("enhanced erase time "); atasecurity_print_time(parm->enhanced_erase_time); printf("\n"); printf("master password rev %04x%s\n", parm->master_passwd_revision, parm->master_passwd_revision == 0x0000 || parm->master_passwd_revision == 0xFFFF ? " (unsupported)" : ""); } /* * Validates and copies the password in optarg to the passed buffer. * If the password in optarg is the same length as the buffer then * the data will still be copied but no null termination will occur. */ static int ata_getpwd(uint8_t *passwd, int max, char opt) { int len; len = strlen(optarg); if (len > max) { warnx("-%c password is too long", opt); return (1); } else if (len == 0) { warnx("-%c password is missing", opt); return (1); } else if (optarg[0] == '-'){ warnx("-%c password starts with '-' (generic arg?)", opt); return (1); } else if (strlen(passwd) != 0 && strcmp(passwd, optarg) != 0) { warnx("-%c password conflicts with existing password from -%c", opt, pwd_opt); return (1); } /* Callers pass in a buffer which does NOT need to be terminated */ strncpy(passwd, optarg, max); pwd_opt = opt; return (0); } enum { ATA_HPA_ACTION_PRINT, ATA_HPA_ACTION_SET_MAX, ATA_HPA_ACTION_SET_PWD, ATA_HPA_ACTION_LOCK, ATA_HPA_ACTION_UNLOCK, ATA_HPA_ACTION_FREEZE_LOCK }; static int atahpa_set_confirm(struct cam_device *device, struct ata_params* ident_buf, u_int64_t maxsize, int persist) { printf("\nYou are about to configure HPA to limit the user accessible\n" "sectors to %ju %s on the device:\n%s%d,%s%d: ", maxsize, persist ? "persistently" : "temporarily", device->device_name, device->dev_unit_num, device->given_dev_name, device->given_unit_number); ata_print_ident(ident_buf); for(;;) { char str[50]; printf("\nAre you SURE you want to configure HPA? (yes/no) "); if (NULL != fgets(str, sizeof(str), stdin)) { if (0 == strncasecmp(str, "yes", 3)) { return (1); } else if (0 == strncasecmp(str, "no", 2)) { return (0); } else { printf("Please answer \"yes\" or " "\"no\"\n"); } } } /* NOTREACHED */ return (0); } static int atahpa(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { union ccb *ccb; struct ata_params *ident_buf; struct ccb_getdev cgd; struct ata_set_max_pwd pwd; int error, confirm, quiet, c, action, actions, persist; int security, is48bit, pwdsize; u_int64_t hpasize, maxsize; actions = 0; confirm = 0; quiet = 0; maxsize = 0; persist = 0; security = 0; memset(&pwd, 0, sizeof(pwd)); /* default action is to print hpa information */ action = ATA_HPA_ACTION_PRINT; pwdsize = sizeof(pwd.password); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 's': action = ATA_HPA_ACTION_SET_MAX; maxsize = strtoumax(optarg, NULL, 0); actions++; break; case 'p': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_HPA_ACTION_SET_PWD; security = 1; actions++; break; case 'l': action = ATA_HPA_ACTION_LOCK; security = 1; actions++; break; case 'U': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_HPA_ACTION_UNLOCK; security = 1; actions++; break; case 'f': action = ATA_HPA_ACTION_FREEZE_LOCK; security = 1; actions++; break; case 'P': persist = 1; break; case 'y': confirm++; break; case 'q': quiet++; break; } } if (actions > 1) { warnx("too many hpa actions specified"); return (1); } if (get_cgd(device, &cgd) != 0) { warnx("couldn't get CGD"); return (1); } ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error != 0) { cam_freeccb(ccb); return (1); } if (quiet == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); } if (action == ATA_HPA_ACTION_PRINT) { hpasize = 0; if (ident_buf->support.command1 & ATA_SUPPORT_PROTECTED) ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize); atahpa_print(ident_buf, hpasize, 1); cam_freeccb(ccb); free(ident_buf); return (error); } if (!(ident_buf->support.command1 & ATA_SUPPORT_PROTECTED)) { warnx("HPA is not supported by this device"); cam_freeccb(ccb); free(ident_buf); return (1); } if (security && !(ident_buf->support.command2 & ATA_SUPPORT_MAXSECURITY)) { warnx("HPA Security is not supported by this device"); cam_freeccb(ccb); free(ident_buf); return (1); } is48bit = ident_buf->support.command2 & ATA_SUPPORT_ADDRESS48; /* * The ATA spec requires: * 1. Read native max addr is called directly before set max addr * 2. Read native max addr is NOT called before any other set max call */ switch(action) { case ATA_HPA_ACTION_SET_MAX: if (confirm == 0 && atahpa_set_confirm(device, ident_buf, maxsize, persist) == 0) { cam_freeccb(ccb); free(ident_buf); return (1); } error = ata_read_native_max(device, retry_count, timeout, ccb, ident_buf, &hpasize); if (error == 0) { error = atahpa_set_max(device, retry_count, timeout, ccb, is48bit, maxsize, persist); if (error == 0) { if (quiet == 0) { /* redo identify to get new values */ error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); atahpa_print(ident_buf, hpasize, 1); } /* Hint CAM to reprobe the device. */ reprobe(device); } } break; case ATA_HPA_ACTION_SET_PWD: error = atahpa_password(device, retry_count, timeout, ccb, is48bit, &pwd); if (error == 0 && quiet == 0) printf("HPA password has been set\n"); break; case ATA_HPA_ACTION_LOCK: error = atahpa_lock(device, retry_count, timeout, ccb, is48bit); if (error == 0 && quiet == 0) printf("HPA has been locked\n"); break; case ATA_HPA_ACTION_UNLOCK: error = atahpa_unlock(device, retry_count, timeout, ccb, is48bit, &pwd); if (error == 0 && quiet == 0) printf("HPA has been unlocked\n"); break; case ATA_HPA_ACTION_FREEZE_LOCK: error = atahpa_freeze_lock(device, retry_count, timeout, ccb, is48bit); if (error == 0 && quiet == 0) printf("HPA has been frozen\n"); break; default: errx(1, "Option currently not supported"); } cam_freeccb(ccb); free(ident_buf); return (error); } enum { ATA_AMA_ACTION_PRINT, ATA_AMA_ACTION_SET_MAX, ATA_AMA_ACTION_FREEZE_LOCK }; static int ataama(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { union ccb *ccb; struct ata_params *ident_buf; struct ccb_getdev cgd; int error, quiet, c, action, actions; u_int64_t nativesize, maxsize; actions = 0; quiet = 0; maxsize = 0; /* default action is to print AMA information */ action = ATA_AMA_ACTION_PRINT; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 's': action = ATA_AMA_ACTION_SET_MAX; maxsize = strtoumax(optarg, NULL, 0); actions++; break; case 'f': action = ATA_AMA_ACTION_FREEZE_LOCK; actions++; break; case 'q': quiet++; break; } } if (actions > 1) { warnx("too many AMA actions specified"); return (1); } if (get_cgd(device, &cgd) != 0) { warnx("couldn't get CGD"); return (1); } ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); return (1); } error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error != 0) { cam_freeccb(ccb); return (1); } if (quiet == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); } if (action == ATA_AMA_ACTION_PRINT) { nativesize = 0; if (ident_buf->support2 & ATA_SUPPORT_AMAX_ADDR) ata_get_native_max(device, retry_count, timeout, ccb, &nativesize); ataama_print(ident_buf, nativesize, 1); cam_freeccb(ccb); free(ident_buf); return (error); } if (!(ident_buf->support2 & ATA_SUPPORT_AMAX_ADDR)) { warnx("Accessible Max Address is not supported by this device"); cam_freeccb(ccb); free(ident_buf); return (1); } switch(action) { case ATA_AMA_ACTION_SET_MAX: error = ata_get_native_max(device, retry_count, timeout, ccb, &nativesize); if (error == 0) { error = ataama_set(device, retry_count, timeout, ccb, maxsize); if (error == 0) { if (quiet == 0) { /* redo identify to get new values */ error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); ataama_print(ident_buf, nativesize, 1); } /* Hint CAM to reprobe the device. */ reprobe(device); } } break; case ATA_AMA_ACTION_FREEZE_LOCK: error = ataama_freeze(device, retry_count, timeout, ccb); if (error == 0 && quiet == 0) printf("Accessible Max Address has been frozen\n"); break; default: errx(1, "Option currently not supported"); } cam_freeccb(ccb); free(ident_buf); return (error); } static int atasecurity(struct cam_device *device, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { union ccb *ccb; struct ata_params *ident_buf; int error, confirm, quiet, c, action, actions, setpwd; int security_enabled, erase_timeout, pwdsize; struct ata_security_password pwd; actions = 0; setpwd = 0; erase_timeout = 0; confirm = 0; quiet = 0; memset(&pwd, 0, sizeof(pwd)); /* default action is to print security information */ action = ATA_SECURITY_ACTION_PRINT; /* user is master by default as its safer that way */ pwd.ctrl |= ATA_SECURITY_PASSWORD_MASTER; pwdsize = sizeof(pwd.password); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'f': action = ATA_SECURITY_ACTION_FREEZE; actions++; break; case 'U': if (strcasecmp(optarg, "user") == 0) { pwd.ctrl |= ATA_SECURITY_PASSWORD_USER; pwd.ctrl &= ~ATA_SECURITY_PASSWORD_MASTER; } else if (strcasecmp(optarg, "master") == 0) { pwd.ctrl |= ATA_SECURITY_PASSWORD_MASTER; pwd.ctrl &= ~ATA_SECURITY_PASSWORD_USER; } else { warnx("-U argument '%s' is invalid (must be " "'user' or 'master')", optarg); return (1); } break; case 'l': if (strcasecmp(optarg, "high") == 0) { pwd.ctrl |= ATA_SECURITY_LEVEL_HIGH; pwd.ctrl &= ~ATA_SECURITY_LEVEL_MAXIMUM; } else if (strcasecmp(optarg, "maximum") == 0) { pwd.ctrl |= ATA_SECURITY_LEVEL_MAXIMUM; pwd.ctrl &= ~ATA_SECURITY_LEVEL_HIGH; } else { warnx("-l argument '%s' is unknown (must be " "'high' or 'maximum')", optarg); return (1); } break; case 'k': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_UNLOCK; actions++; break; case 'd': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_DISABLE; actions++; break; case 'e': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); action = ATA_SECURITY_ACTION_ERASE; actions++; break; case 'h': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); pwd.ctrl |= ATA_SECURITY_ERASE_ENHANCED; action = ATA_SECURITY_ACTION_ERASE_ENHANCED; actions++; break; case 's': if (ata_getpwd(pwd.password, pwdsize, c) != 0) return (1); setpwd = 1; if (action == ATA_SECURITY_ACTION_PRINT) action = ATA_SECURITY_ACTION_SET_PASSWORD; /* * Don't increment action as this can be combined * with other actions. */ break; case 'y': confirm++; break; case 'q': quiet++; break; case 'T': erase_timeout = atoi(optarg) * 1000; break; } } if (actions > 1) { warnx("too many security actions specified"); return (1); } if ((ccb = cam_getccb(device)) == NULL) { warnx("couldn't allocate CCB"); return (1); } error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error != 0) { cam_freeccb(ccb); return (1); } if (quiet == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); camxferrate(device); } if (action == ATA_SECURITY_ACTION_PRINT) { atasecurity_print(ident_buf); free(ident_buf); cam_freeccb(ccb); return (0); } if ((ident_buf->support.command1 & ATA_SUPPORT_SECURITY) == 0) { warnx("Security not supported"); free(ident_buf); cam_freeccb(ccb); return (1); } /* default timeout 15 seconds the same as linux hdparm */ timeout = timeout ? timeout : 15 * 1000; security_enabled = ident_buf->security_status & ATA_SECURITY_ENABLED; /* first set the password if requested */ if (setpwd == 1) { /* confirm we can erase before setting the password if erasing */ if (confirm == 0 && (action == ATA_SECURITY_ACTION_ERASE_ENHANCED || action == ATA_SECURITY_ACTION_ERASE) && atasecurity_erase_confirm(device, ident_buf) == 0) { cam_freeccb(ccb); free(ident_buf); return (error); } if (pwd.ctrl & ATA_SECURITY_PASSWORD_MASTER) { pwd.revision = ident_buf->master_passwd_revision; if (pwd.revision != 0 && pwd.revision != 0xfff && --pwd.revision == 0) { pwd.revision = 0xfffe; } } error = atasecurity_set_password(device, ccb, retry_count, timeout, &pwd, quiet); if (error != 0) { cam_freeccb(ccb); free(ident_buf); return (error); } security_enabled = 1; } switch(action) { case ATA_SECURITY_ACTION_FREEZE: error = atasecurity_freeze(device, ccb, retry_count, timeout, quiet); break; case ATA_SECURITY_ACTION_UNLOCK: if (security_enabled) { if (ident_buf->security_status & ATA_SECURITY_LOCKED) { error = atasecurity_unlock(device, ccb, retry_count, timeout, &pwd, quiet); } else { warnx("Can't unlock, drive is not locked"); error = 1; } } else { warnx("Can't unlock, security is disabled"); error = 1; } break; case ATA_SECURITY_ACTION_DISABLE: if (security_enabled) { /* First unlock the drive if its locked */ if (ident_buf->security_status & ATA_SECURITY_LOCKED) { error = atasecurity_unlock(device, ccb, retry_count, timeout, &pwd, quiet); } if (error == 0) { error = atasecurity_disable(device, ccb, retry_count, timeout, &pwd, quiet); } } else { warnx("Can't disable security (already disabled)"); error = 1; } break; case ATA_SECURITY_ACTION_ERASE: if (security_enabled) { if (erase_timeout == 0) { erase_timeout = atasecurity_erase_timeout_msecs( ident_buf->erase_time); } error = atasecurity_erase(device, ccb, retry_count, timeout, erase_timeout, &pwd, quiet); } else { warnx("Can't secure erase (security is disabled)"); error = 1; } break; case ATA_SECURITY_ACTION_ERASE_ENHANCED: if (security_enabled) { if (ident_buf->security_status & ATA_SECURITY_ENH_SUPP) { if (erase_timeout == 0) { erase_timeout = atasecurity_erase_timeout_msecs( ident_buf->enhanced_erase_time); } error = atasecurity_erase(device, ccb, retry_count, timeout, erase_timeout, &pwd, quiet); } else { warnx("Enhanced erase is not supported"); error = 1; } } else { warnx("Can't secure erase (enhanced), " "(security is disabled)"); error = 1; } break; } cam_freeccb(ccb); free(ident_buf); return (error); } /* * Convert periph name into a bus, target and lun. * * Returns the number of parsed components, or 0. */ static int parse_btl_name(char *tstr, path_id_t *bus, target_id_t *target, lun_id_t *lun, cam_argmask *arglst) { int fd; union ccb ccb; bzero(&ccb, sizeof(ccb)); ccb.ccb_h.func_code = XPT_GDEVLIST; if (cam_get_device(tstr, ccb.cgdl.periph_name, sizeof(ccb.cgdl.periph_name), &ccb.cgdl.unit_number) == -1) { warnx("%s", cam_errbuf); return (0); } /* * Attempt to get the passthrough device. This ioctl will * fail if the device name is null, if the device doesn't * exist, or if the passthrough driver isn't in the kernel. */ if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("Unable to open %s", XPT_DEVICE); return (0); } if (ioctl(fd, CAMGETPASSTHRU, &ccb) == -1) { warn("Unable to find bus:target:lun for device %s%d", ccb.cgdl.periph_name, ccb.cgdl.unit_number); close(fd); return (0); } close(fd); if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(ccb.ccb_h.status); warnx("Unable to find bus:target_lun for device %s%d, " "CAM status: %s (%#x)", ccb.cgdl.periph_name, ccb.cgdl.unit_number, entry ? entry->status_text : "Unknown", ccb.ccb_h.status); return (0); } /* * The kernel fills in the bus/target/lun. We don't * need the passthrough device name and unit number since * we aren't going to open it. */ *bus = ccb.ccb_h.path_id; *target = ccb.ccb_h.target_id; *lun = ccb.ccb_h.target_lun; *arglst |= CAM_ARG_BUS | CAM_ARG_TARGET | CAM_ARG_LUN; return (3); } /* * Parse out a bus, or a bus, target and lun in the following * format: * bus * bus:target * bus:target:lun * * Returns the number of parsed components, or 0. */ static int parse_btl(char *tstr, path_id_t *bus, target_id_t *target, lun_id_t *lun, cam_argmask *arglst) { char *tmpstr, *end; int convs = 0; *bus = CAM_BUS_WILDCARD; *target = CAM_TARGET_WILDCARD; *lun = CAM_LUN_WILDCARD; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (strncasecmp(tstr, "all", strlen("all")) == 0) { arglist |= CAM_ARG_BUS; return (1); } if (!isdigit(*tstr)) return (parse_btl_name(tstr, bus, target, lun, arglst)); tmpstr = strsep(&tstr, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *bus = strtol(tmpstr, &end, 0); if (*end != '\0') return (0); *arglst |= CAM_ARG_BUS; convs++; tmpstr = strsep(&tstr, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *target = strtol(tmpstr, &end, 0); if (*end != '\0') return (0); *arglst |= CAM_ARG_TARGET; convs++; tmpstr = strsep(&tstr, ":"); if ((tmpstr != NULL) && (*tmpstr != '\0')) { *lun = strtoll(tmpstr, &end, 0); if (*end != '\0') return (0); *arglst |= CAM_ARG_LUN; convs++; } } } return convs; } static int dorescan_or_reset(int argc, char **argv, int rescan) { static const char must[] = "you must specify \"all\", a bus, a bus:target:lun or periph to %s"; int rv, error = 0; path_id_t bus = CAM_BUS_WILDCARD; target_id_t target = CAM_TARGET_WILDCARD; lun_id_t lun = CAM_LUN_WILDCARD; char *tstr; if (argc < 3) { warnx(must, rescan? "rescan" : "reset"); return (1); } tstr = argv[optind]; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (strncasecmp(tstr, "all", strlen("all")) == 0) arglist |= CAM_ARG_BUS; else { rv = parse_btl(argv[optind], &bus, &target, &lun, &arglist); if (rv != 1 && rv != 3) { warnx(must, rescan ? "rescan" : "reset"); return (1); } } if (arglist & CAM_ARG_LUN) error = scanlun_or_reset_dev(bus, target, lun, rescan); else error = rescan_or_reset_bus(bus, rescan); return (error); } static int rescan_or_reset_bus(path_id_t bus, int rescan) { union ccb *ccb = NULL, *matchccb = NULL; int fd = -1, retval; int bufsize; retval = 0; if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } ccb = malloc(sizeof(*ccb)); if (ccb == NULL) { warn("failed to allocate CCB"); retval = 1; goto bailout; } bzero(ccb, sizeof(*ccb)); if (bus != CAM_BUS_WILDCARD) { ccb->ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS; ccb->ccb_h.path_id = bus; ccb->ccb_h.target_id = CAM_TARGET_WILDCARD; ccb->ccb_h.target_lun = CAM_LUN_WILDCARD; ccb->crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb->ccb_h.pinfo.priority = 5; if (ioctl(fd, CAMIOCOMMAND, ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { fprintf(stdout, "%s of bus %d was successful\n", rescan ? "Re-scan" : "Reset", bus); } else { fprintf(stdout, "%s of bus %d returned error %#x\n", rescan ? "Re-scan" : "Reset", bus, ccb->ccb_h.status & CAM_STATUS_MASK); retval = 1; } goto bailout; } /* * The right way to handle this is to modify the xpt so that it can * handle a wildcarded bus in a rescan or reset CCB. At the moment * that isn't implemented, so instead we enumerate the buses and * send the rescan or reset to those buses in the case where the * given bus is -1 (wildcard). We don't send a rescan or reset * to the xpt bus; sending a rescan to the xpt bus is effectively a * no-op, sending a rescan to the xpt bus would result in a status of * CAM_REQ_INVALID. */ matchccb = malloc(sizeof(*matchccb)); if (matchccb == NULL) { warn("failed to allocate CCB"); retval = 1; goto bailout; } bzero(matchccb, sizeof(*matchccb)); matchccb->ccb_h.func_code = XPT_DEV_MATCH; matchccb->ccb_h.path_id = CAM_BUS_WILDCARD; bufsize = sizeof(struct dev_match_result) * 20; matchccb->cdm.match_buf_len = bufsize; matchccb->cdm.matches=(struct dev_match_result *)malloc(bufsize); if (matchccb->cdm.matches == NULL) { warnx("can't malloc memory for matches"); retval = 1; goto bailout; } matchccb->cdm.num_matches = 0; matchccb->cdm.num_patterns = 1; matchccb->cdm.pattern_buf_len = sizeof(struct dev_match_pattern); matchccb->cdm.patterns = (struct dev_match_pattern *)malloc( matchccb->cdm.pattern_buf_len); if (matchccb->cdm.patterns == NULL) { warnx("can't malloc memory for patterns"); retval = 1; goto bailout; } matchccb->cdm.patterns[0].type = DEV_MATCH_BUS; matchccb->cdm.patterns[0].pattern.bus_pattern.flags = BUS_MATCH_ANY; do { unsigned int i; if (ioctl(fd, CAMIOCOMMAND, matchccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((matchccb->ccb_h.status != CAM_REQ_CMP) || ((matchccb->cdm.status != CAM_DEV_MATCH_LAST) && (matchccb->cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", matchccb->ccb_h.status, matchccb->cdm.status); retval = 1; goto bailout; } for (i = 0; i < matchccb->cdm.num_matches; i++) { struct bus_match_result *bus_result; /* This shouldn't happen. */ if (matchccb->cdm.matches[i].type != DEV_MATCH_BUS) continue; bus_result =&matchccb->cdm.matches[i].result.bus_result; /* * We don't want to rescan or reset the xpt bus. * See above. */ if (bus_result->path_id == CAM_XPT_PATH_ID) continue; ccb->ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS; ccb->ccb_h.path_id = bus_result->path_id; ccb->ccb_h.target_id = CAM_TARGET_WILDCARD; ccb->ccb_h.target_lun = CAM_LUN_WILDCARD; ccb->crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb->ccb_h.pinfo.priority = 5; if (ioctl(fd, CAMIOCOMMAND, ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK)==CAM_REQ_CMP){ fprintf(stdout, "%s of bus %d was successful\n", rescan? "Re-scan" : "Reset", bus_result->path_id); } else { /* * Don't bail out just yet, maybe the other * rescan or reset commands will complete * successfully. */ fprintf(stderr, "%s of bus %d returned error " "%#x\n", rescan? "Re-scan" : "Reset", bus_result->path_id, ccb->ccb_h.status & CAM_STATUS_MASK); retval = 1; } } } while ((matchccb->ccb_h.status == CAM_REQ_CMP) && (matchccb->cdm.status == CAM_DEV_MATCH_MORE)); bailout: if (fd != -1) close(fd); if (matchccb != NULL) { free(matchccb->cdm.patterns); free(matchccb->cdm.matches); free(matchccb); } free(ccb); return (retval); } static int scanlun_or_reset_dev(path_id_t bus, target_id_t target, lun_id_t lun, int scan) { union ccb ccb; struct cam_device *device; int fd; device = NULL; if (bus == CAM_BUS_WILDCARD) { warnx("invalid bus number %d", bus); return (1); } if (target == CAM_TARGET_WILDCARD) { warnx("invalid target number %d", target); return (1); } if (lun == CAM_LUN_WILDCARD) { warnx("invalid lun number %jx", (uintmax_t)lun); return (1); } fd = -1; bzero(&ccb, sizeof(union ccb)); if (scan) { if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s\n", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } } else { device = cam_open_btl(bus, target, lun, O_RDWR, NULL); if (device == NULL) { warnx("%s", cam_errbuf); return (1); } } ccb.ccb_h.func_code = (scan)? XPT_SCAN_LUN : XPT_RESET_DEV; ccb.ccb_h.path_id = bus; ccb.ccb_h.target_id = target; ccb.ccb_h.target_lun = lun; ccb.ccb_h.timeout = 5000; ccb.crcn.flags = CAM_FLAG_NONE; /* run this at a low priority */ ccb.ccb_h.pinfo.priority = 5; if (scan) { if (ioctl(fd, CAMIOCOMMAND, &ccb) < 0) { warn("CAMIOCOMMAND ioctl failed"); close(fd); return (1); } } else { if (cam_send_ccb(device, &ccb) < 0) { warn("error sending XPT_RESET_DEV CCB"); cam_close_device(device); return (1); } } if (scan) close(fd); else cam_close_device(device); /* * An error code of CAM_BDR_SENT is normal for a BDR request. */ if (((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) || ((!scan) && ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_BDR_SENT))) { fprintf(stdout, "%s of %d:%d:%jx was successful\n", scan? "Re-scan" : "Reset", bus, target, (uintmax_t)lun); return (0); } else { fprintf(stdout, "%s of %d:%d:%jx returned error %#x\n", scan? "Re-scan" : "Reset", bus, target, (uintmax_t)lun, ccb.ccb_h.status & CAM_STATUS_MASK); return (1); } } static struct scsi_nv defect_list_type_map[] = { { "block", SRDD10_BLOCK_FORMAT }, { "extbfi", SRDD10_EXT_BFI_FORMAT }, { "extphys", SRDD10_EXT_PHYS_FORMAT }, { "longblock", SRDD10_LONG_BLOCK_FORMAT }, { "bfi", SRDD10_BYTES_FROM_INDEX_FORMAT }, { "phys", SRDD10_PHYSICAL_SECTOR_FORMAT } }; static int readdefects(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb = NULL; struct scsi_read_defect_data_hdr_10 *hdr10 = NULL; struct scsi_read_defect_data_hdr_12 *hdr12 = NULL; size_t hdr_size = 0, entry_size = 0; uint8_t *defect_list = NULL; uint8_t list_format = 0; uint32_t dlist_length = 0; uint32_t returned_length = 0, valid_len = 0; uint32_t num_returned = 0, num_valid = 0; uint32_t max_possible_size = 0, hdr_max = 0; uint32_t starting_offset = 0; uint8_t returned_format, returned_type; unsigned int i; int c, error = 0; int mads = 0; bool summary = false, quiet = false, list_type_set = false; bool get_length = true, use_12byte = false, first_pass = true; bool hex_format = false; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'f': { scsi_nv_status status; int entry_num = 0; if (list_type_set) { warnx("%s: -f specified twice", __func__); error = 1; goto defect_bailout; } status = scsi_get_nv(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), optarg, &entry_num, SCSI_NV_FLAG_IG_CASE); if (status == SCSI_NV_FOUND) { list_format |= defect_list_type_map[ entry_num].value; list_type_set = true; } else { warnx("%s: %s %s option %s", __func__, (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : "invalid", "defect list type", optarg); error = 1; goto defect_bailout; } break; } case 'G': list_format |= SRDD10_GLIST; break; case 'P': list_format |= SRDD10_PLIST; break; case 'q': quiet = true; break; case 's': summary = true; break; case 'S': { char *endptr; starting_offset = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { error = 1; warnx("invalid starting offset %s", optarg); goto defect_bailout; } use_12byte = true; break; } case 'X': hex_format = true; break; default: break; } } if (!list_type_set) { error = 1; warnx("no defect list format specified"); goto defect_bailout; } /* * This implies a summary, and was the previous behavior. */ if ((list_format & ~SRDD10_DLIST_FORMAT_MASK) == 0) summary = true; ccb = cam_getccb(device); /* * We start off asking for just the header to determine how much defect * data is available. Some Hitachi drives return an error if you ask * for more data than the drive has. Once we know the length, we retry * the command with the returned length. When we're retrying the with * 12-byte command, we're always changing to the 12-byte command and * need to get the length. Simplify the logic below by always setting * use_12byte in this case with this slightly more complex logic here. */ if (!use_12byte) { dlist_length = sizeof(*hdr10); } else { retry_12byte: get_length = true; use_12byte = true; dlist_length = sizeof(*hdr12); } retry: if (defect_list != NULL) { free(defect_list); defect_list = NULL; } defect_list = malloc(dlist_length); if (defect_list == NULL) { warnx("can't malloc memory for defect list"); error = 1; goto defect_bailout; } next_batch: bzero(defect_list, dlist_length); /* * cam_getccb() zeros the CCB header only. So we need to zero the * payload portion of the ccb. */ CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_read_defects(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*list_format*/ list_format, /*addr_desc_index*/ starting_offset, /*data_ptr*/ defect_list, /*dxfer_len*/ dlist_length, /*minimum_cmd_size*/ use_12byte ? 12 : 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (cam_send_ccb(device, ccb) < 0) { warn("error sending READ DEFECT DATA command"); error = 1; goto defect_bailout; } valid_len = ccb->csio.dxfer_len - ccb->csio.resid; if (!use_12byte) { hdr10 = (struct scsi_read_defect_data_hdr_10 *)defect_list; hdr_size = sizeof(*hdr10); hdr_max = SRDDH10_MAX_LENGTH; if (valid_len >= hdr_size) { returned_length = scsi_2btoul(hdr10->length); returned_format = hdr10->format; } else { returned_length = 0; returned_format = 0; } } else { hdr12 = (struct scsi_read_defect_data_hdr_12 *)defect_list; hdr_size = sizeof(*hdr12); hdr_max = SRDDH12_MAX_LENGTH; if (valid_len >= hdr_size) { returned_length = scsi_4btoul(hdr12->length); returned_format = hdr12->format; } else { returned_length = 0; returned_format = 0; } } returned_type = returned_format & SRDDH10_DLIST_FORMAT_MASK; switch (returned_type) { case SRDD10_BLOCK_FORMAT: entry_size = sizeof(struct scsi_defect_desc_block); break; case SRDD10_LONG_BLOCK_FORMAT: entry_size = sizeof(struct scsi_defect_desc_long_block); break; case SRDD10_EXT_PHYS_FORMAT: case SRDD10_PHYSICAL_SECTOR_FORMAT: entry_size = sizeof(struct scsi_defect_desc_phys_sector); break; case SRDD10_EXT_BFI_FORMAT: case SRDD10_BYTES_FROM_INDEX_FORMAT: entry_size = sizeof(struct scsi_defect_desc_bytes_from_index); break; default: warnx("Unknown defect format 0x%x\n", returned_type); error = 1; goto defect_bailout; break; } max_possible_size = (hdr_max / entry_size) * entry_size; num_returned = returned_length / entry_size; num_valid = min(returned_length, valid_len - hdr_size); num_valid /= entry_size; if (get_length) { get_length = false; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * If the drive is reporting that it just doesn't * support the defect list format, go ahead and use * the length it reported. Otherwise, the length * may not be valid, so use the maximum. */ if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1c) && (ascq == 0x00) && (returned_length > 0)) { if (!use_12byte && (returned_length >= max_possible_size)) { goto retry_12byte; } dlist_length = returned_length + hdr_size; } else if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1f) && (ascq == 0x00) && (returned_length > 0)) { /* Partial defect list transfer */ /* * Hitachi drives return this error * along with a partial defect list if they * have more defects than the 10 byte * command can support. Retry with the 12 * byte command. */ if (!use_12byte) { goto retry_12byte; } dlist_length = returned_length + hdr_size; } else if ((sense_key == SSD_KEY_ILLEGAL_REQUEST) && (asc == 0x24) && (ascq == 0x00)) { /* Invalid field in CDB */ /* * SBC-3 says that if the drive has more * defects than can be reported with the * 10 byte command, it should return this * error and no data. Retry with the 12 * byte command. */ if (!use_12byte) { goto retry_12byte; } dlist_length = returned_length + hdr_size; } else { /* * If we got a SCSI error and no valid length, * just use the 10 byte maximum. The 12 * byte maximum is too large. */ if (returned_length == 0) dlist_length = SRDD10_MAX_LENGTH; else { if (!use_12byte && (returned_length >= max_possible_size)) { goto retry_12byte; } dlist_length = returned_length + hdr_size; } } } else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP){ error = 1; warnx("Error reading defect header"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } else { if (!use_12byte && (returned_length >= max_possible_size)) { goto retry_12byte; } dlist_length = returned_length + hdr_size; } if (summary) { fprintf(stdout, "%u", num_returned); if (!quiet) { fprintf(stdout, " defect%s", (num_returned != 1) ? "s" : ""); } fprintf(stdout, "\n"); goto defect_bailout; } /* * We always limit the list length to the 10-byte maximum * length (0xffff). The reason is that some controllers * can't handle larger I/Os, and we can transfer the entire * 10 byte list in one shot. For drives that support the 12 * byte read defects command, we'll step through the list * by specifying a starting offset. For drives that don't * support the 12 byte command's starting offset, we'll * just display the first 64K. */ dlist_length = min(dlist_length, SRDD10_MAX_LENGTH); goto retry; } if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) && (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI spec, if the disk doesn't support * the requested format, it will generally return a sense * key of RECOVERED ERROR, and an additional sense code * of "DEFECT LIST NOT FOUND". HGST drives also return * Primary/Grown defect list not found errors. So just * check for an ASC of 0x1c. */ if ((sense_key == SSD_KEY_RECOVERED_ERROR) && (asc == 0x1c)) { const char *format_str; format_str = scsi_nv_to_str(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), list_format & SRDD10_DLIST_FORMAT_MASK); warnx("requested defect format %s not available", format_str ? format_str : "unknown"); format_str = scsi_nv_to_str(defect_list_type_map, sizeof(defect_list_type_map) / sizeof(defect_list_type_map[0]), returned_type); if (format_str != NULL) { warnx("Device returned %s format", format_str); } else { error = 1; warnx("Device returned unknown defect" " data format %#x", returned_type); goto defect_bailout; } } else { error = 1; warnx("Error returned from read defect data command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } } else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { error = 1; warnx("Error returned from read defect data command"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); goto defect_bailout; } if (first_pass) { fprintf(stderr, "Got %d defect", num_returned); if (!summary || (num_returned == 0)) { fprintf(stderr, "s.\n"); goto defect_bailout; } else if (num_returned == 1) fprintf(stderr, ":\n"); else fprintf(stderr, "s:\n"); first_pass = false; } /* * XXX KDM I should probably clean up the printout format for the * disk defects. */ switch (returned_type) { case SRDD10_PHYSICAL_SECTOR_FORMAT: case SRDD10_EXT_PHYS_FORMAT: { struct scsi_defect_desc_phys_sector *dlist; dlist = (struct scsi_defect_desc_phys_sector *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { uint32_t sector; sector = scsi_4btoul(dlist[i].sector); if (returned_type == SRDD10_EXT_PHYS_FORMAT) { mads = (sector & SDD_EXT_PHYS_MADS) ? 0 : 1; sector &= ~SDD_EXT_PHYS_FLAG_MASK; } if (!hex_format) fprintf(stdout, "%d:%d:%d%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].sector), mads ? " - " : "\n"); else fprintf(stdout, "0x%x:0x%x:0x%x%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].sector), mads ? " - " : "\n"); mads = 0; } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDD10_BYTES_FROM_INDEX_FORMAT: case SRDD10_EXT_BFI_FORMAT: { struct scsi_defect_desc_bytes_from_index *dlist; dlist = (struct scsi_defect_desc_bytes_from_index *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { uint32_t bfi; bfi = scsi_4btoul(dlist[i].bytes_from_index); if (returned_type == SRDD10_EXT_BFI_FORMAT) { mads = (bfi & SDD_EXT_BFI_MADS) ? 1 : 0; bfi &= ~SDD_EXT_BFI_FLAG_MASK; } if (!hex_format) fprintf(stdout, "%d:%d:%d%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].bytes_from_index), mads ? " - " : "\n"); else fprintf(stdout, "0x%x:0x%x:0x%x%s", scsi_3btoul(dlist[i].cylinder), dlist[i].head, scsi_4btoul(dlist[i].bytes_from_index), mads ? " - " : "\n"); mads = 0; } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDDH10_BLOCK_FORMAT: { struct scsi_defect_desc_block *dlist; dlist = (struct scsi_defect_desc_block *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { if (!hex_format) fprintf(stdout, "%u\n", scsi_4btoul(dlist[i].address)); else fprintf(stdout, "0x%x\n", scsi_4btoul(dlist[i].address)); } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } case SRDD10_LONG_BLOCK_FORMAT: { struct scsi_defect_desc_long_block *dlist; dlist = (struct scsi_defect_desc_long_block *) (defect_list + hdr_size); for (i = 0; i < num_valid; i++) { if (!hex_format) fprintf(stdout, "%ju\n", (uintmax_t)scsi_8btou64( dlist[i].address)); else fprintf(stdout, "0x%jx\n", (uintmax_t)scsi_8btou64( dlist[i].address)); } if (num_valid < num_returned) { starting_offset += num_valid; goto next_batch; } break; } default: fprintf(stderr, "Unknown defect format 0x%x\n", returned_type); error = 1; break; } defect_bailout: if (defect_list != NULL) free(defect_list); if (ccb != NULL) cam_freeccb(ccb); return (error); } #if 0 void reassignblocks(struct cam_device *device, uint32_t *blocks, int num_blocks) { union ccb *ccb; ccb = cam_getccb(device); cam_freeccb(ccb); } #endif void mode_sense(struct cam_device *device, int *cdb_len, int dbd, int llbaa, int pc, int page, int subpage, int task_attr, int retry_count, int timeout, uint8_t *data, int datalen) { union ccb *ccb; int error_code, sense_key, asc, ascq; ccb = cam_getccb(device); if (ccb == NULL) errx(1, "mode_sense: couldn't allocate CCB"); retry: /* * MODE SENSE(6) can't handle more then 255 bytes. If there are more, * device must return error, so we should not get truncated data. */ if (*cdb_len == 6 && datalen > 255) datalen = 255; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); scsi_mode_sense_subpage(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* dbd */ dbd, /* pc */ pc << 6, /* page */ page, /* subpage */ subpage, /* param_buf */ data, /* param_len */ datalen, /* minimum_cmd_size */ *cdb_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); if (llbaa && ccb->csio.cdb_len == 10) { struct scsi_mode_sense_10 *cdb = (struct scsi_mode_sense_10 *)ccb->csio.cdb_io.cdb_bytes; cdb->byte2 |= SMS10_LLBAA; } /* Record what CDB size the above function really set. */ *cdb_len = ccb->csio.cdb_len; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (cam_send_ccb(device, ccb) < 0) err(1, "error sending mode sense command"); /* In case of ILLEGEL REQUEST try to fall back to 6-byte command. */ if (*cdb_len != 6 && ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID || (scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq) && sense_key == SSD_KEY_ILLEGAL_REQUEST))) { *cdb_len = 6; goto retry; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); cam_close_device(device); errx(1, "mode sense command returned error"); } cam_freeccb(ccb); } void mode_select(struct cam_device *device, int cdb_len, int save_pages, int task_attr, int retry_count, int timeout, uint8_t *data, int datalen) { union ccb *ccb; int retval; ccb = cam_getccb(device); if (ccb == NULL) errx(1, "mode_select: couldn't allocate CCB"); scsi_mode_select_len(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* scsi_page_fmt */ 1, /* save_pages */ save_pages, /* param_buf */ data, /* param_len */ datalen, /* minimum_cmd_size */ cdb_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } cam_freeccb(ccb); cam_close_device(device); if (retval < 0) err(1, "error sending mode select command"); else errx(1, "error sending mode select command"); } cam_freeccb(ccb); } void modepage(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { char *str_subpage; int c, page = -1, subpage = 0, pc = 0, llbaa = 0; int binary = 0, cdb_len = 10, dbd = 0, desc = 0, edit = 0, list = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case '6': cdb_len = 6; break; case 'b': binary = 1; break; case 'd': dbd = 1; break; case 'e': edit = 1; break; case 'l': list++; break; case 'm': str_subpage = optarg; strsep(&str_subpage, ","); page = strtol(optarg, NULL, 0); if (str_subpage) subpage = strtol(str_subpage, NULL, 0); if (page < 0 || page > 0x3f) errx(1, "invalid mode page %d", page); if (subpage < 0 || subpage > 0xff) errx(1, "invalid mode subpage %d", subpage); break; case 'D': desc = 1; break; case 'L': llbaa = 1; break; case 'P': pc = strtol(optarg, NULL, 0); if ((pc < 0) || (pc > 3)) errx(1, "invalid page control field %d", pc); break; default: break; } } if (desc && page == -1) page = SMS_ALL_PAGES_PAGE; if (page == -1 && list == 0) errx(1, "you must specify a mode page!"); if (dbd && desc) errx(1, "-d and -D are incompatible!"); if (llbaa && cdb_len != 10) errx(1, "LLBAA bit is not present in MODE SENSE(6)!"); if (list != 0) { mode_list(device, cdb_len, dbd, pc, list > 1, task_attr, retry_count, timeout); } else { mode_edit(device, cdb_len, desc, dbd, llbaa, pc, page, subpage, edit, binary, task_attr, retry_count, timeout); } } static int scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; uint32_t flags = CAM_DIR_NONE; uint8_t *data_ptr = NULL; uint8_t cdb[20]; uint8_t atacmd[12]; struct get_hook hook; int c, data_bytes = 0, valid_bytes; int cdb_len = 0; int atacmd_len = 0; int dmacmd = 0; int fpdmacmd = 0; int need_res = 0; char *datastr = NULL, *tstr, *resstr = NULL; int error = 0; int fd_data = 0, fd_res = 0; int retval; ccb = cam_getccb(device); if (ccb == NULL) { warnx("scsicmd: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'a': tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; atacmd_len = buff_encode_visit(atacmd, sizeof(atacmd), tstr, iget, &hook); /* * Increment optind by the number of arguments the * encoding routine processed. After each call to * getopt(3), optind points to the argument that * getopt should process _next_. In this case, * that means it points to the first command string * argument, if there is one. Once we increment * this, it should point to either the next command * line argument, or it should be past the end of * the list. */ optind += hook.got; break; case 'c': tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; cdb_len = buff_encode_visit(cdb, sizeof(cdb), tstr, iget, &hook); /* * Increment optind by the number of arguments the * encoding routine processed. After each call to * getopt(3), optind points to the argument that * getopt should process _next_. In this case, * that means it points to the first command string * argument, if there is one. Once we increment * this, it should point to either the next command * line argument, or it should be past the end of * the list. */ optind += hook.got; break; case 'd': dmacmd = 1; break; case 'f': fpdmacmd = 1; break; case 'i': if (arglist & CAM_ARG_CMD_OUT) { warnx("command must either be " "read or write, not both"); error = 1; goto scsicmd_bailout; } arglist |= CAM_ARG_CMD_IN; flags = CAM_DIR_IN; data_bytes = strtol(optarg, NULL, 0); if (data_bytes <= 0) { warnx("invalid number of input bytes %d", data_bytes); error = 1; goto scsicmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; optind++; datastr = cget(&hook, NULL); /* * If the user supplied "-" instead of a format, he * wants the data to be written to stdout. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_data = 1; data_ptr = (uint8_t *)malloc(data_bytes); if (data_ptr == NULL) { warnx("can't malloc memory for data_ptr"); error = 1; goto scsicmd_bailout; } break; case 'o': if (arglist & CAM_ARG_CMD_IN) { warnx("command must either be " "read or write, not both"); error = 1; goto scsicmd_bailout; } arglist |= CAM_ARG_CMD_OUT; flags = CAM_DIR_OUT; data_bytes = strtol(optarg, NULL, 0); if (data_bytes <= 0) { warnx("invalid number of output bytes %d", data_bytes); error = 1; goto scsicmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; datastr = cget(&hook, NULL); data_ptr = (uint8_t *)malloc(data_bytes); if (data_ptr == NULL) { warnx("can't malloc memory for data_ptr"); error = 1; goto scsicmd_bailout; } bzero(data_ptr, data_bytes); /* * If the user supplied "-" instead of a format, he * wants the data to be read from stdin. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_data = 1; else buff_encode_visit(data_ptr, data_bytes, datastr, iget, &hook); optind += hook.got; break; case 'r': need_res = 1; hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; resstr = cget(&hook, NULL); if ((resstr != NULL) && (resstr[0] == '-')) fd_res = 1; optind += hook.got; break; default: break; } } /* * If fd_data is set, and we're writing to the device, we need to * read the data the user wants written from stdin. */ if ((fd_data == 1) && (arglist & CAM_ARG_CMD_OUT)) { ssize_t amt_read; int amt_to_read = data_bytes; uint8_t *buf_ptr = data_ptr; for (amt_read = 0; amt_to_read > 0; amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) { if (amt_read == -1) { warn("error reading data from stdin"); error = 1; goto scsicmd_bailout; } amt_to_read -= amt_read; buf_ptr += amt_read; } } if (arglist & CAM_ARG_ERR_RECOVER) flags |= CAM_PASS_ERR_RECOVER; /* Disable freezing the device queue */ flags |= CAM_DEV_QFRZDIS; if (cdb_len) { /* * This is taken from the SCSI-3 draft spec. * (T10/1157D revision 0.3) * The top 3 bits of an opcode are the group code. * The next 5 bits are the command code. * Group 0: six byte commands * Group 1: ten byte commands * Group 2: ten byte commands * Group 3: reserved * Group 4: sixteen byte commands * Group 5: twelve byte commands * Group 6: vendor specific * Group 7: vendor specific */ switch((cdb[0] >> 5) & 0x7) { case 0: cdb_len = 6; break; case 1: case 2: cdb_len = 10; break; case 3: case 6: case 7: /* computed by buff_encode_visit */ break; case 4: cdb_len = 16; break; case 5: cdb_len = 12; break; } /* * We should probably use csio_build_visit or something like that * here, but it's easier to encode arguments as you go. The * alternative would be skipping the CDB argument and then encoding * it here, since we've got the data buffer argument by now. */ bcopy(cdb, &ccb->csio.cdb_io.cdb_bytes, cdb_len); cam_fill_csio(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ task_attr, /*data_ptr*/ data_ptr, /*dxfer_len*/ data_bytes, /*sense_len*/ SSD_FULL_SIZE, /*cdb_len*/ cdb_len, /*timeout*/ timeout ? timeout : 5000); } else { atacmd_len = 12; bcopy(atacmd, &ccb->ataio.cmd.command, atacmd_len); if (need_res) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; if (dmacmd) ccb->ataio.cmd.flags |= CAM_ATAIO_DMA; if (fpdmacmd) ccb->ataio.cmd.flags |= CAM_ATAIO_FPDMA; cam_fill_ataio(&ccb->ataio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ data_bytes, /*timeout*/ timeout ? timeout : 5000); } if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsicmd_bailout; } if (atacmd_len && need_res) { if (fd_res == 0) { buff_decode_visit(&ccb->ataio.res.status, 11, resstr, arg_put, NULL); fprintf(stdout, "\n"); } else { fprintf(stdout, "%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n", ccb->ataio.res.status, ccb->ataio.res.error, ccb->ataio.res.lba_low, ccb->ataio.res.lba_mid, ccb->ataio.res.lba_high, ccb->ataio.res.device, ccb->ataio.res.lba_low_exp, ccb->ataio.res.lba_mid_exp, ccb->ataio.res.lba_high_exp, ccb->ataio.res.sector_count, ccb->ataio.res.sector_count_exp); fflush(stdout); } } if (cdb_len) valid_bytes = ccb->csio.dxfer_len - ccb->csio.resid; else valid_bytes = ccb->ataio.dxfer_len - ccb->ataio.resid; if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) && (arglist & CAM_ARG_CMD_IN) && (valid_bytes > 0)) { if (fd_data == 0) { buff_decode_visit(data_ptr, valid_bytes, datastr, arg_put, NULL); fprintf(stdout, "\n"); } else { ssize_t amt_written; int amt_to_write = valid_bytes; uint8_t *buf_ptr = data_ptr; for (amt_written = 0; (amt_to_write > 0) && (amt_written =write(1, buf_ptr,amt_to_write))> 0;){ amt_to_write -= amt_written; buf_ptr += amt_written; } if (amt_written == -1) { warn("error writing data to stdout"); error = 1; goto scsicmd_bailout; } else if ((amt_written == 0) && (amt_to_write > 0)) { warnx("only wrote %u bytes out of %u", valid_bytes - amt_to_write, valid_bytes); } } } scsicmd_bailout: if ((data_bytes > 0) && (data_ptr != NULL)) free(data_ptr); cam_freeccb(ccb); return (error); } static int camdebug(int argc, char **argv, char *combinedopt) { int c, fd; path_id_t bus = CAM_BUS_WILDCARD; target_id_t target = CAM_TARGET_WILDCARD; lun_id_t lun = CAM_LUN_WILDCARD; char *tstr; union ccb ccb; int error = 0, rv; bzero(&ccb, sizeof(union ccb)); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'I': arglist |= CAM_ARG_DEBUG_INFO; ccb.cdbg.flags |= CAM_DEBUG_INFO; break; case 'P': arglist |= CAM_ARG_DEBUG_PERIPH; ccb.cdbg.flags |= CAM_DEBUG_PERIPH; break; case 'S': arglist |= CAM_ARG_DEBUG_SUBTRACE; ccb.cdbg.flags |= CAM_DEBUG_SUBTRACE; break; case 'T': arglist |= CAM_ARG_DEBUG_TRACE; ccb.cdbg.flags |= CAM_DEBUG_TRACE; break; case 'X': arglist |= CAM_ARG_DEBUG_XPT; ccb.cdbg.flags |= CAM_DEBUG_XPT; break; case 'c': arglist |= CAM_ARG_DEBUG_CDB; ccb.cdbg.flags |= CAM_DEBUG_CDB; break; case 'p': arglist |= CAM_ARG_DEBUG_PROBE; ccb.cdbg.flags |= CAM_DEBUG_PROBE; break; default: break; } } argc -= optind; argv += optind; if (argc <= 0) { warnx("you must specify \"off\", \"all\" or a bus,"); warnx("bus:target, bus:target:lun or periph"); return (1); } tstr = *argv; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (strncmp(tstr, "off", 3) == 0) { ccb.cdbg.flags = CAM_DEBUG_NONE; arglist &= ~(CAM_ARG_DEBUG_INFO|CAM_ARG_DEBUG_PERIPH| CAM_ARG_DEBUG_TRACE|CAM_ARG_DEBUG_SUBTRACE| CAM_ARG_DEBUG_XPT|CAM_ARG_DEBUG_PROBE); } else { rv = parse_btl(tstr, &bus, &target, &lun, &arglist); if (rv < 1) { warnx("you must specify \"all\", \"off\", or a bus,"); warnx("bus:target, bus:target:lun or periph to debug"); return (1); } } if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) { warnx("error opening transport layer device %s", XPT_DEVICE); warn("%s", XPT_DEVICE); return (1); } ccb.ccb_h.func_code = XPT_DEBUG; ccb.ccb_h.path_id = bus; ccb.ccb_h.target_id = target; ccb.ccb_h.target_lun = lun; if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("CAMIOCOMMAND ioctl failed"); error = 1; } else { if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_FUNC_NOTAVAIL) { warnx("CAM debugging not available"); warnx("you need to put options CAMDEBUG in" " your kernel config file!"); error = 1; } else if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_DEBUG CCB failed with status %#x", ccb.ccb_h.status); error = 1; } else { if (ccb.cdbg.flags == CAM_DEBUG_NONE) { fprintf(stderr, "Debugging turned off\n"); } else { fprintf(stderr, "Debugging enabled for " "%d:%d:%jx\n", bus, target, (uintmax_t)lun); } } } close(fd); return (error); } static int tagcontrol(struct cam_device *device, int argc, char **argv, char *combinedopt) { int c; union ccb *ccb; int numtags = -1; int retval = 0; int quiet = 0; char pathstr[1024]; ccb = cam_getccb(device); if (ccb == NULL) { warnx("tagcontrol: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'N': numtags = strtol(optarg, NULL, 0); if (numtags < 0) { warnx("tag count %d is < 0", numtags); retval = 1; goto tagcontrol_bailout; } break; case 'q': quiet++; break; default: break; } } cam_path_string(device, pathstr, sizeof(pathstr)); if (numtags >= 0) { ccb->ccb_h.func_code = XPT_REL_SIMQ; ccb->ccb_h.flags = CAM_DEV_QFREEZE; ccb->crs.release_flags = RELSIM_ADJUST_OPENINGS; ccb->crs.openings = numtags; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_REL_SIMQ CCB"); retval = 1; goto tagcontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_REL_SIMQ CCB failed"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto tagcontrol_bailout; } if (quiet == 0) fprintf(stdout, "%stagged openings now %d\n", pathstr, ccb->crs.openings); } CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgds); ccb->ccb_h.func_code = XPT_GDEV_STATS; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_GDEV_STATS CCB"); retval = 1; goto tagcontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_GDEV_STATS CCB failed"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto tagcontrol_bailout; } if (arglist & CAM_ARG_VERBOSE) { fprintf(stdout, "%s", pathstr); fprintf(stdout, "dev_openings %d\n", ccb->cgds.dev_openings); fprintf(stdout, "%s", pathstr); fprintf(stdout, "dev_active %d\n", ccb->cgds.dev_active); fprintf(stdout, "%s", pathstr); fprintf(stdout, "allocated %d\n", ccb->cgds.allocated); fprintf(stdout, "%s", pathstr); fprintf(stdout, "queued %d\n", ccb->cgds.queued); fprintf(stdout, "%s", pathstr); fprintf(stdout, "held %d\n", ccb->cgds.held); fprintf(stdout, "%s", pathstr); fprintf(stdout, "mintags %d\n", ccb->cgds.mintags); fprintf(stdout, "%s", pathstr); fprintf(stdout, "maxtags %d\n", ccb->cgds.maxtags); } else { if (quiet == 0) { fprintf(stdout, "%s", pathstr); fprintf(stdout, "device openings: "); } fprintf(stdout, "%d\n", ccb->cgds.dev_openings + ccb->cgds.dev_active); } tagcontrol_bailout: cam_freeccb(ccb); return (retval); } static void cts_print(struct cam_device *device, struct ccb_trans_settings *cts) { char pathstr[1024]; cam_path_string(device, pathstr, sizeof(pathstr)); if (cts->transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) { fprintf(stdout, "%ssync parameter: %d\n", pathstr, spi->sync_period); if (spi->sync_offset != 0) { u_int freq; freq = scsi_calc_syncsrate(spi->sync_period); fprintf(stdout, "%sfrequency: %d.%03dMHz\n", pathstr, freq / 1000, freq % 1000); } } if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) { fprintf(stdout, "%soffset: %d\n", pathstr, spi->sync_offset); } if (spi->valid & CTS_SPI_VALID_BUS_WIDTH) { fprintf(stdout, "%sbus width: %d bits\n", pathstr, (0x01 << spi->bus_width) * 8); } if (spi->valid & CTS_SPI_VALID_DISC) { fprintf(stdout, "%sdisconnection is %s\n", pathstr, (spi->flags & CTS_SPI_FLAGS_DISC_ENB) ? "enabled" : "disabled"); } } if (cts->transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; if (fc->valid & CTS_FC_VALID_WWNN) fprintf(stdout, "%sWWNN: 0x%llx\n", pathstr, (long long) fc->wwnn); if (fc->valid & CTS_FC_VALID_WWPN) fprintf(stdout, "%sWWPN: 0x%llx\n", pathstr, (long long) fc->wwpn); if (fc->valid & CTS_FC_VALID_PORT) fprintf(stdout, "%sPortID: 0x%x\n", pathstr, fc->port); if (fc->valid & CTS_FC_VALID_SPEED) fprintf(stdout, "%stransfer speed: %d.%03dMB/s\n", pathstr, fc->bitrate / 1000, fc->bitrate % 1000); } if (cts->transport == XPORT_SAS) { struct ccb_trans_settings_sas *sas = &cts->xport_specific.sas; if (sas->valid & CTS_SAS_VALID_SPEED) fprintf(stdout, "%stransfer speed: %d.%03dMB/s\n", pathstr, sas->bitrate / 1000, sas->bitrate % 1000); } if (cts->transport == XPORT_ATA) { struct ccb_trans_settings_pata *pata = &cts->xport_specific.ata; if ((pata->valid & CTS_ATA_VALID_MODE) != 0) { fprintf(stdout, "%sATA mode: %s\n", pathstr, ata_mode2string(pata->mode)); } if ((pata->valid & CTS_ATA_VALID_ATAPI) != 0) { fprintf(stdout, "%sATAPI packet length: %d\n", pathstr, pata->atapi); } if ((pata->valid & CTS_ATA_VALID_BYTECOUNT) != 0) { fprintf(stdout, "%sPIO transaction length: %d\n", pathstr, pata->bytecount); } } if (cts->transport == XPORT_SATA) { struct ccb_trans_settings_sata *sata = &cts->xport_specific.sata; if ((sata->valid & CTS_SATA_VALID_REVISION) != 0) { fprintf(stdout, "%sSATA revision: %d.x\n", pathstr, sata->revision); } if ((sata->valid & CTS_SATA_VALID_MODE) != 0) { fprintf(stdout, "%sATA mode: %s\n", pathstr, ata_mode2string(sata->mode)); } if ((sata->valid & CTS_SATA_VALID_ATAPI) != 0) { fprintf(stdout, "%sATAPI packet length: %d\n", pathstr, sata->atapi); } if ((sata->valid & CTS_SATA_VALID_BYTECOUNT) != 0) { fprintf(stdout, "%sPIO transaction length: %d\n", pathstr, sata->bytecount); } if ((sata->valid & CTS_SATA_VALID_PM) != 0) { fprintf(stdout, "%sPMP presence: %d\n", pathstr, sata->pm_present); } if ((sata->valid & CTS_SATA_VALID_TAGS) != 0) { fprintf(stdout, "%sNumber of tags: %d\n", pathstr, sata->tags); } if ((sata->valid & CTS_SATA_VALID_CAPS) != 0) { fprintf(stdout, "%sSATA capabilities: %08x\n", pathstr, sata->caps); } } if (cts->protocol == PROTO_ATA) { struct ccb_trans_settings_ata *ata= &cts->proto_specific.ata; if (ata->valid & CTS_ATA_VALID_TQ) { fprintf(stdout, "%stagged queueing: %s\n", pathstr, (ata->flags & CTS_ATA_FLAGS_TAG_ENB) ? "enabled" : "disabled"); } } if (cts->protocol == PROTO_SCSI) { struct ccb_trans_settings_scsi *scsi= &cts->proto_specific.scsi; if (scsi->valid & CTS_SCSI_VALID_TQ) { fprintf(stdout, "%stagged queueing: %s\n", pathstr, (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) ? "enabled" : "disabled"); } } #ifdef WITH_NVME if (cts->protocol == PROTO_NVME) { struct ccb_trans_settings_nvme *nvmex = &cts->xport_specific.nvme; if (nvmex->valid & CTS_NVME_VALID_SPEC) { fprintf(stdout, "%sNVMe Spec: %d.%d\n", pathstr, NVME_MAJOR(nvmex->spec), NVME_MINOR(nvmex->spec)); } if (nvmex->valid & CTS_NVME_VALID_LINK) { fprintf(stdout, "%sPCIe lanes: %d (%d max)\n", pathstr, nvmex->lanes, nvmex->max_lanes); fprintf(stdout, "%sPCIe Generation: %d (%d max)\n", pathstr, nvmex->speed, nvmex->max_speed); } } #endif } /* * Get a path inquiry CCB for the specified device. */ static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_cpi: couldn't allocate CCB"); return (1); } ccb->ccb_h.func_code = XPT_PATH_INQ; if (cam_send_ccb(device, ccb) < 0) { warn("get_cpi: error sending Path Inquiry CCB"); retval = 1; goto get_cpi_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cpi_bailout; } bcopy(&ccb->cpi, cpi, sizeof(struct ccb_pathinq)); get_cpi_bailout: cam_freeccb(ccb); return (retval); } /* * Get a get device CCB for the specified device. */ static int get_cgd(struct cam_device *device, struct ccb_getdev *cgd) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_cgd: couldn't allocate CCB"); return (1); } ccb->ccb_h.func_code = XPT_GDEV_TYPE; if (cam_send_ccb(device, ccb) < 0) { warn("get_cgd: error sending Get type information CCB"); retval = 1; goto get_cgd_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_cgd_bailout; } bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev)); get_cgd_bailout: cam_freeccb(ccb); return (retval); } /* * Returns 1 if the device has the VPD page, 0 if it does not, and -1 on an * error. */ int dev_has_vpd_page(struct cam_device *dev, uint8_t page_id, int retry_count, int timeout, int verbosemode) { union ccb *ccb = NULL; struct scsi_vpd_supported_page_list sup_pages; int i; int retval = 0; ccb = cam_getccb(dev); if (ccb == NULL) { warn("Unable to allocate CCB"); retval = -1; goto bailout; } bzero(&sup_pages, sizeof(sup_pages)); scsi_inquiry(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /* tag_action */ MSG_SIMPLE_Q_TAG, /* inq_buf */ (uint8_t *)&sup_pages, /* inq_len */ sizeof(sup_pages), /* evpd */ 1, /* page_code */ SVPD_SUPPORTED_PAGE_LIST, /* sense_len */ SSD_FULL_SIZE, /* timeout */ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (retry_count != 0) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(dev, ccb) < 0) { cam_freeccb(ccb); ccb = NULL; retval = -1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (verbosemode != 0) cam_error_print(dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = -1; goto bailout; } for (i = 0; i < sup_pages.length; i++) { if (sup_pages.list[i] == page_id) { retval = 1; goto bailout; } } bailout: if (ccb != NULL) cam_freeccb(ccb); return (retval); } /* * devtype is filled in with the type of device. * Returns 0 for success, non-zero for failure. */ int get_device_type(struct cam_device *dev, int retry_count, int timeout, int verbosemode, camcontrol_devtype *devtype) { struct ccb_getdev cgd; int retval; retval = get_cgd(dev, &cgd); if (retval != 0) goto bailout; switch (cgd.protocol) { case PROTO_SCSI: break; case PROTO_ATA: case PROTO_ATAPI: case PROTO_SATAPM: *devtype = CC_DT_ATA; goto bailout; break; /*NOTREACHED*/ case PROTO_NVME: *devtype = CC_DT_NVME; goto bailout; break; /*NOTREACHED*/ case PROTO_MMCSD: *devtype = CC_DT_MMCSD; goto bailout; break; /*NOTREACHED*/ default: *devtype = CC_DT_UNKNOWN; goto bailout; break; /*NOTREACHED*/ } if (retry_count == -1) { /* * For a retry count of -1, used only the cached data to avoid * I/O to the drive. Sending the identify command to the drive * can cause issues for SATL attachaed drives since identify is * not an NCQ command. We check for the strings that windows * displays since those will not be NULs (they are supposed * to be space padded). We could check other bits, but anything * non-zero implies SATL. */ if (cgd.ident_data.serial[0] != 0 || cgd.ident_data.revision[0] != 0 || cgd.ident_data.model[0] != 0) *devtype = CC_DT_SATL; else *devtype = CC_DT_SCSI; } else { /* * Check for the ATA Information VPD page (0x89). If this is an * ATA device behind a SCSI to ATA translation layer (SATL), * this VPD page should be present. * * If that VPD page isn't present, or we get an error back from * the INQUIRY command, we'll just treat it as a normal SCSI * device. */ retval = dev_has_vpd_page(dev, SVPD_ATA_INFORMATION, retry_count, timeout, verbosemode); if (retval == 1) *devtype = CC_DT_SATL; else *devtype = CC_DT_SCSI; } retval = 0; bailout: return (retval); } int build_ata_cmd(union ccb *ccb, uint32_t retry_count, uint32_t flags, uint8_t tag_action, uint8_t protocol, uint8_t ata_flags, uint16_t features, uint16_t sector_count, uint64_t lba, uint8_t command, uint32_t auxiliary, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, uint8_t sense_len, uint32_t timeout, int is48bit, camcontrol_devtype devtype) { int retval = 0; if (devtype == CC_DT_ATA) { cam_fill_ataio(&ccb->ataio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); if (is48bit || lba > ATA_MAX_28BIT_LBA) ata_48bit_cmd(&ccb->ataio, command, features, lba, sector_count); else ata_28bit_cmd(&ccb->ataio, command, features, lba, sector_count); if (auxiliary != 0) { ccb->ataio.ata_flags |= ATA_FLAG_AUX; ccb->ataio.aux = auxiliary; } if (ata_flags & AP_FLAG_CHK_COND) ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT; if ((protocol & AP_PROTO_MASK) == AP_PROTO_DMA) ccb->ataio.cmd.flags |= CAM_ATAIO_DMA; else if ((protocol & AP_PROTO_MASK) == AP_PROTO_FPDMA) ccb->ataio.cmd.flags |= CAM_ATAIO_FPDMA; } else { if (is48bit || lba > ATA_MAX_28BIT_LBA) protocol |= AP_EXTEND; retval = scsi_ata_pass(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*tag_action*/ tag_action, /*protocol*/ protocol, /*ata_flags*/ ata_flags, /*features*/ features, /*sector_count*/ sector_count, /*lba*/ lba, /*command*/ command, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ auxiliary, /*control*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*cdb_storage*/ cdb_storage, /*cdb_storage_len*/ cdb_storage_len, /*minimum_cmd_size*/ 0, /*sense_len*/ sense_len, /*timeout*/ timeout); } return (retval); } /* * Returns: 0 -- success, 1 -- error, 2 -- lba truncated, * 4 -- count truncated, 6 -- lba and count truncated. */ int get_ata_status(struct cam_device *dev, union ccb *ccb, uint8_t *error, uint16_t *count, uint64_t *lba, uint8_t *device, uint8_t *status) { int retval; switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: { uint8_t opcode; int error_code = 0, sense_key = 0, asc = 0, ascq = 0; u_int sense_len; /* * In this case, we have SCSI ATA PASS-THROUGH command, 12 * or 16 byte, and need to see what */ if (ccb->ccb_h.flags & CAM_CDB_POINTER) opcode = ccb->csio.cdb_io.cdb_ptr[0]; else opcode = ccb->csio.cdb_io.cdb_bytes[0]; if ((opcode != ATA_PASS_12) && (opcode != ATA_PASS_16)) { warnx("%s: unsupported opcode %02x", __func__, opcode); return (1); } retval = scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq); /* Note: the _ccb() variant returns 0 for an error */ if (retval == 0) return (1); sense_len = ccb->csio.sense_len - ccb->csio.sense_resid; switch (error_code) { case SSD_DESC_CURRENT_ERROR: case SSD_DESC_DEFERRED_ERROR: { struct scsi_sense_data_desc *sense; struct scsi_sense_ata_ret_desc *desc; uint8_t *desc_ptr; sense = (struct scsi_sense_data_desc *) &ccb->csio.sense_data; desc_ptr = scsi_find_desc(sense, sense_len, SSD_DESC_ATA); if (desc_ptr == NULL) { cam_error_print(dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); return (1); } desc = (struct scsi_sense_ata_ret_desc *)desc_ptr; *error = desc->error; *count = (desc->count_15_8 << 8) | desc->count_7_0; *lba = ((uint64_t)desc->lba_47_40 << 40) | ((uint64_t)desc->lba_39_32 << 32) | ((uint64_t)desc->lba_31_24 << 24) | (desc->lba_23_16 << 16) | (desc->lba_15_8 << 8) | desc->lba_7_0; *device = desc->device; *status = desc->status; /* * If the extend bit isn't set, the result is for a * 12-byte ATA PASS-THROUGH command or a 16 or 32 byte * command without the extend bit set. This means * that the device is supposed to return 28-bit * status. The count field is only 8 bits, and the * LBA field is only 8 bits. */ if ((desc->flags & SSD_DESC_ATA_FLAG_EXTEND) == 0){ *count &= 0xff; *lba &= 0x0fffffff; } break; } case SSD_CURRENT_ERROR: case SSD_DEFERRED_ERROR: { uint64_t val; /* * In my understanding of SAT-5 specification, saying: * "without interpreting the contents of the STATUS", * this should not happen if CK_COND was set, but it * does at least for some devices, so try to revert. */ if ((sense_key == SSD_KEY_ABORTED_COMMAND) && (asc == 0) && (ascq == 0)) { *status = ATA_STATUS_ERROR; *error = ATA_ERROR_ABORT; *device = 0; *count = 0; *lba = 0; return (0); } if ((sense_key != SSD_KEY_RECOVERED_ERROR) || (asc != 0x00) || (ascq != 0x1d)) return (1); val = 0; scsi_get_sense_info(&ccb->csio.sense_data, sense_len, SSD_DESC_INFO, &val, NULL); *error = (val >> 24) & 0xff; *status = (val >> 16) & 0xff; *device = (val >> 8) & 0xff; *count = val & 0xff; val = 0; scsi_get_sense_info(&ccb->csio.sense_data, sense_len, SSD_DESC_COMMAND, &val, NULL); *lba = ((val >> 16) & 0xff) | (val & 0xff00) | ((val & 0xff) << 16); /* Report UPPER NONZERO bits as errors 2, 4 and 6. */ return ((val >> 28) & 0x06); } default: return (1); } break; } case XPT_ATA_IO: { struct ata_res *res; /* Only some statuses return ATA result register set. */ if (cam_ccb_status(ccb) != CAM_REQ_CMP && cam_ccb_status(ccb) != CAM_ATA_STATUS_ERROR) return (1); res = &ccb->ataio.res; *error = res->error; *status = res->status; *device = res->device; *count = res->sector_count; *lba = (res->lba_high << 16) | (res->lba_mid << 8) | (res->lba_low); if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) { *count |= (res->sector_count_exp << 8); *lba |= ((uint64_t)res->lba_low_exp << 24) | ((uint64_t)res->lba_mid_exp << 32) | ((uint64_t)res->lba_high_exp << 40); } else { *lba |= (res->device & 0xf) << 24; } break; } default: return (1); } return (0); } static void cpi_print(struct ccb_pathinq *cpi) { char adapter_str[1024]; uint64_t i; snprintf(adapter_str, sizeof(adapter_str), "%s%d:", cpi->dev_name, cpi->unit_number); fprintf(stdout, "%s SIM/HBA version: %d\n", adapter_str, cpi->version_num); for (i = 1; i < UINT8_MAX; i = i << 1) { const char *str; if ((i & cpi->hba_inquiry) == 0) continue; fprintf(stdout, "%s supports ", adapter_str); switch(i) { case PI_MDP_ABLE: str = "MDP message"; break; case PI_WIDE_32: str = "32 bit wide SCSI"; break; case PI_WIDE_16: str = "16 bit wide SCSI"; break; case PI_SDTR_ABLE: str = "SDTR message"; break; case PI_LINKED_CDB: str = "linked CDBs"; break; case PI_TAG_ABLE: str = "tag queue messages"; break; case PI_SOFT_RST: str = "soft reset alternative"; break; case PI_SATAPM: str = "SATA Port Multiplier"; break; default: str = "unknown PI bit set"; break; } fprintf(stdout, "%s\n", str); } for (i = 1; i < UINT32_MAX; i = i << 1) { const char *str; if ((i & cpi->hba_misc) == 0) continue; fprintf(stdout, "%s ", adapter_str); switch(i) { case PIM_ATA_EXT: str = "can understand ata_ext requests"; break; case PIM_EXTLUNS: str = "64bit extended LUNs supported"; break; case PIM_SCANHILO: str = "bus scans from high ID to low ID"; break; case PIM_NOREMOVE: str = "removable devices not included in scan"; break; case PIM_NOINITIATOR: str = "initiator role not supported"; break; case PIM_NOBUSRESET: str = "user has disabled initial BUS RESET or" " controller is in target/mixed mode"; break; case PIM_NO_6_BYTE: str = "do not send 6-byte commands"; break; case PIM_SEQSCAN: str = "scan bus sequentially"; break; case PIM_UNMAPPED: str = "unmapped I/O supported"; break; case PIM_NOSCAN: str = "does its own scanning"; break; default: str = "unknown PIM bit set"; break; } fprintf(stdout, "%s\n", str); } for (i = 1; i < UINT16_MAX; i = i << 1) { const char *str; if ((i & cpi->target_sprt) == 0) continue; fprintf(stdout, "%s supports ", adapter_str); switch(i) { case PIT_PROCESSOR: str = "target mode processor mode"; break; case PIT_PHASE: str = "target mode phase cog. mode"; break; case PIT_DISCONNECT: str = "disconnects in target mode"; break; case PIT_TERM_IO: str = "terminate I/O message in target mode"; break; case PIT_GRP_6: str = "group 6 commands in target mode"; break; case PIT_GRP_7: str = "group 7 commands in target mode"; break; default: str = "unknown PIT bit set"; break; } fprintf(stdout, "%s\n", str); } fprintf(stdout, "%s HBA engine count: %d\n", adapter_str, cpi->hba_eng_cnt); fprintf(stdout, "%s maximum target: %d\n", adapter_str, cpi->max_target); fprintf(stdout, "%s maximum LUN: %d\n", adapter_str, cpi->max_lun); fprintf(stdout, "%s highest path ID in subsystem: %d\n", adapter_str, cpi->hpath_id); fprintf(stdout, "%s initiator ID: %d\n", adapter_str, cpi->initiator_id); fprintf(stdout, "%s SIM vendor: %s\n", adapter_str, cpi->sim_vid); fprintf(stdout, "%s HBA vendor: %s\n", adapter_str, cpi->hba_vid); fprintf(stdout, "%s HBA vendor ID: 0x%04x\n", adapter_str, cpi->hba_vendor); fprintf(stdout, "%s HBA device ID: 0x%04x\n", adapter_str, cpi->hba_device); fprintf(stdout, "%s HBA subvendor ID: 0x%04x\n", adapter_str, cpi->hba_subvendor); fprintf(stdout, "%s HBA subdevice ID: 0x%04x\n", adapter_str, cpi->hba_subdevice); fprintf(stdout, "%s bus ID: %d\n", adapter_str, cpi->bus_id); fprintf(stdout, "%s base transfer speed: ", adapter_str); if (cpi->base_transfer_speed > 1000) fprintf(stdout, "%d.%03dMB/sec\n", cpi->base_transfer_speed / 1000, cpi->base_transfer_speed % 1000); else fprintf(stdout, "%dKB/sec\n", (cpi->base_transfer_speed % 1000) * 1000); fprintf(stdout, "%s maximum transfer size: %u bytes\n", adapter_str, cpi->maxio); } static int get_print_cts(struct cam_device *device, int user_settings, int quiet, struct ccb_trans_settings *cts) { int retval; union ccb *ccb; retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("get_print_cts: error allocating ccb"); return (1); } ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; if (user_settings == 0) ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS; else ccb->cts.type = CTS_TYPE_USER_SETTINGS; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_GET_TRAN_SETTINGS CCB"); retval = 1; goto get_print_cts_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_GET_TRANS_SETTINGS CCB failed"); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto get_print_cts_bailout; } if (quiet == 0) cts_print(device, &ccb->cts); if (cts != NULL) bcopy(&ccb->cts, cts, sizeof(struct ccb_trans_settings)); get_print_cts_bailout: cam_freeccb(ccb); return (retval); } static int ratecontrol(struct cam_device *device, int task_attr, int retry_count, int timeout, int argc, char **argv, char *combinedopt) { int c; union ccb *ccb; int user_settings = 0; int retval = 0; int disc_enable = -1, tag_enable = -1; int mode = -1; int offset = -1; double syncrate = -1; int bus_width = -1; int quiet = 0; int change_settings = 0, send_tur = 0; struct ccb_pathinq cpi; ccb = cam_getccb(device); if (ccb == NULL) { warnx("ratecontrol: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c){ case 'a': send_tur = 1; break; case 'c': user_settings = 0; break; case 'D': if (strncasecmp(optarg, "enable", 6) == 0) disc_enable = 1; else if (strncasecmp(optarg, "disable", 7) == 0) disc_enable = 0; else { warnx("-D argument \"%s\" is unknown", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'M': mode = ata_string2mode(optarg); if (mode < 0) { warnx("unknown mode '%s'", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'O': offset = strtol(optarg, NULL, 0); if (offset < 0) { warnx("offset value %d is < 0", offset); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'q': quiet++; break; case 'R': syncrate = atof(optarg); if (syncrate < 0) { warnx("sync rate %f is < 0", syncrate); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'T': if (strncasecmp(optarg, "enable", 6) == 0) tag_enable = 1; else if (strncasecmp(optarg, "disable", 7) == 0) tag_enable = 0; else { warnx("-T argument \"%s\" is unknown", optarg); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; case 'U': user_settings = 1; break; case 'W': bus_width = strtol(optarg, NULL, 0); if (bus_width < 0) { warnx("bus width %d is < 0", bus_width); retval = 1; goto ratecontrol_bailout; } change_settings = 1; break; default: break; } } /* * Grab path inquiry information, so we can determine whether * or not the initiator is capable of the things that the user * requests. */ if ((retval = get_cpi(device, &cpi)) != 0) goto ratecontrol_bailout; if (quiet == 0) { fprintf(stdout, "%s parameters:\n", user_settings ? "User" : "Current"); } retval = get_print_cts(device, user_settings, quiet, &ccb->cts); if (retval != 0) goto ratecontrol_bailout; if (arglist & CAM_ARG_VERBOSE) cpi_print(&cpi); if (change_settings) { int didsettings = 0; struct ccb_trans_settings_spi *spi = NULL; struct ccb_trans_settings_pata *pata = NULL; struct ccb_trans_settings_sata *sata = NULL; struct ccb_trans_settings_ata *ata = NULL; struct ccb_trans_settings_scsi *scsi = NULL; if (ccb->cts.transport == XPORT_SPI) spi = &ccb->cts.xport_specific.spi; if (ccb->cts.transport == XPORT_ATA) pata = &ccb->cts.xport_specific.ata; if (ccb->cts.transport == XPORT_SATA) sata = &ccb->cts.xport_specific.sata; if (ccb->cts.protocol == PROTO_ATA) ata = &ccb->cts.proto_specific.ata; if (ccb->cts.protocol == PROTO_SCSI) scsi = &ccb->cts.proto_specific.scsi; ccb->cts.xport_specific.valid = 0; ccb->cts.proto_specific.valid = 0; if (spi && disc_enable != -1) { spi->valid |= CTS_SPI_VALID_DISC; if (disc_enable == 0) spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; else spi->flags |= CTS_SPI_FLAGS_DISC_ENB; didsettings++; } if (tag_enable != -1) { if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0) { warnx("HBA does not support tagged queueing, " "so you cannot modify tag settings"); retval = 1; goto ratecontrol_bailout; } if (ata) { ata->valid |= CTS_SCSI_VALID_TQ; if (tag_enable == 0) ata->flags &= ~CTS_ATA_FLAGS_TAG_ENB; else ata->flags |= CTS_ATA_FLAGS_TAG_ENB; didsettings++; } else if (scsi) { scsi->valid |= CTS_SCSI_VALID_TQ; if (tag_enable == 0) scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; else scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; didsettings++; } } if (spi && offset != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing offset"); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->sync_offset = offset; didsettings++; } if (spi && syncrate != -1) { int prelim_sync_period; if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_SYNC_RATE; /* * The sync rate the user gives us is in MHz. * We need to translate it into KHz for this * calculation. */ syncrate *= 1000; /* * Next, we calculate a "preliminary" sync period * in tenths of a nanosecond. */ if (syncrate == 0) prelim_sync_period = 0; else prelim_sync_period = 10000000 / syncrate; spi->sync_period = scsi_calc_syncparam(prelim_sync_period); didsettings++; } if (sata && syncrate != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } if (!user_settings) { warnx("You can modify only user rate " "settings for SATA"); retval = 1; goto ratecontrol_bailout; } sata->revision = ata_speed2revision(syncrate * 100); if (sata->revision < 0) { warnx("Invalid rate %f", syncrate); retval = 1; goto ratecontrol_bailout; } sata->valid |= CTS_SATA_VALID_REVISION; didsettings++; } if ((pata || sata) && mode != -1) { if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { warnx("HBA is not capable of changing " "transfer rates"); retval = 1; goto ratecontrol_bailout; } if (!user_settings) { warnx("You can modify only user mode " "settings for ATA/SATA"); retval = 1; goto ratecontrol_bailout; } if (pata) { pata->mode = mode; pata->valid |= CTS_ATA_VALID_MODE; } else { sata->mode = mode; sata->valid |= CTS_SATA_VALID_MODE; } didsettings++; } /* * The bus_width argument goes like this: * 0 == 8 bit * 1 == 16 bit * 2 == 32 bit * Therefore, if you shift the number of bits given on the * command line right by 4, you should get the correct * number. */ if (spi && bus_width != -1) { /* * We might as well validate things here with a * decipherable error message, rather than what * will probably be an indecipherable error message * by the time it gets back to us. */ if ((bus_width == 16) && ((cpi.hba_inquiry & PI_WIDE_16) == 0)) { warnx("HBA does not support 16 bit bus width"); retval = 1; goto ratecontrol_bailout; } else if ((bus_width == 32) && ((cpi.hba_inquiry & PI_WIDE_32) == 0)) { warnx("HBA does not support 32 bit bus width"); retval = 1; goto ratecontrol_bailout; } else if ((bus_width != 8) && (bus_width != 16) && (bus_width != 32)) { warnx("Invalid bus width %d", bus_width); retval = 1; goto ratecontrol_bailout; } spi->valid |= CTS_SPI_VALID_BUS_WIDTH; spi->bus_width = bus_width >> 4; didsettings++; } if (didsettings == 0) { goto ratecontrol_bailout; } ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_SET_TRAN_SETTINGS CCB"); retval = 1; goto ratecontrol_bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { warnx("XPT_SET_TRANS_SETTINGS CCB failed"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto ratecontrol_bailout; } } if (send_tur) { retval = testunitready(device, task_attr, retry_count, timeout, (arglist & CAM_ARG_VERBOSE) ? 0 : 1); /* * If the TUR didn't succeed, just bail. */ if (retval != 0) { if (quiet == 0) fprintf(stderr, "Test Unit Ready failed\n"); goto ratecontrol_bailout; } } if ((change_settings || send_tur) && !quiet && (ccb->cts.transport == XPORT_ATA || ccb->cts.transport == XPORT_SATA || send_tur)) { fprintf(stdout, "New parameters:\n"); retval = get_print_cts(device, user_settings, 0, NULL); } ratecontrol_bailout: cam_freeccb(ccb); return (retval); } static int scsiformat(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int c; int ycount = 0, quiet = 0; int error = 0, retval = 0; int use_timeout = 10800 * 1000; int immediate = 1; struct format_defect_list_header fh; uint8_t *data_ptr = NULL; uint32_t dxfer_len = 0; uint8_t byte2 = 0; int num_warnings = 0; int reportonly = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("scsiformat: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'q': quiet++; break; case 'r': reportonly = 1; break; case 'w': immediate = 0; break; case 'y': ycount++; break; } } if (reportonly) goto doreport; if (quiet == 0 && ycount == 0) { fprintf(stdout, "You are about to REMOVE ALL DATA from the " "following device:\n"); error = scsidoinquiry(device, argc, argv, combinedopt, task_attr, retry_count, timeout); if (error != 0) { warnx("scsiformat: error sending inquiry"); goto scsiformat_bailout; } } if (ycount == 0) { if (!get_confirmation()) { error = 1; goto scsiformat_bailout; } } if (timeout != 0) use_timeout = timeout; if (quiet == 0) { fprintf(stdout, "Current format timeout is %d seconds\n", use_timeout / 1000); } /* * If the user hasn't disabled questions and didn't specify a * timeout on the command line, ask them if they want the current * timeout. */ if ((ycount == 0) && (timeout == 0)) { char str[1024]; int new_timeout = 0; fprintf(stdout, "Enter new timeout in seconds or press\n" "return to keep the current timeout [%d] ", use_timeout / 1000); if (fgets(str, sizeof(str), stdin) != NULL) { if (str[0] != '\0') new_timeout = atoi(str); } if (new_timeout != 0) { use_timeout = new_timeout * 1000; fprintf(stdout, "Using new timeout value %d\n", use_timeout / 1000); } } /* * Keep this outside the if block below to silence any unused * variable warnings. */ bzero(&fh, sizeof(fh)); /* * If we're in immediate mode, we've got to include the format * header */ if (immediate != 0) { fh.byte2 = FU_DLH_IMMED; data_ptr = (uint8_t *)&fh; dxfer_len = sizeof(fh); byte2 = FU_FMT_DATA; } else if (quiet == 0) { fprintf(stdout, "Formatting..."); fflush(stdout); } scsi_format_unit(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* byte2 */ byte2, /* ileave */ 0, /* data_ptr */ data_ptr, /* dxfer_len */ dxfer_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ use_timeout); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((immediate == 0) && ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP))) { const char errstr[] = "error sending format command"; if (retval < 0) warn(errstr); else warnx(errstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto scsiformat_bailout; } /* * If we ran in non-immediate mode, we already checked for errors * above and printed out any necessary information. If we're in * immediate mode, we need to loop through and get status * information periodically. */ if (immediate == 0) { if (quiet == 0) { fprintf(stdout, "Format Complete\n"); } goto scsiformat_bailout; } doreport: do { cam_status status; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); /* * There's really no need to do error recovery or * retries here, since we're just going to sit in a * loop and wait for the device to finish formatting. */ scsi_test_unit_ready(&ccb->csio, /* retries */ 0, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; retval = cam_send_ccb(device, ccb); /* * If we get an error from the ioctl, bail out. SCSI * errors are expected. */ if (retval < 0) { warn("error sending TEST UNIT READY command"); error = 1; goto scsiformat_bailout; } status = ccb->ccb_h.status & CAM_STATUS_MASK; if ((status != CAM_REQ_CMP) && (status == CAM_SCSI_STATUS_ERROR) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI-2 and SCSI-3 specs, a * drive that is in the middle of a format should * return NOT READY with an ASC of "logical unit * not ready, format in progress". The sense key * specific bytes will then be a progress indicator. */ if ((sense_key == SSD_KEY_NOT_READY) && (asc == 0x04) && (ascq == 0x04)) { uint8_t sks[3]; if ((scsi_get_sks(sense, ccb->csio.sense_len - ccb->csio.sense_resid, sks) == 0) && (quiet == 0)) { uint32_t val; u_int64_t percentage; val = scsi_2btoul(&sks[1]); percentage = 10000ull * val; fprintf(stdout, "\rFormatting: %ju.%02u %% " "(%u/%d) done", (uintmax_t)(percentage / (0x10000 * 100)), (unsigned)((percentage / 0x10000) % 100), val, 0x10000); fflush(stdout); } else if ((quiet == 0) && (++num_warnings <= 1)) { warnx("Unexpected SCSI Sense Key " "Specific value returned " "during format:"); scsi_sense_print(device, &ccb->csio, stderr); warnx("Unable to print status " "information, but format will " "proceed."); warnx("will exit when format is " "complete"); } sleep(1); } else { warnx("Unexpected SCSI error during format"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsiformat_bailout; } } else if (status != CAM_REQ_CMP) { warnx("Unexpected CAM status %#x", status); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); error = 1; goto scsiformat_bailout; } } while((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP); if (quiet == 0) fprintf(stdout, "\nFormat Complete\n"); scsiformat_bailout: cam_freeccb(ccb); return (error); } static int sanitize_wait_ata(struct cam_device *device, union ccb *ccb, int quiet, camcontrol_devtype devtype) { int retval; uint8_t error = 0, ata_device = 0, status = 0; uint16_t count = 0; uint64_t lba = 0; u_int val, perc; do { retval = build_ata_cmd(ccb, /*retries*/ 0, /*flags*/ CAM_DIR_NONE, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*protocol*/ AP_PROTO_NON_DATA, /*ata_flags*/ AP_FLAG_CHK_COND, /*features*/ 0x00, /* SANITIZE STATUS EXT */ /*sector_count*/ 0, /*lba*/ 0, /*command*/ ATA_SANITIZE, /*auxiliary*/ 0, /*data_ptr*/ NULL, /*dxfer_len*/ 0, /*cdb_storage*/ NULL, /*cdb_storage_len*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ 10000, /*is48bit*/ 1, /*devtype*/ devtype); if (retval != 0) { warnx("%s: build_ata_cmd() failed, likely " "programmer error", __func__); return (1); } ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; retval = cam_send_ccb(device, ccb); if (retval != 0) { warn("error sending SANITIZE STATUS EXT command"); return (1); } retval = get_ata_status(device, ccb, &error, &count, &lba, &ata_device, &status); if (retval != 0) { warnx("Can't get SANITIZE STATUS EXT status, " "sanitize may still run."); return (retval); } if (status & ATA_STATUS_ERROR) { if (error & ATA_ERROR_ABORT) { switch (lba & 0xff) { case 0x00: warnx("Reason not reported or sanitize failed."); return (1); case 0x01: warnx("Sanitize command unsuccessful. "); return (1); case 0x02: warnx("Unsupported sanitize device command. "); return (1); case 0x03: warnx("Device is in sanitize frozen state. "); return (1); case 0x04: warnx("Sanitize antifreeze lock is enabled. "); return (1); } } warnx("SANITIZE STATUS EXT failed, " "sanitize may still run."); return (1); } if (count & 0x4000) { if (quiet == 0) { val = lba & 0xffff; perc = 10000 * val; fprintf(stdout, "Sanitizing: %u.%02u%% (%d/%d)\r", (perc / (0x10000 * 100)), ((perc / 0x10000) % 100), val, 0x10000); fflush(stdout); } sleep(1); } else break; } while (1); return (0); } static int sanitize_wait_scsi(struct cam_device *device, union ccb *ccb, int task_attr, int quiet) { int warnings = 0, retval; cam_status status; u_int val, perc; do { CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio); /* * There's really no need to do error recovery or * retries here, since we're just going to sit in a * loop and wait for the device to finish sanitizing. */ scsi_test_unit_ready(&ccb->csio, /* retries */ 0, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; retval = cam_send_ccb(device, ccb); /* * If we get an error from the ioctl, bail out. SCSI * errors are expected. */ if (retval < 0) { warn("error sending TEST UNIT READY command"); return (1); } status = ccb->ccb_h.status & CAM_STATUS_MASK; if ((status == CAM_SCSI_STATUS_ERROR) && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); /* * According to the SCSI-3 spec, a drive that is in the * middle of a sanitize should return NOT READY with an * ASC of "logical unit not ready, sanitize in * progress". The sense key specific bytes will then * be a progress indicator. */ if ((sense_key == SSD_KEY_NOT_READY) && (asc == 0x04) && (ascq == 0x1b)) { uint8_t sks[3]; if ((scsi_get_sks(sense, ccb->csio.sense_len - ccb->csio.sense_resid, sks) == 0) && (quiet == 0)) { val = scsi_2btoul(&sks[1]); perc = 10000 * val; fprintf(stdout, "Sanitizing: %u.%02u%% (%d/%d)\r", (perc / (0x10000 * 100)), ((perc / 0x10000) % 100), val, 0x10000); fflush(stdout); } else if ((quiet == 0) && (++warnings <= 1)) { warnx("Unexpected SCSI Sense Key " "Specific value returned " "during sanitize:"); scsi_sense_print(device, &ccb->csio, stderr); warnx("Unable to print status " "information, but sanitze will " "proceed."); warnx("will exit when sanitize is " "complete"); } sleep(1); } else { warnx("Unexpected SCSI error during sanitize"); cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); return (1); } } else if (status != CAM_REQ_CMP && status != CAM_REQUEUE_REQ) { warnx("Unexpected CAM status %#x", status); if (arglist & CAM_ARG_VERBOSE) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); return (1); } } while ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP); return (0); } static int sanitize(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; uint8_t action = 0; int c; int ycount = 0, quiet = 0; int error = 0; int use_timeout; int immediate = 1; int invert = 0; int passes = 0; int ause = 0; int fd = -1; const char *pattern = NULL; uint8_t *data_ptr = NULL; uint32_t dxfer_len = 0; uint8_t byte2; uint16_t feature, count; uint64_t lba; int reportonly = 0; camcontrol_devtype dt; /* * Get the device type, request no I/O be done to do this. */ error = get_device_type(device, -1, 0, 0, &dt); if (error != 0 || (unsigned)dt > CC_DT_UNKNOWN) { warnx("sanitize: can't get device type"); return (1); } ccb = cam_getccb(device); if (ccb == NULL) { warnx("sanitize: error allocating ccb"); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch(c) { case 'a': if (strcasecmp(optarg, "overwrite") == 0) action = SSZ_SERVICE_ACTION_OVERWRITE; else if (strcasecmp(optarg, "block") == 0) action = SSZ_SERVICE_ACTION_BLOCK_ERASE; else if (strcasecmp(optarg, "crypto") == 0) action = SSZ_SERVICE_ACTION_CRYPTO_ERASE; else if (strcasecmp(optarg, "exitfailure") == 0) action = SSZ_SERVICE_ACTION_EXIT_MODE_FAILURE; else { warnx("invalid service operation \"%s\"", optarg); error = 1; goto sanitize_bailout; } break; case 'c': passes = strtol(optarg, NULL, 0); if (passes < 1 || passes > 31) { warnx("invalid passes value %d", passes); error = 1; goto sanitize_bailout; } break; case 'I': invert = 1; break; case 'P': pattern = optarg; break; case 'q': quiet++; break; case 'U': ause = 1; break; case 'r': reportonly = 1; break; case 'w': /* ATA supports only immediate commands. */ if (dt == CC_DT_SCSI) immediate = 0; break; case 'y': ycount++; break; } } if (reportonly) goto doreport; if (action == 0) { warnx("an action is required"); error = 1; goto sanitize_bailout; } else if (action == SSZ_SERVICE_ACTION_OVERWRITE) { struct scsi_sanitize_parameter_list *pl; struct stat sb; ssize_t sz, amt; if (pattern == NULL) { warnx("overwrite action requires -P argument"); error = 1; goto sanitize_bailout; } fd = open(pattern, O_RDONLY); if (fd < 0) { warn("cannot open pattern file %s", pattern); error = 1; goto sanitize_bailout; } if (fstat(fd, &sb) < 0) { warn("cannot stat pattern file %s", pattern); error = 1; goto sanitize_bailout; } sz = sb.st_size; if (sz > SSZPL_MAX_PATTERN_LENGTH) { warnx("pattern file size exceeds maximum value %d", SSZPL_MAX_PATTERN_LENGTH); error = 1; goto sanitize_bailout; } dxfer_len = sizeof(*pl) + sz; data_ptr = calloc(1, dxfer_len); if (data_ptr == NULL) { warnx("cannot allocate parameter list buffer"); error = 1; goto sanitize_bailout; } amt = read(fd, data_ptr + sizeof(*pl), sz); if (amt < 0) { warn("cannot read pattern file"); error = 1; goto sanitize_bailout; } else if (amt != sz) { warnx("short pattern file read"); error = 1; goto sanitize_bailout; } pl = (struct scsi_sanitize_parameter_list *)data_ptr; if (passes == 0) pl->byte1 = 1; else pl->byte1 = passes; if (invert != 0) pl->byte1 |= SSZPL_INVERT; scsi_ulto2b(sz, pl->length); } else { const char *arg; if (passes != 0) arg = "-c"; else if (invert != 0) arg = "-I"; else if (pattern != NULL) arg = "-P"; else arg = NULL; if (arg != NULL) { warnx("%s argument only valid with overwrite " "operation", arg); error = 1; goto sanitize_bailout; } } if (quiet == 0 && ycount == 0) { fprintf(stdout, "You are about to REMOVE ALL DATA from the " "following device:\n"); if (dt == CC_DT_SCSI) { error = scsidoinquiry(device, argc, argv, combinedopt, task_attr, retry_count, timeout); } else if (dt == CC_DT_ATA || dt == CC_DT_SATL) { struct ata_params *ident_buf; error = ata_do_identify(device, retry_count, timeout, ccb, &ident_buf); if (error == 0) { printf("%s%d: ", device->device_name, device->dev_unit_num); ata_print_ident(ident_buf); free(ident_buf); } } else error = 1; if (error != 0) { warnx("sanitize: error sending inquiry"); goto sanitize_bailout; } } if (ycount == 0) { if (!get_confirmation()) { error = 1; goto sanitize_bailout; } } if (timeout != 0) use_timeout = timeout; else use_timeout = (immediate ? 10 : 10800) * 1000; if (immediate == 0 && quiet == 0) { fprintf(stdout, "Current sanitize timeout is %d seconds\n", use_timeout / 1000); } /* * If the user hasn't disabled questions and didn't specify a * timeout on the command line, ask them if they want the current * timeout. */ if (immediate == 0 && ycount == 0 && timeout == 0) { char str[1024]; int new_timeout = 0; fprintf(stdout, "Enter new timeout in seconds or press\n" "return to keep the current timeout [%d] ", use_timeout / 1000); if (fgets(str, sizeof(str), stdin) != NULL) { if (str[0] != '\0') new_timeout = atoi(str); } if (new_timeout != 0) { use_timeout = new_timeout * 1000; fprintf(stdout, "Using new timeout value %d\n", use_timeout / 1000); } } if (dt == CC_DT_SCSI) { byte2 = action; if (ause != 0) byte2 |= SSZ_UNRESTRICTED_EXIT; if (immediate != 0) byte2 |= SSZ_IMMED; scsi_sanitize(&ccb->csio, /* retries */ retry_count, /* cbfcnp */ NULL, /* tag_action */ task_attr, /* byte2 */ byte2, /* control */ 0, /* data_ptr */ data_ptr, /* dxfer_len */ dxfer_len, /* sense_len */ SSD_FULL_SIZE, /* timeout */ use_timeout); ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending sanitize command"); error = 1; goto sanitize_bailout; } } else if (dt == CC_DT_ATA || dt == CC_DT_SATL) { if (action == SSZ_SERVICE_ACTION_OVERWRITE) { feature = 0x14; /* OVERWRITE EXT */ lba = 0x4F5700000000 | scsi_4btoul(data_ptr + 4); count = (passes == 0) ? 1 : (passes >= 16) ? 0 : passes; if (invert) count |= 0x80; /* INVERT PATTERN */ if (ause) count |= 0x10; /* FAILURE MODE */ } else if (action == SSZ_SERVICE_ACTION_BLOCK_ERASE) { feature = 0x12; /* BLOCK ERASE EXT */ lba = 0x0000426B4572; count = 0; if (ause) count |= 0x10; /* FAILURE MODE */ } else if (action == SSZ_SERVICE_ACTION_CRYPTO_ERASE) { feature = 0x11; /* CRYPTO SCRAMBLE EXT */ lba = 0x000043727970; count = 0; if (ause) count |= 0x10; /* FAILURE MODE */ } else if (action == SSZ_SERVICE_ACTION_EXIT_MODE_FAILURE) { feature = 0x00; /* SANITIZE STATUS EXT */ lba = 0; count = 1; /* CLEAR SANITIZE OPERATION FAILED */ } else { error = 1; goto sanitize_bailout; } error = ata_do_cmd(device, ccb, retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA | AP_EXTEND, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SANITIZE, /*features*/feature, /*lba*/lba, /*sector_count*/count, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/ use_timeout, /*is48bit*/1); } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { struct scsi_sense_data *sense; int error_code, sense_key, asc, ascq; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) { sense = &ccb->csio.sense_data; scsi_extract_sense_len(sense, ccb->csio.sense_len - ccb->csio.sense_resid, &error_code, &sense_key, &asc, &ascq, /*show_errors*/ 1); if (sense_key == SSD_KEY_ILLEGAL_REQUEST && asc == 0x20 && ascq == 0x00) warnx("sanitize is not supported by " "this device"); else warnx("error sanitizing this device"); } else warnx("error sanitizing this device"); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto sanitize_bailout; } /* * If we ran in non-immediate mode, we already checked for errors * above and printed out any necessary information. If we're in * immediate mode, we need to loop through and get status * information periodically. */ if (immediate == 0) { if (quiet == 0) { fprintf(stdout, "Sanitize Complete\n"); } goto sanitize_bailout; } doreport: if (dt == CC_DT_SCSI) { error = sanitize_wait_scsi(device, ccb, task_attr, quiet); } else if (dt == CC_DT_ATA || dt == CC_DT_SATL) { error = sanitize_wait_ata(device, ccb, quiet, dt); } else error = 1; if (error == 0 && quiet == 0) fprintf(stdout, "Sanitize Complete \n"); sanitize_bailout: if (fd >= 0) close(fd); if (data_ptr != NULL) free(data_ptr); cam_freeccb(ccb); return (error); } static int scsireportluns(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int c, countonly, lunsonly; struct scsi_report_luns_data *lundata; int alloc_len; uint8_t report_type; uint32_t list_len, i, j; int retval; retval = 0; lundata = NULL; report_type = RPL_REPORT_DEFAULT; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } countonly = 0; lunsonly = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'c': countonly++; break; case 'l': lunsonly++; break; case 'r': if (strcasecmp(optarg, "default") == 0) report_type = RPL_REPORT_DEFAULT; else if (strcasecmp(optarg, "wellknown") == 0) report_type = RPL_REPORT_WELLKNOWN; else if (strcasecmp(optarg, "all") == 0) report_type = RPL_REPORT_ALL; else { warnx("%s: invalid report type \"%s\"", __func__, optarg); retval = 1; goto bailout; } break; default: break; } } if ((countonly != 0) && (lunsonly != 0)) { warnx("%s: you can only specify one of -c or -l", __func__); retval = 1; goto bailout; } /* * According to SPC-4, the allocation length must be at least 16 * bytes -- enough for the header and one LUN. */ alloc_len = sizeof(*lundata) + 8; retry: lundata = malloc(alloc_len); if (lundata == NULL) { warn("%s: error mallocing %d bytes", __func__, alloc_len); retval = 1; goto bailout; } scsi_report_luns(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*select_report*/ report_type, /*rpl_buf*/ lundata, /*alloc_len*/ alloc_len, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending REPORT LUNS command"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } list_len = scsi_4btoul(lundata->length); /* * If we need to list the LUNs, and our allocation * length was too short, reallocate and retry. */ if ((countonly == 0) && (list_len > (alloc_len - sizeof(*lundata)))) { alloc_len = list_len + sizeof(*lundata); free(lundata); goto retry; } if (lunsonly == 0) fprintf(stdout, "%u LUN%s found\n", list_len / 8, ((list_len / 8) > 1) ? "s" : ""); if (countonly != 0) goto bailout; for (i = 0; i < (list_len / 8); i++) { int no_more; no_more = 0; for (j = 0; j < sizeof(lundata->luns[i].lundata); j += 2) { if (j != 0) fprintf(stdout, ","); switch (lundata->luns[i].lundata[j] & RPL_LUNDATA_ATYP_MASK) { case RPL_LUNDATA_ATYP_PERIPH: if ((lundata->luns[i].lundata[j] & RPL_LUNDATA_PERIPH_BUS_MASK) != 0) fprintf(stdout, "%d:", lundata->luns[i].lundata[j] & RPL_LUNDATA_PERIPH_BUS_MASK); else if ((j == 0) && ((lundata->luns[i].lundata[j+2] & RPL_LUNDATA_PERIPH_BUS_MASK) == 0)) no_more = 1; fprintf(stdout, "%d", lundata->luns[i].lundata[j+1]); break; case RPL_LUNDATA_ATYP_FLAT: { uint8_t tmplun[2]; tmplun[0] = lundata->luns[i].lundata[j] & RPL_LUNDATA_FLAT_LUN_MASK; tmplun[1] = lundata->luns[i].lundata[j+1]; fprintf(stdout, "%d", scsi_2btoul(tmplun)); no_more = 1; break; } case RPL_LUNDATA_ATYP_LUN: fprintf(stdout, "%d:%d:%d", (lundata->luns[i].lundata[j+1] & RPL_LUNDATA_LUN_BUS_MASK) >> 5, lundata->luns[i].lundata[j] & RPL_LUNDATA_LUN_TARG_MASK, lundata->luns[i].lundata[j+1] & RPL_LUNDATA_LUN_LUN_MASK); break; case RPL_LUNDATA_ATYP_EXTLUN: { int field_len_code, eam_code; eam_code = lundata->luns[i].lundata[j] & RPL_LUNDATA_EXT_EAM_MASK; field_len_code = (lundata->luns[i].lundata[j] & RPL_LUNDATA_EXT_LEN_MASK) >> 4; if ((eam_code == RPL_LUNDATA_EXT_EAM_WK) && (field_len_code == 0x00)) { fprintf(stdout, "%d", lundata->luns[i].lundata[j+1]); } else if ((eam_code == RPL_LUNDATA_EXT_EAM_NOT_SPEC) && (field_len_code == 0x03)) { uint8_t tmp_lun[8]; /* * This format takes up all 8 bytes. * If we aren't starting at offset 0, * that's a bug. */ if (j != 0) { fprintf(stdout, "Invalid " "offset %d for " "Extended LUN not " "specified format", j); no_more = 1; break; } bzero(tmp_lun, sizeof(tmp_lun)); bcopy(&lundata->luns[i].lundata[j+1], &tmp_lun[1], sizeof(tmp_lun) - 1); fprintf(stdout, "%#jx", (intmax_t)scsi_8btou64(tmp_lun)); no_more = 1; } else { fprintf(stderr, "Unknown Extended LUN" "Address method %#x, length " "code %#x", eam_code, field_len_code); no_more = 1; } break; } default: fprintf(stderr, "Unknown LUN address method " "%#x\n", lundata->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK); break; } /* * For the flat addressing method, there are no * other levels after it. */ if (no_more != 0) break; } fprintf(stdout, "\n"); } bailout: cam_freeccb(ccb); free(lundata); return (retval); } static int scsireadcapacity(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout) { union ccb *ccb; int blocksizeonly, humanize, numblocks, quiet, sizeonly, baseten, longonly; struct scsi_read_capacity_data rcap; struct scsi_read_capacity_data_long rcaplong; uint64_t maxsector; uint32_t block_len; int retval; int c; blocksizeonly = 0; humanize = 0; longonly = 0; numblocks = 0; quiet = 0; sizeonly = 0; baseten = 0; retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'b': blocksizeonly++; break; case 'h': humanize++; baseten = 0; break; case 'H': humanize++; baseten++; break; case 'l': longonly++; break; case 'N': numblocks++; break; case 'q': quiet++; break; case 's': sizeonly++; break; default: break; } } if ((blocksizeonly != 0) && (numblocks != 0)) { warnx("%s: you can only specify one of -b or -N", __func__); retval = 1; goto bailout; } if ((blocksizeonly != 0) && (sizeonly != 0)) { warnx("%s: you can only specify one of -b or -s", __func__); retval = 1; goto bailout; } if ((humanize != 0) && (quiet != 0)) { warnx("%s: you can only specify one of -h/-H or -q", __func__); retval = 1; goto bailout; } if ((humanize != 0) && (blocksizeonly != 0)) { warnx("%s: you can only specify one of -h/-H or -b", __func__); retval = 1; goto bailout; } if (longonly != 0) goto long_only; scsi_read_capacity(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, &rcap, SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending READ CAPACITY command"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } maxsector = scsi_4btoul(rcap.addr); block_len = scsi_4btoul(rcap.length); /* * A last block of 2^32-1 means that the true capacity is over 2TB, * and we need to issue the long READ CAPACITY to get the real * capacity. Otherwise, we're all set. */ if (maxsector != 0xffffffff) goto do_print; long_only: scsi_read_capacity_16(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*lba*/ 0, /*reladdr*/ 0, /*pmi*/ 0, /*rcap_buf*/ (uint8_t *)&rcaplong, /*rcap_buf_len*/ sizeof(rcaplong), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 5000); /* Disable freezing the device queue */ ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (arglist & CAM_ARG_ERR_RECOVER) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending READ CAPACITY (16) command"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } maxsector = scsi_8btou64(rcaplong.addr); block_len = scsi_4btoul(rcaplong.length); do_print: if (blocksizeonly == 0) { /* * Humanize implies !quiet, and also implies numblocks. */ if (humanize != 0) { char tmpstr[6]; int64_t tmpbytes; int ret; tmpbytes = (maxsector + 1) * block_len; ret = humanize_number(tmpstr, sizeof(tmpstr), tmpbytes, "", HN_AUTOSCALE, HN_B | HN_DECIMAL | ((baseten != 0) ? HN_DIVISOR_1000 : 0)); if (ret == -1) { warnx("%s: humanize_number failed!", __func__); retval = 1; goto bailout; } fprintf(stdout, "Device Size: %s%s", tmpstr, (sizeonly == 0) ? ", " : "\n"); } else if (numblocks != 0) { fprintf(stdout, "%s%ju%s", (quiet == 0) ? "Blocks: " : "", (uintmax_t)maxsector + 1, (sizeonly == 0) ? ", " : "\n"); } else { fprintf(stdout, "%s%ju%s", (quiet == 0) ? "Last Block: " : "", (uintmax_t)maxsector, (sizeonly == 0) ? ", " : "\n"); } } if (sizeonly == 0) fprintf(stdout, "%s%u%s\n", (quiet == 0) ? "Block Length: " : "", block_len, (quiet == 0) ? " bytes" : ""); bailout: cam_freeccb(ccb); return (retval); } static int smpcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { int c, error = 0; union ccb *ccb; uint8_t *smp_request = NULL, *smp_response = NULL; int request_size = 0, response_size = 0; int fd_request = 0, fd_response = 0; char *datastr = NULL; struct get_hook hook; int retval; int flags = 0; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'R': arglist |= CAM_ARG_CMD_IN; response_size = strtol(optarg, NULL, 0); if (response_size <= 0) { warnx("invalid number of response bytes %d", response_size); error = 1; goto smpcmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; optind++; datastr = cget(&hook, NULL); /* * If the user supplied "-" instead of a format, he * wants the data to be written to stdout. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_response = 1; smp_response = (uint8_t *)malloc(response_size); if (smp_response == NULL) { warn("can't malloc memory for SMP response"); error = 1; goto smpcmd_bailout; } break; case 'r': arglist |= CAM_ARG_CMD_OUT; request_size = strtol(optarg, NULL, 0); if (request_size <= 0) { warnx("invalid number of request bytes %d", request_size); error = 1; goto smpcmd_bailout; } hook.argc = argc - optind; hook.argv = argv + optind; hook.got = 0; datastr = cget(&hook, NULL); smp_request = (uint8_t *)malloc(request_size); if (smp_request == NULL) { warn("can't malloc memory for SMP request"); error = 1; goto smpcmd_bailout; } bzero(smp_request, request_size); /* * If the user supplied "-" instead of a format, he * wants the data to be read from stdin. */ if ((datastr != NULL) && (datastr[0] == '-')) fd_request = 1; else buff_encode_visit(smp_request, request_size, datastr, iget, &hook); optind += hook.got; break; default: break; } } /* * If fd_data is set, and we're writing to the device, we need to * read the data the user wants written from stdin. */ if ((fd_request == 1) && (arglist & CAM_ARG_CMD_OUT)) { ssize_t amt_read; int amt_to_read = request_size; uint8_t *buf_ptr = smp_request; for (amt_read = 0; amt_to_read > 0; amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) { if (amt_read == -1) { warn("error reading data from stdin"); error = 1; goto smpcmd_bailout; } amt_to_read -= amt_read; buf_ptr += amt_read; } } if (((arglist & CAM_ARG_CMD_IN) == 0) || ((arglist & CAM_ARG_CMD_OUT) == 0)) { warnx("%s: need both the request (-r) and response (-R) " "arguments", __func__); error = 1; goto smpcmd_bailout; } flags |= CAM_DEV_QFRZDIS; cam_fill_smpio(&ccb->smpio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*smp_request*/ smp_request, /*smp_request_len*/ request_size, /*smp_response*/ smp_response, /*smp_response_len*/ response_size, /*timeout*/ timeout ? timeout : 5000); ccb->smpio.flags = SMP_FLAG_NONE; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) && (response_size > 0)) { if (fd_response == 0) { buff_decode_visit(smp_response, response_size, datastr, arg_put, NULL); fprintf(stdout, "\n"); } else { ssize_t amt_written; int amt_to_write = response_size; uint8_t *buf_ptr = smp_response; for (amt_written = 0; (amt_to_write > 0) && (amt_written = write(STDOUT_FILENO, buf_ptr, amt_to_write)) > 0;){ amt_to_write -= amt_written; buf_ptr += amt_written; } if (amt_written == -1) { warn("error writing data to stdout"); error = 1; goto smpcmd_bailout; } else if ((amt_written == 0) && (amt_to_write > 0)) { warnx("only wrote %u bytes out of %u", response_size - amt_to_write, response_size); } } } smpcmd_bailout: if (ccb != NULL) cam_freeccb(ccb); if (smp_request != NULL) free(smp_request); if (smp_response != NULL) free(smp_response); return (error); } static int mmcsdcmd(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { int c, error = 0; union ccb *ccb; int32_t mmc_opcode = 0, mmc_arg = 0; int32_t mmc_flags = -1; int retval; int is_write = 0; int is_bw_4 = 0, is_bw_1 = 0; int is_frequency = 0; int is_highspeed = 0, is_stdspeed = 0; int is_info_request = 0; int flags = 0; uint8_t mmc_data_byte = 0; uint32_t mmc_frequency = 0; /* For IO_RW_EXTENDED command */ uint8_t *mmc_data = NULL; struct mmc_data mmc_d; int mmc_data_len = 0; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } bzero(&(&ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case '4': is_bw_4 = 1; break; case '1': is_bw_1 = 1; break; case 'S': if (!strcmp(optarg, "high")) is_highspeed = 1; else is_stdspeed = 1; break; case 'I': is_info_request = 1; break; case 'F': is_frequency = 1; mmc_frequency = strtol(optarg, NULL, 0); break; case 'c': mmc_opcode = strtol(optarg, NULL, 0); if (mmc_opcode < 0) { warnx("invalid MMC opcode %d", mmc_opcode); error = 1; goto mmccmd_bailout; } break; case 'a': mmc_arg = strtol(optarg, NULL, 0); if (mmc_arg < 0) { warnx("invalid MMC arg %d", mmc_arg); error = 1; goto mmccmd_bailout; } break; case 'f': mmc_flags = strtol(optarg, NULL, 0); if (mmc_flags < 0) { warnx("invalid MMC flags %d", mmc_flags); error = 1; goto mmccmd_bailout; } break; case 'l': mmc_data_len = strtol(optarg, NULL, 0); if (mmc_data_len <= 0) { warnx("invalid MMC data len %d", mmc_data_len); error = 1; goto mmccmd_bailout; } break; case 'W': is_write = 1; break; case 'b': mmc_data_byte = strtol(optarg, NULL, 0); break; default: break; } } flags |= CAM_DEV_QFRZDIS; /* masks are broken?! */ /* If flags are left default, supply the right flags */ if (mmc_flags < 0) switch (mmc_opcode) { case MMC_GO_IDLE_STATE: mmc_flags = MMC_RSP_NONE | MMC_CMD_BC; break; case IO_SEND_OP_COND: mmc_flags = MMC_RSP_R4; break; case SD_SEND_RELATIVE_ADDR: mmc_flags = MMC_RSP_R6 | MMC_CMD_BCR; break; case MMC_SELECT_CARD: mmc_flags = MMC_RSP_R1B | MMC_CMD_AC; mmc_arg = mmc_arg << 16; break; case SD_IO_RW_DIRECT: mmc_flags = MMC_RSP_R5 | MMC_CMD_AC; mmc_arg = SD_IO_RW_ADR(mmc_arg); if (is_write) mmc_arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(mmc_data_byte); break; case SD_IO_RW_EXTENDED: mmc_flags = MMC_RSP_R5 | MMC_CMD_ADTC; mmc_arg = SD_IO_RW_ADR(mmc_arg); int len_arg = mmc_data_len; if (mmc_data_len == 512) len_arg = 0; // Byte mode mmc_arg |= SD_IOE_RW_LEN(len_arg) | SD_IO_RW_INCR; // Block mode // mmc_arg |= SD_IOE_RW_BLK | SD_IOE_RW_LEN(len_arg) | SD_IO_RW_INCR; break; default: mmc_flags = MMC_RSP_R1; break; } // Switch bus width instead of sending IO command if (is_bw_4 || is_bw_1) { struct ccb_trans_settings_mmc *cts; ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; ccb->ccb_h.flags = 0; cts = &ccb->cts.proto_specific.mmc; cts->ios.bus_width = is_bw_4 == 1 ? bus_width_4 : bus_width_1; cts->ios_valid = MMC_BW; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { warn("Error sending command"); } else { printf("Parameters set OK\n"); } cam_freeccb(ccb); return (retval); } if (is_frequency) { struct ccb_trans_settings_mmc *cts; ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; ccb->ccb_h.flags = 0; cts = &ccb->cts.proto_specific.mmc; cts->ios.clock = mmc_frequency; cts->ios_valid = MMC_CLK; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { warn("Error sending command"); } else { printf("Parameters set OK\n"); } cam_freeccb(ccb); return (retval); } // Switch bus speed instead of sending IO command if (is_stdspeed || is_highspeed) { struct ccb_trans_settings_mmc *cts; ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS; ccb->ccb_h.flags = 0; cts = &ccb->cts.proto_specific.mmc; cts->ios.timing = is_highspeed == 1 ? bus_timing_hs : bus_timing_normal; cts->ios_valid = MMC_BT; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { warn("Error sending command"); } else { printf("Speed set OK (HS: %d)\n", is_highspeed); } cam_freeccb(ccb); return (retval); } // Get information about controller and its settings if (is_info_request) { ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS; ccb->ccb_h.flags = 0; struct ccb_trans_settings_mmc *cts; cts = &ccb->cts.proto_specific.mmc; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { warn("Error sending command"); return (retval); } printf("Host controller information\n"); printf("Host OCR: 0x%x\n", cts->host_ocr); printf("Min frequency: %u KHz\n", cts->host_f_min / 1000); printf("Max frequency: %u MHz\n", cts->host_f_max / 1000000); printf("Supported bus width:\n"); if (cts->host_caps & MMC_CAP_4_BIT_DATA) printf(" 4 bit\n"); if (cts->host_caps & MMC_CAP_8_BIT_DATA) printf(" 8 bit\n"); printf("Supported operating modes:\n"); if (cts->host_caps & MMC_CAP_HSPEED) printf(" Can do High Speed transfers\n"); if (cts->host_caps & MMC_CAP_UHS_SDR12) printf(" Can do UHS SDR12\n"); if (cts->host_caps & MMC_CAP_UHS_SDR25) printf(" Can do UHS SDR25\n"); if (cts->host_caps & MMC_CAP_UHS_SDR50) printf(" Can do UHS SDR50\n"); if (cts->host_caps & MMC_CAP_UHS_SDR104) printf(" Can do UHS SDR104\n"); if (cts->host_caps & MMC_CAP_UHS_DDR50) printf(" Can do UHS DDR50\n"); if (cts->host_caps & MMC_CAP_MMC_DDR52_120) printf(" Can do eMMC DDR52 at 1.2V\n"); if (cts->host_caps & MMC_CAP_MMC_DDR52_180) printf(" Can do eMMC DDR52 at 1.8V\n"); if (cts->host_caps & MMC_CAP_MMC_HS200_120) printf(" Can do eMMC HS200 at 1.2V\n"); if (cts->host_caps & MMC_CAP_MMC_HS200_180) printf(" Can do eMMC HS200 at 1.8V\n"); if (cts->host_caps & MMC_CAP_MMC_HS400_120) printf(" Can do eMMC HS400 at 1.2V\n"); if (cts->host_caps & MMC_CAP_MMC_HS400_180) printf(" Can do eMMC HS400 at 1.8V\n"); printf("Supported VCCQ voltages:\n"); if (cts->host_caps & MMC_CAP_SIGNALING_120) printf(" 1.2V\n"); if (cts->host_caps & MMC_CAP_SIGNALING_180) printf(" 1.8V\n"); if (cts->host_caps & MMC_CAP_SIGNALING_330) printf(" 3.3V\n"); printf("Current settings:\n"); printf(" Bus width: "); switch (cts->ios.bus_width) { case bus_width_1: printf("1 bit\n"); break; case bus_width_4: printf("4 bit\n"); break; case bus_width_8: printf("8 bit\n"); break; } printf(" Freq: %d.%03d MHz%s\n", cts->ios.clock / 1000000, (cts->ios.clock / 1000) % 1000, cts->ios.timing == bus_timing_hs ? " (high-speed timing)" : ""); printf(" VCCQ: "); switch (cts->ios.vccq) { case vccq_330: printf("3.3V\n"); break; case vccq_180: printf("1.8V\n"); break; case vccq_120: printf("1.2V\n"); break; } return (0); } printf("CMD %d arg %d flags %02x\n", mmc_opcode, mmc_arg, mmc_flags); if (mmc_data_len > 0) { flags |= CAM_DIR_IN; mmc_data = malloc(mmc_data_len); memset(mmc_data, 0, mmc_data_len); memset(&mmc_d, 0, sizeof(mmc_d)); mmc_d.len = mmc_data_len; mmc_d.data = mmc_data; mmc_d.flags = MMC_DATA_READ; } else flags |= CAM_DIR_NONE; cam_fill_mmcio(&ccb->mmcio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*flags*/ flags, /*mmc_opcode*/ mmc_opcode, /*mmc_arg*/ mmc_arg, /*mmc_flags*/ mmc_flags, /*mmc_data*/ mmc_data_len > 0 ? &mmc_d : NULL, /*timeout*/ timeout ? timeout : 5000); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } } if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)) { printf("MMCIO: error %d, %08x %08x %08x %08x\n", ccb->mmcio.cmd.error, ccb->mmcio.cmd.resp[0], ccb->mmcio.cmd.resp[1], ccb->mmcio.cmd.resp[2], ccb->mmcio.cmd.resp[3]); switch (mmc_opcode) { case SD_IO_RW_DIRECT: printf("IO_RW_DIRECT: resp byte %02x, cur state %d\n", SD_R5_DATA(ccb->mmcio.cmd.resp), (ccb->mmcio.cmd.resp[0] >> 12) & 0x3); break; case SD_IO_RW_EXTENDED: printf("IO_RW_EXTENDED: read %d bytes w/o error:\n", mmc_data_len); hexdump(mmc_data, mmc_data_len, NULL, 0); break; case SD_SEND_RELATIVE_ADDR: printf("SEND_RELATIVE_ADDR: published RCA %02x\n", ccb->mmcio.cmd.resp[0] >> 16); break; default: printf("No command-specific decoder for CMD %d\n", mmc_opcode); if (mmc_data_len > 0) hexdump(mmc_data, mmc_data_len, NULL, 0); } } mmccmd_bailout: if (ccb != NULL) cam_freeccb(ccb); if (mmc_data_len > 0 && mmc_data != NULL) free(mmc_data); return (error); } static int smpreportgeneral(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_report_general_request *request = NULL; struct smp_report_general_response *response = NULL; struct sbuf *sb = NULL; int error = 0; int c, long_response = 0; int retval; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; default: break; } } request = malloc(sizeof(*request)); if (request == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*request)); error = 1; goto bailout; } response = malloc(sizeof(*response)); if (response == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*response)); error = 1; goto bailout; } try_long: smp_report_general(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, request, /*request_len*/ sizeof(*request), (uint8_t *)response, /*response_len*/ sizeof(*response), /*long_response*/ long_response, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } error = 1; goto bailout; } /* * If the device supports the long response bit, try again and see * if we can get all of the data. */ if ((response->long_response & SMP_RG_LONG_RESPONSE) && (long_response == 0)) { ccb->ccb_h.status = CAM_REQ_INPROG; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); long_response = 1; goto try_long; } /* * XXX KDM detect and decode SMP errors here. */ sb = sbuf_new_auto(); if (sb == NULL) { warnx("%s: error allocating sbuf", __func__); goto bailout; } smp_report_general_sbuf(response, sizeof(*response), sb); if (sbuf_finish(sb) != 0) { warnx("%s: sbuf_finish", __func__); goto bailout; } printf("%s", sbuf_data(sb)); bailout: if (ccb != NULL) cam_freeccb(ccb); if (request != NULL) free(request); if (response != NULL) free(response); if (sb != NULL) sbuf_delete(sb); return (error); } static struct camcontrol_opts phy_ops[] = { {"nop", SMP_PC_PHY_OP_NOP, CAM_ARG_NONE, NULL}, {"linkreset", SMP_PC_PHY_OP_LINK_RESET, CAM_ARG_NONE, NULL}, {"hardreset", SMP_PC_PHY_OP_HARD_RESET, CAM_ARG_NONE, NULL}, {"disable", SMP_PC_PHY_OP_DISABLE, CAM_ARG_NONE, NULL}, {"clearerrlog", SMP_PC_PHY_OP_CLEAR_ERR_LOG, CAM_ARG_NONE, NULL}, {"clearaffiliation", SMP_PC_PHY_OP_CLEAR_AFFILIATON, CAM_ARG_NONE,NULL}, {"sataportsel", SMP_PC_PHY_OP_TRANS_SATA_PSS, CAM_ARG_NONE, NULL}, {"clearitnl", SMP_PC_PHY_OP_CLEAR_STP_ITN_LS, CAM_ARG_NONE, NULL}, {"setdevname", SMP_PC_PHY_OP_SET_ATT_DEV_NAME, CAM_ARG_NONE, NULL}, {NULL, 0, 0, NULL} }; static int smpphycontrol(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_phy_control_request *request = NULL; struct smp_phy_control_response *response = NULL; int long_response = 0; int retval = 0; int phy = -1; uint32_t phy_operation = SMP_PC_PHY_OP_NOP; int phy_op_set = 0; uint64_t attached_dev_name = 0; int dev_name_set = 0; uint32_t min_plr = 0, max_plr = 0; uint32_t pp_timeout_val = 0; int slumber_partial = 0; int set_pp_timeout_val = 0; int c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'a': case 'A': case 's': case 'S': { int enable = -1; if (strcasecmp(optarg, "enable") == 0) enable = 1; else if (strcasecmp(optarg, "disable") == 0) enable = 2; else { warnx("%s: Invalid argument %s", __func__, optarg); retval = 1; goto bailout; } switch (c) { case 's': slumber_partial |= enable << SMP_PC_SAS_SLUMBER_SHIFT; break; case 'S': slumber_partial |= enable << SMP_PC_SAS_PARTIAL_SHIFT; break; case 'a': slumber_partial |= enable << SMP_PC_SATA_SLUMBER_SHIFT; break; case 'A': slumber_partial |= enable << SMP_PC_SATA_PARTIAL_SHIFT; break; default: warnx("%s: programmer error", __func__); retval = 1; goto bailout; break; /*NOTREACHED*/ } break; } case 'd': attached_dev_name = (uintmax_t)strtoumax(optarg, NULL,0); dev_name_set = 1; break; case 'l': long_response = 1; break; case 'm': /* * We don't do extensive checking here, so this * will continue to work when new speeds come out. */ min_plr = strtoul(optarg, NULL, 0); if ((min_plr == 0) || (min_plr > 0xf)) { warnx("%s: invalid link rate %x", __func__, min_plr); retval = 1; goto bailout; } break; case 'M': /* * We don't do extensive checking here, so this * will continue to work when new speeds come out. */ max_plr = strtoul(optarg, NULL, 0); if ((max_plr == 0) || (max_plr > 0xf)) { warnx("%s: invalid link rate %x", __func__, max_plr); retval = 1; goto bailout; } break; case 'o': { camcontrol_optret optreturn; cam_argmask argnums; const char *subopt; if (phy_op_set != 0) { warnx("%s: only one phy operation argument " "(-o) allowed", __func__); retval = 1; goto bailout; } phy_op_set = 1; /* * Allow the user to specify the phy operation * numerically, as well as with a name. This will * future-proof it a bit, so options that are added * in future specs can be used. */ if (isdigit(optarg[0])) { phy_operation = strtoul(optarg, NULL, 0); if ((phy_operation == 0) || (phy_operation > 0xff)) { warnx("%s: invalid phy operation %#x", __func__, phy_operation); retval = 1; goto bailout; } break; } optreturn = getoption(phy_ops, optarg, &phy_operation, &argnums, &subopt); if (optreturn == CC_OR_AMBIGUOUS) { warnx("%s: ambiguous option %s", __func__, optarg); usage(0); retval = 1; goto bailout; } else if (optreturn == CC_OR_NOT_FOUND) { warnx("%s: option %s not found", __func__, optarg); usage(0); retval = 1; goto bailout; } break; } case 'p': phy = atoi(optarg); break; case 'T': pp_timeout_val = strtoul(optarg, NULL, 0); if (pp_timeout_val > 15) { warnx("%s: invalid partial pathway timeout " "value %u, need a value less than 16", __func__, pp_timeout_val); retval = 1; goto bailout; } set_pp_timeout_val = 1; break; default: break; } } if (phy == -1) { warnx("%s: a PHY (-p phy) argument is required",__func__); retval = 1; goto bailout; } if (((dev_name_set != 0) && (phy_operation != SMP_PC_PHY_OP_SET_ATT_DEV_NAME)) || ((phy_operation == SMP_PC_PHY_OP_SET_ATT_DEV_NAME) && (dev_name_set == 0))) { warnx("%s: -d name and -o setdevname arguments both " "required to set device name", __func__); retval = 1; goto bailout; } request = malloc(sizeof(*request)); if (request == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*request)); retval = 1; goto bailout; } response = malloc(sizeof(*response)); if (response == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*response)); retval = 1; goto bailout; } smp_phy_control(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, request, sizeof(*request), (uint8_t *)response, sizeof(*response), long_response, /*expected_exp_change_count*/ 0, phy, phy_operation, (set_pp_timeout_val != 0) ? 1 : 0, attached_dev_name, min_plr, max_plr, slumber_partial, pp_timeout_val, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { /* * Use CAM_EPF_NORMAL so we only get one line of * SMP command decoding. */ cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_NORMAL, stderr); } retval = 1; goto bailout; } /* XXX KDM print out something here for success? */ bailout: if (ccb != NULL) cam_freeccb(ccb); if (request != NULL) free(request); if (response != NULL) free(response); return (retval); } static int smpmaninfo(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; struct smp_report_manuf_info_request request; struct smp_report_manuf_info_response response; struct sbuf *sb = NULL; int long_response = 0; int retval = 0; int c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; default: break; } } bzero(&request, sizeof(request)); bzero(&response, sizeof(response)); smp_report_manuf_info(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, &request, sizeof(request), (uint8_t *)&response, sizeof(response), long_response, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } sb = sbuf_new_auto(); if (sb == NULL) { warnx("%s: error allocating sbuf", __func__); goto bailout; } smp_report_manuf_info_sbuf(&response, sizeof(response), sb); if (sbuf_finish(sb) != 0) { warnx("%s: sbuf_finish", __func__); goto bailout; } printf("%s", sbuf_data(sb)); bailout: if (ccb != NULL) cam_freeccb(ccb); if (sb != NULL) sbuf_delete(sb); return (retval); } static int getdevid(struct cam_devitem *item) { int retval = 0; union ccb *ccb = NULL; struct cam_device *dev; dev = cam_open_btl(item->dev_match.path_id, item->dev_match.target_id, item->dev_match.target_lun, O_RDWR, NULL); if (dev == NULL) { warnx("%s", cam_errbuf); retval = 1; goto bailout; } item->device_id_len = 0; ccb = cam_getccb(dev); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); retval = 1; goto bailout; } /* * On the first try, we just probe for the size of the data, and * then allocate that much memory and try again. */ retry: ccb->ccb_h.func_code = XPT_DEV_ADVINFO; ccb->ccb_h.flags = CAM_DIR_IN; ccb->cdai.flags = CDAI_FLAG_NONE; ccb->cdai.buftype = CDAI_TYPE_SCSI_DEVID; ccb->cdai.bufsiz = item->device_id_len; if (item->device_id_len != 0) ccb->cdai.buf = (uint8_t *)item->device_id; if (cam_send_ccb(dev, ccb) < 0) { warn("%s: error sending XPT_GDEV_ADVINFO CCB", __func__); retval = 1; goto bailout; } if (ccb->ccb_h.status != CAM_REQ_CMP) { warnx("%s: CAM status %#x", __func__, ccb->ccb_h.status); retval = 1; goto bailout; } if (item->device_id_len == 0) { /* * This is our first time through. Allocate the buffer, * and then go back to get the data. */ if (ccb->cdai.provsiz == 0) { warnx("%s: invalid .provsiz field returned with " "XPT_GDEV_ADVINFO CCB", __func__); retval = 1; goto bailout; } item->device_id_len = ccb->cdai.provsiz; item->device_id = malloc(item->device_id_len); if (item->device_id == NULL) { warn("%s: unable to allocate %d bytes", __func__, item->device_id_len); retval = 1; goto bailout; } ccb->ccb_h.status = CAM_REQ_INPROG; goto retry; } bailout: if (dev != NULL) cam_close_device(dev); if (ccb != NULL) cam_freeccb(ccb); return (retval); } /* * XXX KDM merge this code with getdevtree()? */ static int buildbusdevlist(struct cam_devlist *devlist) { union ccb ccb; int bufsize, fd = -1; struct dev_match_pattern *patterns; struct cam_devitem *item = NULL; int skip_device = 0; int retval = 0; if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) { warn("couldn't open %s", XPT_DEVICE); return (1); } bzero(&ccb, sizeof(union ccb)); ccb.ccb_h.path_id = CAM_XPT_PATH_ID; ccb.ccb_h.target_id = CAM_TARGET_WILDCARD; ccb.ccb_h.target_lun = CAM_LUN_WILDCARD; ccb.ccb_h.func_code = XPT_DEV_MATCH; bufsize = sizeof(struct dev_match_result) * 100; ccb.cdm.match_buf_len = bufsize; ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize); if (ccb.cdm.matches == NULL) { warnx("can't malloc memory for matches"); close(fd); return (1); } ccb.cdm.num_matches = 0; ccb.cdm.num_patterns = 2; ccb.cdm.pattern_buf_len = sizeof(struct dev_match_pattern) * ccb.cdm.num_patterns; patterns = (struct dev_match_pattern *)malloc(ccb.cdm.pattern_buf_len); if (patterns == NULL) { warnx("can't malloc memory for patterns"); retval = 1; goto bailout; } ccb.cdm.patterns = patterns; bzero(patterns, ccb.cdm.pattern_buf_len); patterns[0].type = DEV_MATCH_DEVICE; patterns[0].pattern.device_pattern.flags = DEV_MATCH_PATH; patterns[0].pattern.device_pattern.path_id = devlist->path_id; patterns[1].type = DEV_MATCH_PERIPH; patterns[1].pattern.periph_pattern.flags = PERIPH_MATCH_PATH; patterns[1].pattern.periph_pattern.path_id = devlist->path_id; /* * We do the ioctl multiple times if necessary, in case there are * more than 100 nodes in the EDT. */ do { unsigned int i; if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) { warn("error sending CAMIOCOMMAND ioctl"); retval = 1; goto bailout; } if ((ccb.ccb_h.status != CAM_REQ_CMP) || ((ccb.cdm.status != CAM_DEV_MATCH_LAST) && (ccb.cdm.status != CAM_DEV_MATCH_MORE))) { warnx("got CAM error %#x, CDM error %d\n", ccb.ccb_h.status, ccb.cdm.status); retval = 1; goto bailout; } for (i = 0; i < ccb.cdm.num_matches; i++) { switch (ccb.cdm.matches[i].type) { case DEV_MATCH_DEVICE: { struct device_match_result *dev_result; dev_result = &ccb.cdm.matches[i].result.device_result; if (dev_result->flags & DEV_RESULT_UNCONFIGURED) { skip_device = 1; break; } else skip_device = 0; item = malloc(sizeof(*item)); if (item == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*item)); retval = 1; goto bailout; } bzero(item, sizeof(*item)); bcopy(dev_result, &item->dev_match, sizeof(*dev_result)); STAILQ_INSERT_TAIL(&devlist->dev_queue, item, links); if (getdevid(item) != 0) { retval = 1; goto bailout; } break; } case DEV_MATCH_PERIPH: { struct periph_match_result *periph_result; periph_result = &ccb.cdm.matches[i].result.periph_result; if (skip_device != 0) break; item->num_periphs++; item->periph_matches = realloc( item->periph_matches, item->num_periphs * sizeof(struct periph_match_result)); if (item->periph_matches == NULL) { warn("%s: error allocating periph " "list", __func__); retval = 1; goto bailout; } bcopy(periph_result, &item->periph_matches[ item->num_periphs - 1], sizeof(*periph_result)); break; } default: fprintf(stderr, "%s: unexpected match " "type %d\n", __func__, ccb.cdm.matches[i].type); retval = 1; goto bailout; break; /*NOTREACHED*/ } } } while ((ccb.ccb_h.status == CAM_REQ_CMP) && (ccb.cdm.status == CAM_DEV_MATCH_MORE)); bailout: if (fd != -1) close(fd); free(patterns); free(ccb.cdm.matches); if (retval != 0) freebusdevlist(devlist); return (retval); } static void freebusdevlist(struct cam_devlist *devlist) { struct cam_devitem *item, *item2; STAILQ_FOREACH_SAFE(item, &devlist->dev_queue, links, item2) { STAILQ_REMOVE(&devlist->dev_queue, item, cam_devitem, links); free(item->device_id); free(item->periph_matches); free(item); } } static struct cam_devitem * findsasdevice(struct cam_devlist *devlist, uint64_t sasaddr) { struct cam_devitem *item; STAILQ_FOREACH(item, &devlist->dev_queue, links) { struct scsi_vpd_id_descriptor *idd; /* * XXX KDM look for LUN IDs as well? */ idd = scsi_get_devid(item->device_id, item->device_id_len, scsi_devid_is_sas_target); if (idd == NULL) continue; if (scsi_8btou64(idd->identifier) == sasaddr) return (item); } return (NULL); } static int smpphylist(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { struct smp_report_general_request *rgrequest = NULL; struct smp_report_general_response *rgresponse = NULL; struct smp_discover_request *disrequest = NULL; struct smp_discover_response *disresponse = NULL; struct cam_devlist devlist; union ccb *ccb; int long_response = 0; int num_phys = 0; int quiet = 0; int retval; int i, c; /* * Note that at the moment we don't support sending SMP CCBs to * devices that aren't probed by CAM. */ ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating CCB", __func__); return (1); } STAILQ_INIT(&devlist.dev_queue); rgrequest = malloc(sizeof(*rgrequest)); if (rgrequest == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*rgrequest)); retval = 1; goto bailout; } rgresponse = malloc(sizeof(*rgresponse)); if (rgresponse == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*rgresponse)); retval = 1; goto bailout; } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': long_response = 1; break; case 'q': quiet = 1; break; default: break; } } smp_report_general(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, rgrequest, /*request_len*/ sizeof(*rgrequest), (uint8_t *)rgresponse, /*response_len*/ sizeof(*rgresponse), /*long_response*/ long_response, timeout); ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (((retval = cam_send_ccb(device, ccb)) < 0) || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } num_phys = rgresponse->num_phys; if (num_phys == 0) { if (quiet == 0) fprintf(stdout, "%s: No Phys reported\n", __func__); retval = 1; goto bailout; } devlist.path_id = device->path_id; retval = buildbusdevlist(&devlist); if (retval != 0) goto bailout; if (quiet == 0) { fprintf(stdout, "%d PHYs:\n", num_phys); fprintf(stdout, "PHY Attached SAS Address\n"); } disrequest = malloc(sizeof(*disrequest)); if (disrequest == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*disrequest)); retval = 1; goto bailout; } disresponse = malloc(sizeof(*disresponse)); if (disresponse == NULL) { warn("%s: unable to allocate %zd bytes", __func__, sizeof(*disresponse)); retval = 1; goto bailout; } for (i = 0; i < num_phys; i++) { struct cam_devitem *item; struct device_match_result *dev_match; char vendor[16], product[48], revision[16]; char tmpstr[256]; int j; CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->smpio); ccb->ccb_h.status = CAM_REQ_INPROG; ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; smp_discover(&ccb->smpio, retry_count, /*cbfcnp*/ NULL, disrequest, sizeof(*disrequest), (uint8_t *)disresponse, sizeof(*disresponse), long_response, /*ignore_zone_group*/ 0, /*phy*/ i, timeout); if (((retval = cam_send_ccb(device, ccb)) < 0) || (((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && (disresponse->function_result != SMP_FR_PHY_VACANT))) { const char warnstr[] = "error sending command"; if (retval < 0) warn(warnstr); else warnx(warnstr); if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } retval = 1; goto bailout; } if (disresponse->function_result == SMP_FR_PHY_VACANT) { if (quiet == 0) fprintf(stdout, "%3d \n", i); continue; } if (disresponse->attached_device == SMP_DIS_AD_TYPE_NONE) { item = NULL; } else { item = findsasdevice(&devlist, scsi_8btou64(disresponse->attached_sas_address)); } if ((quiet == 0) || (item != NULL)) { fprintf(stdout, "%3d 0x%016jx", i, (uintmax_t)scsi_8btou64( disresponse->attached_sas_address)); if (item == NULL) { fprintf(stdout, "\n"); continue; } } else if (quiet != 0) continue; dev_match = &item->dev_match; if (dev_match->protocol == PROTO_SCSI) { cam_strvis(vendor, dev_match->inq_data.vendor, sizeof(dev_match->inq_data.vendor), sizeof(vendor)); cam_strvis(product, dev_match->inq_data.product, sizeof(dev_match->inq_data.product), sizeof(product)); cam_strvis(revision, dev_match->inq_data.revision, sizeof(dev_match->inq_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s %s>", vendor, product, revision); } else if ((dev_match->protocol == PROTO_ATA) || (dev_match->protocol == PROTO_SATAPM)) { cam_strvis(product, dev_match->ident_data.model, sizeof(dev_match->ident_data.model), sizeof(product)); cam_strvis(revision, dev_match->ident_data.revision, sizeof(dev_match->ident_data.revision), sizeof(revision)); sprintf(tmpstr, "<%s %s>", product, revision); } else { sprintf(tmpstr, "<>"); } fprintf(stdout, " %-33s ", tmpstr); /* * If we have 0 periphs, that's a bug... */ if (item->num_periphs == 0) { fprintf(stdout, "\n"); continue; } fprintf(stdout, "("); for (j = 0; j < item->num_periphs; j++) { if (j > 0) fprintf(stdout, ","); fprintf(stdout, "%s%d", item->periph_matches[j].periph_name, item->periph_matches[j].unit_number); } fprintf(stdout, ")\n"); } bailout: if (ccb != NULL) cam_freeccb(ccb); free(rgrequest); free(rgresponse); free(disrequest); free(disresponse); freebusdevlist(&devlist); return (retval); } static int atapm_proc_resp(struct cam_device *device, union ccb *ccb) { uint8_t error = 0, ata_device = 0, status = 0; uint16_t count = 0; uint64_t lba = 0; int retval; retval = get_ata_status(device, ccb, &error, &count, &lba, &ata_device, &status); if (retval == 1) { if (arglist & CAM_ARG_VERBOSE) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); } warnx("Can't get ATA command status"); return (retval); } if (status & ATA_STATUS_ERROR) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); return (1); } printf("%s%d: ", device->device_name, device->dev_unit_num); switch (count) { case ATA_PM_STANDBY: printf("Standby mode\n"); break; case ATA_PM_STANDBY_Y: printf("Standby_y mode\n"); break; case 0x40: /* obsolete since ACS-3 */ printf("NV Cache Power Mode and the spindle is spun down or spinning down\n"); break; case 0x41: /* obsolete since ACS-3 */ printf("NV Cache Power Mode and the spindle is spun up or spinning up\n"); break; case ATA_PM_IDLE: printf("Idle mode\n"); break; case ATA_PM_IDLE_A: printf("Idle_a mode\n"); break; case ATA_PM_IDLE_B: printf("Idle_b mode\n"); break; case ATA_PM_IDLE_C: printf("Idle_c mode\n"); break; case ATA_PM_ACTIVE_IDLE: printf("Active or Idle mode\n"); break; default: printf("Unknown mode 0x%02x\n", count); break; } return (0); } static int atapm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; int retval = 0; int t = -1; int c; uint8_t ata_flags = 0; u_char cmd, sc; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 't': t = atoi(optarg); break; default: break; } } if (strcmp(argv[1], "idle") == 0) { if (t == -1) cmd = ATA_IDLE_IMMEDIATE; else cmd = ATA_IDLE_CMD; } else if (strcmp(argv[1], "standby") == 0) { if (t == -1) cmd = ATA_STANDBY_IMMEDIATE; else cmd = ATA_STANDBY_CMD; } else if (strcmp(argv[1], "powermode") == 0) { cmd = ATA_CHECK_POWER_MODE; ata_flags = AP_FLAG_CHK_COND; t = -1; } else { cmd = ATA_SLEEP; t = -1; } if (t < 0) sc = 0; else if (t <= (240 * 5)) sc = (t + 4) / 5; else if (t <= (252 * 5)) /* special encoding for 21 minutes */ sc = 252; else if (t <= (11 * 30 * 60)) sc = (t - 1) / (30 * 60) + 241; else sc = 253; retval = ata_do_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*ata_flags*/ata_flags, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/cmd, /*features*/0, /*lba*/0, /*sector_count*/sc, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout ? timeout : 30 * 1000, /*force48bit*/0); if (retval == 0 && cmd == ATA_CHECK_POWER_MODE) retval = atapm_proc_resp(device, ccb); cam_freeccb(ccb); return (retval); } static int ataaxm(struct cam_device *device, int argc, char **argv, char *combinedopt, int retry_count, int timeout) { union ccb *ccb; int retval = 0; int l = -1; int c; u_char cmd, sc; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'l': l = atoi(optarg); break; default: break; } } sc = 0; if (strcmp(argv[1], "apm") == 0) { if (l == -1) cmd = 0x85; else { cmd = 0x05; sc = l; } } else /* aam */ { if (l == -1) cmd = 0xC2; else { cmd = 0x42; sc = l; } } retval = ata_do_cmd(device, ccb, /*retries*/retry_count, /*flags*/CAM_DIR_NONE, /*protocol*/AP_PROTO_NON_DATA, /*ata_flags*/0, /*tag_action*/MSG_SIMPLE_Q_TAG, /*command*/ATA_SETFEATURES, /*features*/cmd, /*lba*/0, /*sector_count*/sc, /*data_ptr*/NULL, /*dxfer_len*/0, /*timeout*/timeout ? timeout : 30 * 1000, /*force48bit*/0); cam_freeccb(ccb); return (retval); } int scsigetopcodes(struct cam_device *device, int opcode_set, int opcode, int show_sa_errors, int sa_set, int service_action, int timeout_desc, int task_attr, int retry_count, int timeout, int verbosemode, uint32_t *fill_len, uint8_t **data_ptr) { union ccb *ccb = NULL; uint8_t *buf = NULL; uint32_t alloc_len = 0, num_opcodes; uint32_t valid_len = 0; uint32_t avail_len = 0; struct scsi_report_supported_opcodes_all *all_hdr; struct scsi_report_supported_opcodes_one *one; int options = 0; int retval = 0; /* * Make it clear that we haven't yet allocated or filled anything. */ *fill_len = 0; *data_ptr = NULL; ccb = cam_getccb(device); if (ccb == NULL) { warnx("couldn't allocate CCB"); retval = 1; goto bailout; } if (opcode_set != 0) { options |= RSO_OPTIONS_OC; num_opcodes = 1; alloc_len = sizeof(*one) + CAM_MAX_CDBLEN; } else { num_opcodes = 256; alloc_len = sizeof(*all_hdr) + (num_opcodes * sizeof(struct scsi_report_supported_opcodes_descr)); } if (timeout_desc != 0) { options |= RSO_RCTD; alloc_len += num_opcodes * sizeof(struct scsi_report_supported_opcodes_timeout); } if (sa_set != 0) { options |= RSO_OPTIONS_OC_SA; if (show_sa_errors != 0) options &= ~RSO_OPTIONS_OC; } retry_alloc: if (buf != NULL) { free(buf); buf = NULL; } buf = malloc(alloc_len); if (buf == NULL) { warn("Unable to allocate %u bytes", alloc_len); retval = 1; goto bailout; } bzero(buf, alloc_len); scsi_report_supported_opcodes(&ccb->csio, /*retries*/ retry_count, /*cbfcnp*/ NULL, /*tag_action*/ task_attr, /*options*/ options, /*req_opcode*/ opcode, /*req_service_action*/ service_action, /*data_ptr*/ buf, /*dxfer_len*/ alloc_len, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout ? timeout : 10000); ccb->ccb_h.flags |= CAM_DEV_QFRZDIS; if (retry_count != 0) ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER; if (cam_send_ccb(device, ccb) < 0) { warn("error sending REPORT SUPPORTED OPERATION CODES command"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (verbosemode != 0) cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } valid_len = ccb->csio.dxfer_len - ccb->csio.resid; if (((options & RSO_OPTIONS_MASK) == RSO_OPTIONS_ALL) && (valid_len >= sizeof(*all_hdr))) { all_hdr = (struct scsi_report_supported_opcodes_all *)buf; avail_len = scsi_4btoul(all_hdr->length) + sizeof(*all_hdr); } else if (((options & RSO_OPTIONS_MASK) != RSO_OPTIONS_ALL) && (valid_len >= sizeof(*one))) { uint32_t cdb_length; one = (struct scsi_report_supported_opcodes_one *)buf; cdb_length = scsi_2btoul(one->cdb_length); avail_len = sizeof(*one) + cdb_length; if (one->support & RSO_ONE_CTDP) { struct scsi_report_supported_opcodes_timeout *td; td = (struct scsi_report_supported_opcodes_timeout *) &buf[avail_len]; if (valid_len >= (avail_len + sizeof(td->length))) { avail_len += scsi_2btoul(td->length) + sizeof(td->length); } else { avail_len += sizeof(*td); } } } /* * avail_len could be zero if we didn't get enough data back from * thet target to determine */ if ((avail_len != 0) && (avail_len > valid_len)) { alloc_len = avail_len; goto retry_alloc; } *fill_len = valid_len; *data_ptr = buf; bailout: if (retval != 0) free(buf); cam_freeccb(ccb); return (retval); } static int scsiprintoneopcode(struct cam_device *device, int req_opcode, int sa_set, int req_sa, uint8_t *buf, uint32_t valid_len) { struct scsi_report_supported_opcodes_one *one; struct scsi_report_supported_opcodes_timeout *td; uint32_t cdb_len = 0, td_len = 0; const char *op_desc = NULL; unsigned int i; int retval = 0; one = (struct scsi_report_supported_opcodes_one *)buf; /* * If we don't have the full single opcode descriptor, no point in * continuing. */ if (valid_len < __offsetof(struct scsi_report_supported_opcodes_one, cdb_length)) { warnx("Only %u bytes returned, not enough to verify support", valid_len); retval = 1; goto bailout; } op_desc = scsi_op_desc(req_opcode, &device->inq_data); printf("%s (0x%02x)", op_desc != NULL ? op_desc : "UNKNOWN", req_opcode); if (sa_set != 0) printf(", SA 0x%x", req_sa); printf(": "); switch (one->support & RSO_ONE_SUP_MASK) { case RSO_ONE_SUP_UNAVAIL: printf("No command support information currently available\n"); break; case RSO_ONE_SUP_NOT_SUP: printf("Command not supported\n"); retval = 1; goto bailout; break; /*NOTREACHED*/ case RSO_ONE_SUP_AVAIL: printf("Command is supported, complies with a SCSI standard\n"); break; case RSO_ONE_SUP_VENDOR: printf("Command is supported, vendor-specific " "implementation\n"); break; default: printf("Unknown command support flags 0x%#x\n", one->support & RSO_ONE_SUP_MASK); break; } /* * If we don't have the CDB length, it isn't exactly an error, the * command probably isn't supported. */ if (valid_len < __offsetof(struct scsi_report_supported_opcodes_one, cdb_usage)) goto bailout; cdb_len = scsi_2btoul(one->cdb_length); /* * If our valid data doesn't include the full reported length, * return. The caller should have detected this and adjusted his * allocation length to get all of the available data. */ if (valid_len < sizeof(*one) + cdb_len) { retval = 1; goto bailout; } /* * If all we have is the opcode, there is no point in printing out * the usage bitmap. */ if (cdb_len <= 1) { retval = 1; goto bailout; } printf("CDB usage bitmap:"); for (i = 0; i < cdb_len; i++) { printf(" %02x", one->cdb_usage[i]); } printf("\n"); /* * If we don't have a timeout descriptor, we're done. */ if ((one->support & RSO_ONE_CTDP) == 0) goto bailout; /* * If we don't have enough valid length to include the timeout * descriptor length, we're done. */ if (valid_len < (sizeof(*one) + cdb_len + sizeof(td->length))) goto bailout; td = (struct scsi_report_supported_opcodes_timeout *) &buf[sizeof(*one) + cdb_len]; td_len = scsi_2btoul(td->length); td_len += sizeof(td->length); /* * If we don't have the full timeout descriptor, we're done. */ if (td_len < sizeof(*td)) goto bailout; /* * If we don't have enough valid length to contain the full timeout * descriptor, we're done. */ if (valid_len < (sizeof(*one) + cdb_len + td_len)) goto bailout; printf("Timeout information:\n"); printf("Command-specific: 0x%02x\n", td->cmd_specific); printf("Nominal timeout: %u seconds\n", scsi_4btoul(td->nominal_time)); printf("Recommended timeout: %u seconds\n", scsi_4btoul(td->recommended_time)); bailout: return (retval); } static int scsiprintopcodes(struct cam_device *device, int td_req, uint8_t *buf, uint32_t valid_len) { struct scsi_report_supported_opcodes_all *hdr; struct scsi_report_supported_opcodes_descr *desc; uint32_t avail_len = 0, used_len = 0; uint8_t *cur_ptr; int retval = 0; if (valid_len < sizeof(*hdr)) { warnx("%s: not enough returned data (%u bytes) opcode list", __func__, valid_len); retval = 1; goto bailout; } hdr = (struct scsi_report_supported_opcodes_all *)buf; avail_len = scsi_4btoul(hdr->length); avail_len += sizeof(hdr->length); /* * Take the lesser of the amount of data the drive claims is * available, and the amount of data the HBA says was returned. */ avail_len = MIN(avail_len, valid_len); used_len = sizeof(hdr->length); printf("%-6s %4s %8s ", "Opcode", "SA", "CDB len" ); if (td_req != 0) printf("%5s %6s %6s ", "CS", "Nom", "Rec"); printf(" Description\n"); while ((avail_len - used_len) > sizeof(*desc)) { struct scsi_report_supported_opcodes_timeout *td; uint32_t td_len; const char *op_desc = NULL; cur_ptr = &buf[used_len]; desc = (struct scsi_report_supported_opcodes_descr *)cur_ptr; op_desc = scsi_op_desc(desc->opcode, &device->inq_data); if (op_desc == NULL) op_desc = "UNKNOWN"; printf("0x%02x %#4x %8u ", desc->opcode, scsi_2btoul(desc->service_action), scsi_2btoul(desc->cdb_length)); used_len += sizeof(*desc); if ((desc->flags & RSO_CTDP) == 0) { printf(" %s\n", op_desc); continue; } /* * If we don't have enough space to fit a timeout * descriptor, then we're done. */ if (avail_len - used_len < sizeof(*td)) { used_len = avail_len; printf(" %s\n", op_desc); continue; } cur_ptr = &buf[used_len]; td = (struct scsi_report_supported_opcodes_timeout *)cur_ptr; td_len = scsi_2btoul(td->length); td_len += sizeof(td->length); used_len += td_len; /* * If the given timeout descriptor length is less than what * we understand, skip it. */ if (td_len < sizeof(*td)) { printf(" %s\n", op_desc); continue; } printf(" 0x%02x %6u %6u %s\n", td->cmd_specific, scsi_4btoul(td->nominal_time), scsi_4btoul(td->recommended_time), op_desc); } bailout: return (retval); } static int scsiopcodes(struct cam_device *device, int argc, char **argv, char *combinedopt, int task_attr, int retry_count, int timeout, int verbosemode) { int c; uint32_t opcode = 0, service_action = 0; int td_set = 0, opcode_set = 0, sa_set = 0; int show_sa_errors = 1; uint32_t valid_len = 0; uint8_t *buf = NULL; char *endptr; int retval = 0; while ((c = getopt(argc, argv, combinedopt)) != -1) { switch (c) { case 'N': show_sa_errors = 0; break; case 'o': opcode = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { warnx("Invalid opcode \"%s\", must be a number", optarg); retval = 1; goto bailout; } if (opcode > 0xff) { warnx("Invalid opcode 0x%#x, must be between" "0 and 0xff inclusive", opcode); retval = 1; goto bailout; } opcode_set = 1; break; case 's': service_action = strtoul(optarg, &endptr, 0); if (*endptr != '\0') { warnx("Invalid service action \"%s\", must " "be a number", optarg); retval = 1; goto bailout; } if (service_action > 0xffff) { warnx("Invalid service action 0x%#x, must " "be between 0 and 0xffff inclusive", service_action); retval = 1; } sa_set = 1; break; case 'T': td_set = 1; break; default: break; } } if ((sa_set != 0) && (opcode_set == 0)) { warnx("You must specify an opcode with -o if a service " "action is given"); retval = 1; goto bailout; } retval = scsigetopcodes(device, opcode_set, opcode, show_sa_errors, sa_set, service_action, td_set, task_attr, retry_count, timeout, verbosemode, &valid_len, &buf); if (retval != 0) goto bailout; if ((opcode_set != 0) || (sa_set != 0)) { retval = scsiprintoneopcode(device, opcode, sa_set, service_action, buf, valid_len); } else { retval = scsiprintopcodes(device, td_set, buf, valid_len); } bailout: free(buf); return (retval); } static int reprobe(struct cam_device *device) { union ccb *ccb; int retval = 0; ccb = cam_getccb(device); if (ccb == NULL) { warnx("%s: error allocating ccb", __func__); return (1); } ccb->ccb_h.func_code = XPT_REPROBE_LUN; if (cam_send_ccb(device, ccb) < 0) { warn("error sending XPT_REPROBE_LUN CCB"); retval = 1; goto bailout; } if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr); retval = 1; goto bailout; } bailout: cam_freeccb(ccb); return (retval); } void usage(int printlong) { fprintf(printlong ? stdout : stderr, "usage: camcontrol [device id][generic args][command args]\n" " camcontrol devlist [-b] [-v]\n" " camcontrol periphlist [dev_id][-n dev_name] [-u unit]\n" " camcontrol tur [dev_id][generic args]\n" " camcontrol sense [dev_id][generic args][-D][-x]\n" " camcontrol inquiry [dev_id][generic args] [-D] [-S] [-R]\n" " camcontrol identify [dev_id][generic args] [-v]\n" " camcontrol reportluns [dev_id][generic args] [-c] [-l] [-r report]\n" " camcontrol readcap [dev_id][generic args] [-b] [-h] [-H] [-N]\n" " [-q] [-s] [-l]\n" " camcontrol start [dev_id][generic args]\n" " camcontrol stop [dev_id][generic args]\n" " camcontrol load [dev_id][generic args]\n" " camcontrol eject [dev_id][generic args]\n" " camcontrol reprobe [dev_id][generic args]\n" " camcontrol rescan \n" " camcontrol reset \n" " camcontrol defects [dev_id][generic args] <-f format> [-P][-G]\n" " [-q][-s][-S offset][-X]\n" " camcontrol modepage [dev_id][generic args] <-m page | -l>\n" " [-P pagectl][-e | -b][-d]\n" " camcontrol cmd [dev_id][generic args]\n" " <-a cmd [args] | -c cmd [args]>\n" " [-d] [-f] [-i len fmt|-o len fmt [args]] [-r fmt]\n" " camcontrol smpcmd [dev_id][generic args]\n" " <-r len fmt [args]> <-R len fmt [args]>\n" " camcontrol smprg [dev_id][generic args][-l]\n" " camcontrol smppc [dev_id][generic args] <-p phy> [-l]\n" " [-o operation][-d name][-m rate][-M rate]\n" " [-T pp_timeout][-a enable|disable]\n" " [-A enable|disable][-s enable|disable]\n" " [-S enable|disable]\n" " camcontrol smpphylist [dev_id][generic args][-l][-q]\n" " camcontrol smpmaninfo [dev_id][generic args][-l]\n" " camcontrol debug [-I][-P][-T][-S][-X][-c]\n" " \n" " camcontrol tags [dev_id][generic args] [-N tags] [-q] [-v]\n" " camcontrol negotiate [dev_id][generic args] [-a][-c]\n" " [-D ][-M mode][-O offset]\n" " [-q][-R syncrate][-v][-T ]\n" " [-U][-W bus_width]\n" " camcontrol format [dev_id][generic args][-q][-r][-w][-y]\n" " camcontrol sanitize [dev_id][generic args]\n" " [-a overwrite|block|crypto|exitfailure]\n" " [-c passes][-I][-P pattern][-q][-U][-r][-w]\n" " [-y]\n" " camcontrol idle [dev_id][generic args][-t time]\n" " camcontrol standby [dev_id][generic args][-t time]\n" " camcontrol sleep [dev_id][generic args]\n" " camcontrol powermode [dev_id][generic args]\n" " camcontrol apm [dev_id][generic args][-l level]\n" " camcontrol aam [dev_id][generic args][-l level]\n" " camcontrol fwdownload [dev_id][generic args] <-f fw_image> [-q]\n" " [-s][-y]\n" " camcontrol security [dev_id][generic args]\n" " <-d pwd | -e pwd | -f | -h pwd | -k pwd>\n" " [-l ] [-q] [-s pwd] [-T timeout]\n" " [-U ] [-y]\n" " camcontrol hpa [dev_id][generic args] [-f] [-l] [-P] [-p pwd]\n" " [-q] [-s max_sectors] [-U pwd] [-y]\n" " camcontrol ama [dev_id][generic args] [-f] [-q] [-s max_sectors]\n" " camcontrol persist [dev_id][generic args] <-i action|-o action>\n" " [-a][-I tid][-k key][-K sa_key][-p][-R rtp]\n" " [-s scope][-S][-T type][-U]\n" " camcontrol attrib [dev_id][generic args] <-r action|-w attr>\n" " [-a attr_num][-c][-e elem][-F form1,form1]\n" " [-p part][-s start][-T type][-V vol]\n" " camcontrol opcodes [dev_id][generic args][-o opcode][-s SA]\n" " [-N][-T]\n" " camcontrol zone [dev_id][generic args]<-c cmd> [-a] [-l LBA]\n" " [-o rep_opts] [-P print_opts]\n" " camcontrol epc [dev_id][generic_args]<-c cmd> [-d] [-D] [-e]\n" " [-H] [-p power_cond] [-P] [-r rst_src] [-s]\n" " [-S power_src] [-T timer]\n" " camcontrol timestamp [dev_id][generic_args] <-r [-f format|-m|-U]>|\n" " <-s <-f format -T time | -U >>\n" " camcontrol devtype [dev_id]\n" " camcontrol depop [dev_id] [-d | -l | -r] [-e element] [-c capacity]\n" " camcontrol mmcsdcmd [dev_id] [[-c mmc_opcode] [-a mmc_arg]\n" " [-f mmc_flags] [-l data_len]\n" " [-W [-b data_byte]]] |\n" " [-F frequency] |\n" " [-I]\n" " [-1 | -4]\n" " [-S high|normal]\n" " \n" " camcontrol help\n"); if (!printlong) return; fprintf(stdout, "Specify one of the following options:\n" "devlist list all CAM devices\n" "periphlist list all CAM peripheral drivers attached to a device\n" "sense send a request sense command to the named device\n" "tur send a test unit ready to the named device\n" "inquiry send a SCSI inquiry command to the named device\n" "identify send a ATA identify command to the named device\n" "reportluns send a SCSI report luns command to the device\n" "readcap send a SCSI read capacity command to the device\n" "start send a Start Unit command to the device\n" "stop send a Stop Unit command to the device\n" "load send a Start Unit command to the device with the load bit set\n" "eject send a Stop Unit command to the device with the eject bit set\n" "reprobe update capacity information of the given device\n" "rescan rescan all buses, the given bus, bus:target:lun or device\n" "reset reset all buses, the given bus, bus:target:lun or device\n" "defects read the defect list of the specified device\n" "modepage display or edit (-e) the given mode page\n" "cmd send the given SCSI command, may need -i or -o as well\n" "smpcmd send the given SMP command, requires -o and -i\n" "smprg send the SMP Report General command\n" "smppc send the SMP PHY Control command, requires -p\n" "smpphylist display phys attached to a SAS expander\n" "smpmaninfo send the SMP Report Manufacturer Info command\n" "debug turn debugging on/off for a bus, target, or lun, or all devices\n" "tags report or set the number of transaction slots for a device\n" "negotiate report or set device negotiation parameters\n" "format send the SCSI FORMAT UNIT command to the named device\n" "sanitize send the SCSI SANITIZE command to the named device\n" "idle send the ATA IDLE command to the named device\n" "standby send the ATA STANDBY command to the named device\n" "sleep send the ATA SLEEP command to the named device\n" "powermode send the ATA CHECK POWER MODE command to the named device\n" "fwdownload program firmware of the named device with the given image\n" "security report or send ATA security commands to the named device\n" "persist send the SCSI PERSISTENT RESERVE IN or OUT commands\n" "attrib send the SCSI READ or WRITE ATTRIBUTE commands\n" "opcodes send the SCSI REPORT SUPPORTED OPCODES command\n" "zone manage Zoned Block (Shingled) devices\n" "epc send ATA Extended Power Conditions commands\n" "timestamp report or set the device's timestamp\n" "devtype report the type of device\n" "depop manage drive storage elements\n" "mmcsdcmd send the given MMC command, needs -c and -a as well\n" "help this message\n" "Device Identifiers:\n" "bus:target specify the bus and target, lun defaults to 0\n" "bus:target:lun specify the bus, target and lun\n" "deviceUNIT specify the device name, like \"da4\" or \"cd2\"\n" "Generic arguments:\n" "-v be verbose, print out sense information\n" "-t timeout command timeout in seconds, overrides default timeout\n" "-n dev_name specify device name, e.g. \"da\", \"cd\"\n" "-u unit specify unit number, e.g. \"0\", \"5\"\n" "-E have the kernel attempt to perform SCSI error recovery\n" "-C count specify the SCSI command retry count (needs -E to work)\n" "-Q task_attr specify ordered, simple or head tag type for SCSI cmds\n" "modepage arguments:\n" "-l list all available mode pages\n" "-m page specify the mode page to view or edit\n" "-e edit the specified mode page\n" "-b force view to binary mode\n" "-d disable block descriptors for mode sense\n" "-P pgctl page control field 0-3\n" "defects arguments:\n" "-f format specify defect list format (block, bfi or phys)\n" "-G get the grown defect list\n" "-P get the permanent defect list\n" "sense arguments:\n" "-D request descriptor sense data\n" "-x do a hexdump of the sense data\n" "inquiry arguments:\n" "-D get the standard inquiry data\n" "-S get the serial number\n" "-R get the transfer rate, etc.\n" "reportluns arguments:\n" "-c only report a count of available LUNs\n" "-l only print out luns, and not a count\n" "-r specify \"default\", \"wellknown\" or \"all\"\n" "readcap arguments\n" "-b only report the blocksize\n" "-h human readable device size, base 2\n" "-H human readable device size, base 10\n" "-N print the number of blocks instead of last block\n" "-q quiet, print numbers only\n" "-s only report the last block/device size\n" "cmd arguments:\n" "-c cdb [args] specify the SCSI CDB\n" "-i len fmt specify input data and input data format\n" "-o len fmt [args] specify output data and output data fmt\n" "smpcmd arguments:\n" "-r len fmt [args] specify the SMP command to be sent\n" "-R len fmt [args] specify SMP response format\n" "smprg arguments:\n" "-l specify the long response format\n" "smppc arguments:\n" "-p phy specify the PHY to operate on\n" "-l specify the long request/response format\n" "-o operation specify the phy control operation\n" "-d name set the attached device name\n" "-m rate set the minimum physical link rate\n" "-M rate set the maximum physical link rate\n" "-T pp_timeout set the partial pathway timeout value\n" "-a enable|disable enable or disable SATA slumber\n" "-A enable|disable enable or disable SATA partial phy power\n" "-s enable|disable enable or disable SAS slumber\n" "-S enable|disable enable or disable SAS partial phy power\n" "smpphylist arguments:\n" "-l specify the long response format\n" "-q only print phys with attached devices\n" "smpmaninfo arguments:\n" "-l specify the long response format\n" "debug arguments:\n" "-I CAM_DEBUG_INFO -- scsi commands, errors, data\n" "-T CAM_DEBUG_TRACE -- routine flow tracking\n" "-S CAM_DEBUG_SUBTRACE -- internal routine command flow\n" "-c CAM_DEBUG_CDB -- print out SCSI CDBs only\n" "tags arguments:\n" "-N tags specify the number of tags to use for this device\n" "-q be quiet, don't report the number of tags\n" "-v report a number of tag-related parameters\n" "negotiate arguments:\n" "-a send a test unit ready after negotiation\n" "-c report/set current negotiation settings\n" "-D \"enable\" or \"disable\" disconnection\n" "-M mode set ATA mode\n" "-O offset set command delay offset\n" "-q be quiet, don't report anything\n" "-R syncrate synchronization rate in MHz\n" "-T \"enable\" or \"disable\" tagged queueing\n" "-U report/set user negotiation settings\n" "-W bus_width set the bus width in bits (8, 16 or 32)\n" "-v also print a Path Inquiry CCB for the controller\n" "format arguments:\n" "-q be quiet, don't print status messages\n" "-r run in report only mode\n" "-w don't send immediate format command\n" "-y don't ask any questions\n" "sanitize arguments:\n" "-a operation operation mode: overwrite, block, crypto or exitfailure\n" "-c passes overwrite passes to perform (1 to 31)\n" "-I invert overwrite pattern after each pass\n" "-P pattern path to overwrite pattern file\n" "-q be quiet, don't print status messages\n" "-r run in report only mode\n" "-U run operation in unrestricted completion exit mode\n" "-w don't send immediate sanitize command\n" "-y don't ask any questions\n" "idle/standby arguments:\n" "-t number of seconds before respective state.\n" "fwdownload arguments:\n" "-f fw_image path to firmware image file\n" "-q don't print informational messages, only errors\n" "-s run in simulation mode\n" "-v print info for every firmware segment sent to device\n" "-y don't ask any questions\n" "security arguments:\n" "-d pwd disable security using the given password for the selected\n" " user\n" "-e pwd erase the device using the given pwd for the selected user\n" "-f freeze the security configuration of the specified device\n" "-h pwd enhanced erase the device using the given pwd for the\n" " selected user\n" "-k pwd unlock the device using the given pwd for the selected\n" " user\n" "-l specifies which security level to set: high or maximum\n" "-q be quiet, do not print any status messages\n" "-s pwd password the device (enable security) using the given\n" " pwd for the selected user\n" "-T timeout overrides the timeout (seconds) used for erase operation\n" "-U specifies which user to set: user or master\n" "-y don't ask any questions\n" "hpa arguments:\n" "-f freeze the HPA configuration of the device\n" "-l lock the HPA configuration of the device\n" "-P make the HPA max sectors persist\n" "-p pwd Set the HPA configuration password required for unlock\n" " calls\n" "-q be quiet, do not print any status messages\n" "-s sectors configures the maximum user accessible sectors of the\n" " device\n" "-U pwd unlock the HPA configuration of the device\n" "-y don't ask any questions\n" "ama arguments:\n" "-f freeze the AMA configuration of the device\n" "-q be quiet, do not print any status messages\n" "-s sectors configures the maximum user accessible sectors of the\n" " device\n" "persist arguments:\n" "-i action specify read_keys, read_reservation, report_cap, or\n" " read_full_status\n" "-o action specify register, register_ignore, reserve, release,\n" " clear, preempt, preempt_abort, register_move, replace_lost\n" "-a set the All Target Ports (ALL_TG_PT) bit\n" "-I tid specify a Transport ID, e.g.: sas,0x1234567812345678\n" "-k key specify the Reservation Key\n" "-K sa_key specify the Service Action Reservation Key\n" "-p set the Activate Persist Through Power Loss bit\n" "-R rtp specify the Relative Target Port\n" "-s scope specify the scope: lun, extent, element or a number\n" "-S specify Transport ID for register, requires -I\n" "-T res_type specify the reservation type: read_shared, wr_ex, rd_ex,\n" " ex_ac, wr_ex_ro, ex_ac_ro, wr_ex_ar, ex_ac_ar\n" "-U unregister the current initiator for register_move\n" "attrib arguments:\n" "-r action specify attr_values, attr_list, lv_list, part_list, or\n" " supp_attr\n" "-w attr specify an attribute to write, one -w argument per attr\n" "-a attr_num only display this attribute number\n" "-c get cached attributes\n" "-e elem_addr request attributes for the given element in a changer\n" "-F form1,form2 output format, comma separated list: text_esc, text_raw,\n" " nonascii_esc, nonascii_trim, nonascii_raw, field_all,\n" " field_none, field_desc, field_num, field_size, field_rw\n" "-p partition request attributes for the given partition\n" "-s start_attr request attributes starting at the given number\n" "-T elem_type specify the element type (used with -e)\n" "-V logical_vol specify the logical volume ID\n" "opcodes arguments:\n" "-o opcode specify the individual opcode to list\n" "-s service_action specify the service action for the opcode\n" "-N do not return SCSI error for unsupported SA\n" "-T request nominal and recommended timeout values\n" "zone arguments:\n" "-c cmd required: rz, open, close, finish, or rwp\n" "-a apply the action to all zones\n" "-l LBA specify the zone starting LBA\n" "-o rep_opts report zones options: all, empty, imp_open, exp_open,\n" " closed, full, ro, offline, reset, nonseq, nonwp\n" "-P print_opt report zones printing: normal, summary, script\n" "epc arguments:\n" "-c cmd required: restore, goto, timer, state, enable, disable,\n" " source, status, list\n" "-d disable power mode (timer, state)\n" "-D delayed entry (goto)\n" "-e enable power mode (timer, state)\n" "-H hold power mode (goto)\n" "-p power_cond Idle_a, Idle_b, Idle_c, Standby_y, Standby_z (timer,\n" " state, goto)\n" "-P only display power mode (status)\n" "-r rst_src restore settings from: default, saved (restore)\n" "-s save mode (timer, state, restore)\n" "-S power_src set power source: battery, nonbattery (source)\n" "-T timer set timer, seconds, .1 sec resolution (timer)\n" "timestamp arguments:\n" "-r report the timestamp of the device\n" "-f format report the timestamp of the device with the given\n" " strftime(3) format string\n" "-m report the timestamp of the device as milliseconds since\n" " January 1st, 1970\n" "-U report the time with UTC instead of the local time zone\n" "-s set the timestamp of the device\n" "-f format the format of the time string passed into strptime(3)\n" "-T time the time value passed into strptime(3)\n" "-U set the timestamp of the device to UTC time\n" "depop arguments:\n" "-d remove an element from service\n" "-l list status of all elements of drive\n" "-r restore all elements to service\n" "-e elm element to remove\n" "-c capacity requested new capacity\n" "mmcsdcmd arguments:\n" "-c mmc_cmd MMC command to send to the card\n" "-a mmc_arg Argument for the MMC command\n" "-f mmc_flag Flags to set for the MMC command\n" "-l data_len Expect data_len bytes of data in reply and display them\n" "-W Fill the data buffer before invoking the MMC command\n" "-b data_byte One byte of data to fill the data buffer with\n" "-F frequency Operating frequency to set on the controller\n" "-4 Set bus width to 4 bit\n" "-1 Set bus width to 8 bit\n" "-S high | std Set high-speed or standard timing\n" "-I Display various card and host controller information\n" ); } int main(int argc, char **argv) { int c; char *device = NULL; int unit = 0; struct cam_device *cam_dev = NULL; int timeout = 0, retry_count = 1; camcontrol_optret optreturn; char *tstr; const char *mainopt = "C:En:Q:t:u:v"; const char *subopt = NULL; char combinedopt[256]; int error = 0, optstart = 2; int task_attr = MSG_SIMPLE_Q_TAG; int devopen = 1; cam_cmd cmdlist; path_id_t bus; target_id_t target; lun_id_t lun; cmdlist = CAM_CMD_NONE; arglist = CAM_ARG_NONE; if (argc < 2) { usage(0); exit(1); } /* * Get the base option. */ optreturn = getoption(option_table,argv[1], &cmdlist, &arglist,&subopt); if (optreturn == CC_OR_AMBIGUOUS) { warnx("ambiguous option %s", argv[1]); usage(0); exit(1); } else if (optreturn == CC_OR_NOT_FOUND) { warnx("option %s not found", argv[1]); usage(0); exit(1); } /* * Ahh, getopt(3) is a pain. * * This is a gross hack. There really aren't many other good * options (excuse the pun) for parsing options in a situation like * this. getopt is kinda braindead, so you end up having to run * through the options twice, and give each invocation of getopt * the option string for the other invocation. * * You would think that you could just have two groups of options. * The first group would get parsed by the first invocation of * getopt, and the second group would get parsed by the second * invocation of getopt. It doesn't quite work out that way. When * the first invocation of getopt finishes, it leaves optind pointing * to the argument _after_ the first argument in the second group. * So when the second invocation of getopt comes around, it doesn't * recognize the first argument it gets and then bails out. * * A nice alternative would be to have a flag for getopt that says * "just keep parsing arguments even when you encounter an unknown * argument", but there isn't one. So there's no real clean way to * easily parse two sets of arguments without having one invocation * of getopt know about the other. * * Without this hack, the first invocation of getopt would work as * long as the generic arguments are first, but the second invocation * (in the subfunction) would fail in one of two ways. In the case * where you don't set optreset, it would fail because optind may be * pointing to the argument after the one it should be pointing at. * In the case where you do set optreset, and reset optind, it would * fail because getopt would run into the first set of options, which * it doesn't understand. * * All of this would "sort of" work if you could somehow figure out * whether optind had been incremented one option too far. The * mechanics of that, however, are more daunting than just giving * both invocations all of the expect options for either invocation. * * Needless to say, I wouldn't mind if someone invented a better * (non-GPL!) command line parsing interface than getopt. I * wouldn't mind if someone added more knobs to getopt to make it * work better. Who knows, I may talk myself into doing it someday, * if the standards weenies let me. As it is, it just leads to * hackery like this and causes people to avoid it in some cases. * * KDM, September 8th, 1998 */ if (subopt != NULL) sprintf(combinedopt, "%s%s", mainopt, subopt); else sprintf(combinedopt, "%s", mainopt); /* * For these options we do not parse optional device arguments and * we do not open a passthrough device. */ if ((cmdlist == CAM_CMD_RESCAN) || (cmdlist == CAM_CMD_RESET) || (cmdlist == CAM_CMD_DEVTREE) || (cmdlist == CAM_CMD_USAGE) || (cmdlist == CAM_CMD_DEBUG)) devopen = 0; if ((devopen == 1) && (argc > 2 && argv[2][0] != '-')) { char name[30]; int rv; if (isdigit(argv[2][0])) { /* device specified as bus:target[:lun] */ rv = parse_btl(argv[2], &bus, &target, &lun, &arglist); if (rv < 2) errx(1, "numeric device specification must " "be either bus:target, or " "bus:target:lun"); /* default to 0 if lun was not specified */ if ((arglist & CAM_ARG_LUN) == 0) { lun = 0; arglist |= CAM_ARG_LUN; } optstart++; } else { if (cam_get_device(argv[2], name, sizeof name, &unit) == -1) errx(1, "%s", cam_errbuf); device = strdup(name); arglist |= CAM_ARG_DEVICE | CAM_ARG_UNIT; optstart++; } } /* * Start getopt processing at argv[2/3], since we've already * accepted argv[1..2] as the command name, and as a possible * device name. */ optind = optstart; /* * Now we run through the argument list looking for generic * options, and ignoring options that possibly belong to * subfunctions. */ while ((c = getopt(argc, argv, combinedopt))!= -1){ switch(c) { case 'C': retry_count = strtol(optarg, NULL, 0); if (retry_count < 0) errx(1, "retry count %d is < 0", retry_count); arglist |= CAM_ARG_RETRIES; break; case 'E': arglist |= CAM_ARG_ERR_RECOVER; break; case 'n': arglist |= CAM_ARG_DEVICE; tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; device = (char *)strdup(tstr); break; case 'Q': { char *endptr; int table_entry = 0; tstr = optarg; while (isspace(*tstr) && (*tstr != '\0')) tstr++; if (isdigit(*tstr)) { task_attr = strtol(tstr, &endptr, 0); if (*endptr != '\0') { errx(1, "Invalid queue option " "%s", tstr); } } else { size_t table_size; scsi_nv_status status; table_size = sizeof(task_attrs) / sizeof(task_attrs[0]); status = scsi_get_nv(task_attrs, table_size, tstr, &table_entry, SCSI_NV_FLAG_IG_CASE); if (status == SCSI_NV_FOUND) task_attr = task_attrs[ table_entry].value; else { errx(1, "%s option %s", (status == SCSI_NV_AMBIGUOUS)? "ambiguous" : "invalid", tstr); } } break; } case 't': timeout = strtol(optarg, NULL, 0); if (timeout < 0) errx(1, "invalid timeout %d", timeout); /* Convert the timeout from seconds to ms */ timeout *= 1000; arglist |= CAM_ARG_TIMEOUT; break; case 'u': arglist |= CAM_ARG_UNIT; unit = strtol(optarg, NULL, 0); break; case 'v': arglist |= CAM_ARG_VERBOSE; break; default: break; } } /* * For most commands we'll want to open the passthrough device * associated with the specified device. In the case of the rescan * commands, we don't use a passthrough device at all, just the * transport layer device. */ if (devopen == 1) { if (((arglist & (CAM_ARG_BUS|CAM_ARG_TARGET)) == 0) && (((arglist & CAM_ARG_DEVICE) == 0) || ((arglist & CAM_ARG_UNIT) == 0))) { errx(1, "subcommand \"%s\" requires a valid device " "identifier", argv[1]); } if ((cam_dev = ((arglist & (CAM_ARG_BUS | CAM_ARG_TARGET))? cam_open_btl(bus, target, lun, O_RDWR, NULL) : cam_open_spec_device(device,unit,O_RDWR,NULL))) == NULL) errx(1,"%s", cam_errbuf); } /* * Reset optind to 2, and reset getopt, so these routines can parse * the arguments again. */ optind = optstart; optreset = 1; switch(cmdlist) { case CAM_CMD_DEVLIST: error = getdevlist(cam_dev); break; case CAM_CMD_HPA: error = atahpa(cam_dev, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_AMA: error = ataama(cam_dev, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_DEVTREE: error = getdevtree(argc, argv, combinedopt); break; case CAM_CMD_DEVTYPE: error = getdevtype(cam_dev); break; case CAM_CMD_REQSENSE: error = requestsense(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_TUR: error = testunitready(cam_dev, task_attr, retry_count, timeout, 0); break; case CAM_CMD_INQUIRY: error = scsidoinquiry(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_IDENTIFY: error = identify(cam_dev, retry_count, timeout); break; case CAM_CMD_STARTSTOP: error = scsistart(cam_dev, arglist & CAM_ARG_START_UNIT, arglist & CAM_ARG_EJECT, task_attr, retry_count, timeout); break; case CAM_CMD_RESCAN: error = dorescan_or_reset(argc, argv, 1); break; case CAM_CMD_RESET: error = dorescan_or_reset(argc, argv, 0); break; case CAM_CMD_READ_DEFECTS: error = readdefects(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_MODE_PAGE: modepage(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_SCSI_CMD: error = scsicmd(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_MMCSD_CMD: error = mmcsdcmd(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_CMD: error = smpcmd(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_RG: error = smpreportgeneral(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_PC: error = smpphycontrol(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_PHYLIST: error = smpphylist(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SMP_MANINFO: error = smpmaninfo(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_DEBUG: error = camdebug(argc, argv, combinedopt); break; case CAM_CMD_TAG: error = tagcontrol(cam_dev, argc, argv, combinedopt); break; case CAM_CMD_RATE: error = ratecontrol(cam_dev, task_attr, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_FORMAT: error = scsiformat(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_REPORTLUNS: error = scsireportluns(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_READCAP: error = scsireadcapacity(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_IDLE: case CAM_CMD_STANDBY: case CAM_CMD_SLEEP: case CAM_CMD_POWER_MODE: error = atapm(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_APM: case CAM_CMD_AAM: error = ataaxm(cam_dev, argc, argv, combinedopt, retry_count, timeout); break; case CAM_CMD_SECURITY: error = atasecurity(cam_dev, retry_count, timeout, argc, argv, combinedopt); break; case CAM_CMD_DOWNLOAD_FW: error = fwdownload(cam_dev, argc, argv, combinedopt, arglist & CAM_ARG_VERBOSE, task_attr, retry_count, timeout); break; case CAM_CMD_SANITIZE: error = sanitize(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout); break; case CAM_CMD_PERSIST: error = scsipersist(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE, arglist & CAM_ARG_ERR_RECOVER); break; case CAM_CMD_ATTRIB: error = scsiattrib(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE, arglist & CAM_ARG_ERR_RECOVER); break; case CAM_CMD_OPCODES: error = scsiopcodes(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_REPROBE: error = reprobe(cam_dev); break; case CAM_CMD_ZONE: error = zone(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_EPC: error = epc(cam_dev, argc, argv, combinedopt, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_TIMESTAMP: error = timestamp(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_DEPOP: error = depop(cam_dev, argc, argv, combinedopt, task_attr, retry_count, timeout, arglist & CAM_ARG_VERBOSE); break; case CAM_CMD_USAGE: usage(1); break; default: usage(0); error = 1; break; } if (cam_dev != NULL) cam_close_device(cam_dev); exit(error); }