/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright 1999, 2000 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * from: FreeBSD: src/libexec/rtld-elf/sparc64/lockdflt.c,v 1.3 2002/10/09 */ /* * Thread locking implementation for the dynamic linker. * * We use the "simple, non-scalable reader-preference lock" from: * * J. M. Mellor-Crummey and M. L. Scott. "Scalable Reader-Writer * Synchronization for Shared-Memory Multiprocessors." 3rd ACM Symp. on * Principles and Practice of Parallel Programming, April 1991. * * In this algorithm the lock is a single word. Its low-order bit is * set when a writer holds the lock. The remaining high-order bits * contain a count of readers desiring the lock. The algorithm requires * atomic "compare_and_store" and "add" operations, which we take * from machine/atomic.h. */ #include #include #include #include #include #include "debug.h" #include "rtld.h" #include "rtld_machdep.h" #include "rtld_libc.h" void _rtld_thread_init(struct RtldLockInfo *) __exported; void _rtld_atfork_pre(int *) __exported; void _rtld_atfork_post(int *) __exported; static char def_dlerror_msg[512]; static int def_dlerror_seen_val = 1; static char * def_dlerror_loc(void) { return (def_dlerror_msg); } static int * def_dlerror_seen(void) { return (&def_dlerror_seen_val); } #define WAFLAG 0x1 /* A writer holds the lock */ #define RC_INCR 0x2 /* Adjusts count of readers desiring lock */ typedef struct Struct_Lock { volatile u_int lock; void *base; } Lock; static sigset_t fullsigmask, oldsigmask; static int thread_flag, wnested; static uint32_t fsigblock; static void * def_lock_create(void) { void *base; char *p; uintptr_t r; Lock *l; /* * Arrange for the lock to occupy its own cache line. First, we * optimistically allocate just a cache line, hoping that malloc * will give us a well-aligned block of memory. If that doesn't * work, we allocate a larger block and take a well-aligned cache * line from it. */ base = xmalloc(CACHE_LINE_SIZE); p = base; if ((uintptr_t)p % CACHE_LINE_SIZE != 0) { free(base); base = xmalloc(2 * CACHE_LINE_SIZE); p = base; if ((r = (uintptr_t)p % CACHE_LINE_SIZE) != 0) p += CACHE_LINE_SIZE - r; } l = (Lock *)p; l->base = base; l->lock = 0; return (l); } static void def_lock_destroy(void *lock) { Lock *l = lock; free(l->base); } static void sig_fastunblock(void) { uint32_t oldval; assert((fsigblock & ~SIGFASTBLOCK_FLAGS) >= SIGFASTBLOCK_INC); oldval = atomic_fetchadd_32(&fsigblock, -SIGFASTBLOCK_INC); if (oldval == (SIGFASTBLOCK_PEND | SIGFASTBLOCK_INC)) __sys_sigfastblock(SIGFASTBLOCK_UNBLOCK, NULL); } static bool def_lock_acquire_set(Lock *l, bool wlock) { if (wlock) { if (atomic_cmpset_acq_int(&l->lock, 0, WAFLAG)) return (true); } else { atomic_add_acq_int(&l->lock, RC_INCR); if ((l->lock & WAFLAG) == 0) return (true); atomic_add_int(&l->lock, -RC_INCR); } return (false); } static void def_lock_acquire(Lock *l, bool wlock) { sigset_t tmp_oldsigmask; if (ld_fast_sigblock) { for (;;) { atomic_add_32(&fsigblock, SIGFASTBLOCK_INC); if (def_lock_acquire_set(l, wlock)) break; sig_fastunblock(); } } else { for (;;) { sigprocmask(SIG_BLOCK, &fullsigmask, &tmp_oldsigmask); if (def_lock_acquire_set(l, wlock)) break; sigprocmask(SIG_SETMASK, &tmp_oldsigmask, NULL); } if (atomic_fetchadd_int(&wnested, 1) == 0) oldsigmask = tmp_oldsigmask; } } static void def_rlock_acquire(void *lock) { def_lock_acquire(lock, false); } static void def_wlock_acquire(void *lock) { def_lock_acquire(lock, true); } static void def_lock_release(void *lock) { Lock *l = lock; atomic_add_rel_int(&l->lock, -((l->lock & WAFLAG) == 0 ? RC_INCR : WAFLAG)); if (ld_fast_sigblock) sig_fastunblock(); else if (atomic_fetchadd_int(&wnested, -1) == 1) sigprocmask(SIG_SETMASK, &oldsigmask, NULL); } static int def_thread_set_flag(int mask) { int old_val = thread_flag; thread_flag |= mask; return (old_val); } static int def_thread_clr_flag(int mask) { int old_val = thread_flag; thread_flag &= ~mask; return (old_val); } /* * Public interface exposed to the rest of the dynamic linker. */ struct RtldLockInfo lockinfo; static struct RtldLockInfo deflockinfo; static __inline int thread_mask_set(int mask) { return (lockinfo.thread_set_flag(mask)); } static __inline void thread_mask_clear(int mask) { lockinfo.thread_clr_flag(mask); } #define RTLD_LOCK_CNT 3 static struct rtld_lock { void *handle; int mask; } rtld_locks[RTLD_LOCK_CNT]; rtld_lock_t rtld_bind_lock = &rtld_locks[0]; rtld_lock_t rtld_libc_lock = &rtld_locks[1]; rtld_lock_t rtld_phdr_lock = &rtld_locks[2]; void rlock_acquire(rtld_lock_t lock, RtldLockState *lockstate) { if (lockstate == NULL) return; if (thread_mask_set(lock->mask) & lock->mask) { dbg("rlock_acquire: recursed"); lockstate->lockstate = RTLD_LOCK_UNLOCKED; return; } lockinfo.rlock_acquire(lock->handle); lockstate->lockstate = RTLD_LOCK_RLOCKED; } void wlock_acquire(rtld_lock_t lock, RtldLockState *lockstate) { if (lockstate == NULL) return; if (thread_mask_set(lock->mask) & lock->mask) { dbg("wlock_acquire: recursed"); lockstate->lockstate = RTLD_LOCK_UNLOCKED; return; } lockinfo.wlock_acquire(lock->handle); lockstate->lockstate = RTLD_LOCK_WLOCKED; } void lock_release(rtld_lock_t lock, RtldLockState *lockstate) { if (lockstate == NULL) return; switch (lockstate->lockstate) { case RTLD_LOCK_UNLOCKED: break; case RTLD_LOCK_RLOCKED: case RTLD_LOCK_WLOCKED: thread_mask_clear(lock->mask); lockinfo.lock_release(lock->handle); break; default: assert(0); } } void lock_upgrade(rtld_lock_t lock, RtldLockState *lockstate) { if (lockstate == NULL) return; lock_release(lock, lockstate); wlock_acquire(lock, lockstate); } void lock_restart_for_upgrade(RtldLockState *lockstate) { if (lockstate == NULL) return; switch (lockstate->lockstate) { case RTLD_LOCK_UNLOCKED: case RTLD_LOCK_WLOCKED: break; case RTLD_LOCK_RLOCKED: siglongjmp(lockstate->env, 1); break; default: assert(0); } } void dlerror_dflt_init(void) { lockinfo.dlerror_loc = def_dlerror_loc; lockinfo.dlerror_loc_sz = sizeof(def_dlerror_msg); lockinfo.dlerror_seen = def_dlerror_seen; } void lockdflt_init(void) { int i; deflockinfo.rtli_version = RTLI_VERSION; deflockinfo.lock_create = def_lock_create; deflockinfo.lock_destroy = def_lock_destroy; deflockinfo.rlock_acquire = def_rlock_acquire; deflockinfo.wlock_acquire = def_wlock_acquire; deflockinfo.lock_release = def_lock_release; deflockinfo.thread_set_flag = def_thread_set_flag; deflockinfo.thread_clr_flag = def_thread_clr_flag; deflockinfo.at_fork = NULL; deflockinfo.dlerror_loc = def_dlerror_loc; deflockinfo.dlerror_loc_sz = sizeof(def_dlerror_msg); deflockinfo.dlerror_seen = def_dlerror_seen; for (i = 0; i < RTLD_LOCK_CNT; i++) { rtld_locks[i].mask = (1 << i); rtld_locks[i].handle = NULL; } memcpy(&lockinfo, &deflockinfo, sizeof(lockinfo)); _rtld_thread_init(NULL); if (ld_fast_sigblock) { __sys_sigfastblock(SIGFASTBLOCK_SETPTR, &fsigblock); } else { /* * Construct a mask to block all signals. Note that * blocked traps mean that the process is terminated * if trap occurs while we are in locked section, with * the default settings for kern.forcesigexit. */ sigfillset(&fullsigmask); } } /* * Callback function to allow threads implementation to * register their own locking primitives if the default * one is not suitable. * The current context should be the only context * executing at the invocation time. */ void _rtld_thread_init(struct RtldLockInfo *pli) { const Obj_Entry *obj; SymLook req; void *locks[RTLD_LOCK_CNT]; int flags, i, res; if (pli == NULL) { lockinfo.rtli_version = RTLI_VERSION; } else { lockinfo.rtli_version = RTLI_VERSION_ONE; obj = obj_from_addr(pli->lock_create); if (obj != NULL) { symlook_init(&req, "_pli_rtli_version"); res = symlook_obj(&req, obj); if (res == 0) lockinfo.rtli_version = pli->rtli_version; } } /* disable all locking while this function is running */ flags = thread_mask_set(~0); if (pli == NULL) pli = &deflockinfo; else if (ld_fast_sigblock) { fsigblock = 0; __sys_sigfastblock(SIGFASTBLOCK_UNSETPTR, NULL); } for (i = 0; i < RTLD_LOCK_CNT; i++) if ((locks[i] = pli->lock_create()) == NULL) break; if (i < RTLD_LOCK_CNT) { while (--i >= 0) pli->lock_destroy(locks[i]); abort(); } for (i = 0; i < RTLD_LOCK_CNT; i++) { if (rtld_locks[i].handle == NULL) continue; if (flags & rtld_locks[i].mask) lockinfo.lock_release(rtld_locks[i].handle); lockinfo.lock_destroy(rtld_locks[i].handle); } for (i = 0; i < RTLD_LOCK_CNT; i++) { rtld_locks[i].handle = locks[i]; if (flags & rtld_locks[i].mask) pli->wlock_acquire(rtld_locks[i].handle); } lockinfo.lock_create = pli->lock_create; lockinfo.lock_destroy = pli->lock_destroy; lockinfo.rlock_acquire = pli->rlock_acquire; lockinfo.wlock_acquire = pli->wlock_acquire; lockinfo.lock_release = pli->lock_release; lockinfo.thread_set_flag = pli->thread_set_flag; lockinfo.thread_clr_flag = pli->thread_clr_flag; lockinfo.at_fork = pli->at_fork; if (lockinfo.rtli_version > RTLI_VERSION_ONE && pli != NULL) { strlcpy(pli->dlerror_loc(), lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz); lockinfo.dlerror_loc = pli->dlerror_loc; lockinfo.dlerror_loc_sz = pli->dlerror_loc_sz; lockinfo.dlerror_seen = pli->dlerror_seen; } /* restore thread locking state, this time with new locks */ thread_mask_clear(~0); thread_mask_set(flags); dbg("_rtld_thread_init: done"); } void _rtld_atfork_pre(int *locks) { RtldLockState ls[2]; if (locks == NULL) return; bzero(ls, sizeof(ls)); /* * Warning: this did not worked well with the rtld compat * locks above, when the thread signal mask was corrupted (set * to all signals blocked) if two locks were taken * simultaneously in the write mode. The caller of the * _rtld_atfork_pre() must provide the working implementation * of the locks anyway, and libthr locks are fine. */ if (ld_get_env_var(LD_NO_DL_ITERATE_PHDR_AFTER_FORK) == NULL) wlock_acquire(rtld_phdr_lock, &ls[0]); wlock_acquire(rtld_bind_lock, &ls[1]); /* XXXKIB: I am really sorry for this. */ locks[0] = ls[1].lockstate; locks[2] = ls[0].lockstate; } void _rtld_atfork_post(int *locks) { RtldLockState ls[2]; if (locks == NULL) return; bzero(ls, sizeof(ls)); ls[0].lockstate = locks[2]; ls[1].lockstate = locks[0]; lock_release(rtld_bind_lock, &ls[1]); if (ld_get_env_var(LD_NO_DL_ITERATE_PHDR_AFTER_FORK) == NULL) lock_release(rtld_phdr_lock, &ls[0]); }