/*- * Copyright (c) 2017, 2023 Steven G. Kargl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * tanpi(x) computes tan(pi*x) without multiplication by pi (almost). First, * note that tanpi(-x) = -tanpi(x), so the algorithm considers only |x| and * includes reflection symmetry by considering the sign of x on output. The * method used depends on the magnitude of x. * * 1. For small |x|, tanpi(x) = pi * x where a sloppy threshold is used. The * threshold is |x| < 0x1pN with N = -(P/2+M). P is the precision of the * floating-point type and M = 2 to 4. To achieve high accuracy, pi is * decomposed into high and low parts with the high part containing a * number of trailing zero bits. x is also split into high and low parts. * * 2. For |x| < 1, argument reduction is not required and tanpi(x) is * computed by a direct call to a kernel, which uses the kernel for * tan(x). See below. * * 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where * |x| = j0 + r with j0 an integer and the remainder r satisfies * 0 <= r < 1. With the given domain, a simplified inline floor(x) * is used. Also, note the following identity * * tan(pi*j0) + tan(pi*r) * tanpi(x) = tan(pi*(j0+r)) = ---------------------------- = tanpi(r) * 1 - tan(pi*j0) * tan(pi*r) * * So, after argument reduction, the kernel is again invoked. * * 4. For |x| >= 0x1p(P-1), |x| is integral and tanpi(x) = copysign(0,x). * * 5. Special cases: * * tanpi(+-0) = +-0 * tanpi(n) = +0 for positive even and negative odd integer n. * tanpi(n) = -0 for positive odd and negative even integer n. * tanpi(+-n+1/4) = +-1, for positive integers n. * tanpi(n+1/2) = +inf and raises the FE_DIVBYZERO exception for * even integers n. * tanpi(n+1/2) = -inf and raises the FE_DIVBYZERO exception for * odd integers n. * tanpi(+-inf) = NaN and raises the FE_INVALID exception. * tanpi(nan) = NaN and raises the FE_INVALID exception. */ #include #include "math.h" #include "math_private.h" static const double pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */ pi_lo = -2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */ /* * The kernel for tanpi(x) multiplies x by an 80-bit approximation of * pi, where the hi and lo parts are used with with kernel for tan(x). */ static inline double __kernel_tanpi(double x) { double_t hi, lo, t; if (x < 0.25) { hi = (float)x; lo = x - hi; lo = lo * (pi_lo + pi_hi) + hi * pi_lo; hi *= pi_hi; _2sumF(hi, lo); t = __kernel_tan(hi, lo, 1); } else if (x > 0.25) { x = 0.5 - x; hi = (float)x; lo = x - hi; lo = lo * (pi_lo + pi_hi) + hi * pi_lo; hi *= pi_hi; _2sumF(hi, lo); t = - __kernel_tan(hi, lo, -1); } else t = 1; return (t); } volatile static const double vzero = 0; double tanpi(double x) { double ax, hi, lo, odd, t; uint32_t hx, ix, j0, lx; EXTRACT_WORDS(hx, lx, x); ix = hx & 0x7fffffff; INSERT_WORDS(ax, ix, lx); if (ix < 0x3ff00000) { /* |x| < 1 */ if (ix < 0x3fe00000) { /* |x| < 0.5 */ if (ix < 0x3e200000) { /* |x| < 0x1p-29 */ if (x == 0) return (x); /* * To avoid issues with subnormal values, * scale the computation and rescale on * return. */ INSERT_WORDS(hi, hx, 0); hi *= 0x1p53; lo = x * 0x1p53 - hi; t = (pi_lo + pi_hi) * lo + pi_lo * hi + pi_hi * hi; return (t * 0x1p-53); } t = __kernel_tanpi(ax); } else if (ax == 0.5) t = 1 / vzero; else t = - __kernel_tanpi(1 - ax); return ((hx & 0x80000000) ? -t : t); } if (ix < 0x43300000) { /* 1 <= |x| < 0x1p52 */ FFLOOR(x, j0, ix, lx); /* Integer part of ax. */ odd = (uint64_t)x & 1 ? -1 : 1; ax -= x; EXTRACT_WORDS(ix, lx, ax); if (ix < 0x3fe00000) /* |x| < 0.5 */ t = ix == 0 ? copysign(0, odd) : __kernel_tanpi(ax); else if (ax == 0.5) t = odd / vzero; else t = - __kernel_tanpi(1 - ax); return ((hx & 0x80000000) ? -t : t); } /* x = +-inf or nan. */ if (ix >= 0x7ff00000) return (vzero / vzero); /* * For 0x1p52 <= |x| < 0x1p53 need to determine if x is an even * or odd integer to set t = +0 or -0. * For |x| >= 0x1p54, it is always an even integer, so t = 0. */ t = ix >= 0x43400000 ? 0 : (copysign(0, (lx & 1) ? -1 : 1)); return ((hx & 0x80000000) ? -t : t); } #if LDBL_MANT_DIG == 53 __weak_reference(tanpi, tanpil); #endif