/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007 Steven G. Kargl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "fpmath.h" #include "math.h" /* Return (x + ulp) for normal positive x. Assumes no overflow. */ static inline long double inc(long double x) { union IEEEl2bits u; u.e = x; if (++u.bits.manl == 0) { if (++u.bits.manh == 0) { u.bits.exp++; u.bits.manh |= LDBL_NBIT; } } return (u.e); } /* Return (x - ulp) for normal positive x. Assumes no underflow. */ static inline long double dec(long double x) { union IEEEl2bits u; u.e = x; if (u.bits.manl-- == 0) { if (u.bits.manh-- == LDBL_NBIT) { u.bits.exp--; u.bits.manh |= LDBL_NBIT; } } return (u.e); } #pragma STDC FENV_ACCESS ON /* * This is slow, but simple and portable. You should use hardware sqrt * if possible. */ long double sqrtl(long double x) { union IEEEl2bits u; int k, r; long double lo, xn; fenv_t env; u.e = x; /* If x = NaN, then sqrt(x) = NaN. */ /* If x = Inf, then sqrt(x) = Inf. */ /* If x = -Inf, then sqrt(x) = NaN. */ if (u.bits.exp == LDBL_MAX_EXP * 2 - 1) return (x * x + x); /* If x = +-0, then sqrt(x) = +-0. */ if ((u.bits.manh | u.bits.manl | u.bits.exp) == 0) return (x); /* If x < 0, then raise invalid and return NaN */ if (u.bits.sign) return ((x - x) / (x - x)); feholdexcept(&env); if (u.bits.exp == 0) { /* Adjust subnormal numbers. */ u.e *= 0x1.0p514; k = -514; } else { k = 0; } /* * u.e is a normal number, so break it into u.e = e*2^n where * u.e = (2*e)*2^2k for odd n and u.e = (4*e)*2^2k for even n. */ if ((u.bits.exp - 0x3ffe) & 1) { /* n is odd. */ k += u.bits.exp - 0x3fff; /* 2k = n - 1. */ u.bits.exp = 0x3fff; /* u.e in [1,2). */ } else { k += u.bits.exp - 0x4000; /* 2k = n - 2. */ u.bits.exp = 0x4000; /* u.e in [2,4). */ } /* * Newton's iteration. * Split u.e into a high and low part to achieve additional precision. */ xn = sqrt(u.e); /* 53-bit estimate of sqrtl(x). */ #if LDBL_MANT_DIG > 100 xn = (xn + (u.e / xn)) * 0.5; /* 106-bit estimate. */ #endif lo = u.e; u.bits.manl = 0; /* Zero out lower bits. */ lo = (lo - u.e) / xn; /* Low bits divided by xn. */ xn = xn + (u.e / xn); /* High portion of estimate. */ u.e = xn + lo; /* Combine everything. */ u.bits.exp += (k >> 1) - 1; feclearexcept(FE_INEXACT); r = fegetround(); fesetround(FE_TOWARDZERO); /* Set to round-toward-zero. */ xn = x / u.e; /* Chopped quotient (inexact?). */ if (!fetestexcept(FE_INEXACT)) { /* Quotient is exact. */ if (xn == u.e) { fesetenv(&env); return (u.e); } /* Round correctly for inputs like x = y**2 - ulp. */ xn = dec(xn); /* xn = xn - ulp. */ } if (r == FE_TONEAREST) { xn = inc(xn); /* xn = xn + ulp. */ } else if (r == FE_UPWARD) { u.e = inc(u.e); /* u.e = u.e + ulp. */ xn = inc(xn); /* xn = xn + ulp. */ } u.e = u.e + xn; /* Chopped sum. */ feupdateenv(&env); /* Restore env and raise inexact */ u.bits.exp--; return (u.e); }