/* e_lgammaf_r.c -- float version of e_lgamma_r.c. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. * Conversion to float fixed By Steven G. Kargl. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include "math.h" #include "math_private.h" static const volatile float vzero = 0; static const float zero= 0, half= 0.5, one = 1, pi = 3.1415927410e+00, /* 0x40490fdb */ /* * Domain y in [0x1p-27, 0.27], range ~[-3.4599e-10, 3.4590e-10]: * |(lgamma(2 - y) + 0.5 * y) / y - a(y)| < 2**-31.4 */ a0 = 7.72156641e-02, /* 0x3d9e233f */ a1 = 3.22467119e-01, /* 0x3ea51a69 */ a2 = 6.73484802e-02, /* 0x3d89ee00 */ a3 = 2.06395667e-02, /* 0x3ca9144f */ a4 = 6.98275631e-03, /* 0x3be4cf9b */ a5 = 4.11768444e-03, /* 0x3b86eda4 */ /* * Domain x in [tc-0.24, tc+0.28], range ~[-5.6577e-10, 5.5677e-10]: * |(lgamma(x) - tf) - t(x - tc)| < 2**-30.8. */ tc = 1.46163213e+00, /* 0x3fbb16c3 */ tf = -1.21486291e-01, /* 0xbdf8cdce */ t0 = -2.94064460e-11, /* 0xae0154b7 */ t1 = -2.35939837e-08, /* 0xb2caabb8 */ t2 = 4.83836412e-01, /* 0x3ef7b968 */ t3 = -1.47586212e-01, /* 0xbe1720d7 */ t4 = 6.46013096e-02, /* 0x3d844db1 */ t5 = -3.28450352e-02, /* 0xbd068884 */ t6 = 1.86483748e-02, /* 0x3c98c47a */ t7 = -9.89206228e-03, /* 0xbc221251 */ /* * Domain y in [-0.1, 0.232], range ~[-8.4931e-10, 8.7794e-10]: * |(lgamma(1 + y) + 0.5 * y) / y - u(y) / v(y)| < 2**-31.2 */ u0 = -7.72156641e-02, /* 0xbd9e233f */ u1 = 7.36789703e-01, /* 0x3f3c9e40 */ u2 = 4.95649040e-01, /* 0x3efdc5b6 */ v1 = 1.10958421e+00, /* 0x3f8e06db */ v2 = 2.10598111e-01, /* 0x3e57a708 */ v3 = -1.02995494e-02, /* 0xbc28bf71 */ /* * Domain x in (2, 3], range ~[-5.5189e-11, 5.2317e-11]: * |(lgamma(y+2) - 0.5 * y) / y - s(y)/r(y)| < 2**-35.0 * with y = x - 2. */ s0 = -7.72156641e-02, /* 0xbd9e233f */ s1 = 2.69987404e-01, /* 0x3e8a3bca */ s2 = 1.42851010e-01, /* 0x3e124789 */ s3 = 1.19389519e-02, /* 0x3c439b98 */ r1 = 6.79650068e-01, /* 0x3f2dfd8c */ r2 = 1.16058730e-01, /* 0x3dedb033 */ r3 = 3.75673687e-03, /* 0x3b763396 */ /* * Domain z in [8, 0x1p24], range ~[-1.2640e-09, 1.2640e-09]: * |lgamma(x) - (x - 0.5) * (log(x) - 1) - w(1/x)| < 2**-29.6. */ w0 = 4.18938547e-01, /* 0x3ed67f1d */ w1 = 8.33332464e-02, /* 0x3daaaa9f */ w2 = -2.76129087e-03; /* 0xbb34f6c6 */ static float sin_pif(float x) { volatile float vz; float y,z; int n; y = -x; vz = y+0x1p23F; /* depend on 0 <= y < 0x1p23 */ z = vz-0x1p23F; /* rintf(y) for the above range */ if (z == y) return zero; vz = y+0x1p21F; GET_FLOAT_WORD(n,vz); /* bits for rounded y (units 0.25) */ z = vz-0x1p21F; /* y rounded to a multiple of 0.25 */ if (z > y) { z -= 0.25F; /* adjust to round down */ n--; } n &= 7; /* octant of y mod 2 */ y = y - z + n * 0.25F; /* y mod 2 */ switch (n) { case 0: y = __kernel_sindf(pi*y); break; case 1: case 2: y = __kernel_cosdf(pi*((float)0.5-y)); break; case 3: case 4: y = __kernel_sindf(pi*(one-y)); break; case 5: case 6: y = -__kernel_cosdf(pi*(y-(float)1.5)); break; default: y = __kernel_sindf(pi*(y-(float)2.0)); break; } return -y; } float lgammaf_r(float x, int *signgamp) { float nadj,p,p1,p2,q,r,t,w,y,z; int32_t hx; int i,ix; GET_FLOAT_WORD(hx,x); /* purge +-Inf and NaNs */ *signgamp = 1; ix = hx&0x7fffffff; if(ix>=0x7f800000) return x*x; /* purge +-0 and tiny arguments */ *signgamp = 1-2*((uint32_t)hx>>31); if(ix<0x32000000) { /* |x|<2**-27, return -log(|x|) */ if(ix==0) return one/vzero; return -logf(fabsf(x)); } /* purge negative integers and start evaluation for other x < 0 */ if(hx<0) { *signgamp = 1; if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ return one/vzero; t = sin_pif(x); if(t==zero) return one/vzero; /* -integer */ nadj = logf(pi/fabsf(t*x)); if(t=0x3f3b4a20) {y = one-x; i= 0;} else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} else {y = x; i=2;} } else { r = zero; if(ix>=0x3fdda618) {y=2-x;i=0;} /* [1.7316,2] */ else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ else {y=x-one;i=2;} } switch(i) { case 0: z = y*y; p1 = a0+z*(a2+z*a4); p2 = z*(a1+z*(a3+z*a5)); p = y*p1+p2; r += p-y/2; break; case 1: p = t0+y*t1+y*y*(t2+y*(t3+y*(t4+y*(t5+y*(t6+y*t7))))); r += tf + p; break; case 2: p1 = y*(u0+y*(u1+y*u2)); p2 = one+y*(v1+y*(v2+y*v3)); r += p1/p2-y/2; } } /* x < 8.0 */ else if(ix<0x41000000) { i = x; y = x-i; p = y*(s0+y*(s1+y*(s2+y*s3))); q = one+y*(r1+y*(r2+y*r3)); r = y/2+p/q; z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ switch(i) { case 7: z *= (y+6); /* FALLTHRU */ case 6: z *= (y+5); /* FALLTHRU */ case 5: z *= (y+4); /* FALLTHRU */ case 4: z *= (y+3); /* FALLTHRU */ case 3: z *= (y+2); /* FALLTHRU */ r += logf(z); break; } /* 8.0 <= x < 2**27 */ } else if (ix < 0x4d000000) { t = logf(x); z = one/x; y = z*z; w = w0+z*(w1+y*w2); r = (x-half)*(t-one)+w; } else /* 2**27 <= x <= inf */ r = x*(logf(x)-one); if(hx<0) r = nadj - r; return r; }