/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007-2013 Bruce D. Evans * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * Implementation of the natural logarithm of x for Intel 80-bit format. * * First decompose x into its base 2 representation: * * log(x) = log(X * 2**k), where X is in [1, 2) * = log(X) + k * log(2). * * Let X = X_i + e, where X_i is the center of one of the intervals * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256) * and X is in this interval. Then * * log(X) = log(X_i + e) * = log(X_i * (1 + e / X_i)) * = log(X_i) + log(1 + e / X_i). * * The values log(X_i) are tabulated below. Let d = e / X_i and use * * log(1 + d) = p(d) * * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of * suitably high degree. * * To get sufficiently small roundoff errors, k * log(2), log(X_i), and * sometimes (if |k| is not large) the first term in p(d) must be evaluated * and added up in extra precision. Extra precision is not needed for the * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final * error is controlled mainly by the error in the second term in p(d). The * error in this term itself is at most 0.5 ulps from the d*d operation in * it. The error in this term relative to the first term is thus at most * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of * at most twice this at the point of the final rounding step. Thus the * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive * testing of a float variant of this function showed a maximum final error * of 0.5008 ulps. Non-exhaustive testing of a double variant of this * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256). * * We made the maximum of |d| (and thus the total relative error and the * degree of p(d)) small by using a large number of intervals. Using * centers of intervals instead of endpoints reduces this maximum by a * factor of 2 for a given number of intervals. p(d) is special only * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen * naturally. The most accurate minimax polynomial of a given degree might * be different, but then we wouldn't want it since we would have to do * extra work to avoid roundoff error (especially for P0*d instead of d). */ #ifdef DEBUG #include #include #endif #ifdef __i386__ #include #endif #include "fpmath.h" #include "math.h" #define i386_SSE_GOOD #ifndef NO_STRUCT_RETURN #define STRUCT_RETURN #endif #include "math_private.h" #if !defined(NO_UTAB) && !defined(NO_UTABL) #define USE_UTAB #endif /* * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]: * |log(1 + d)/d - p(d)| < 2**-70.7 */ static const double P2 = -0.5, P3 = 3.3333333333333359e-1, /* 0x1555555555555a.0p-54 */ P4 = -2.5000000000004424e-1, /* -0x1000000000031d.0p-54 */ P5 = 1.9999999992970016e-1, /* 0x1999999972f3c7.0p-55 */ P6 = -1.6666666072191585e-1, /* -0x15555548912c09.0p-55 */ P7 = 1.4286227413310518e-1, /* 0x12494f9d9def91.0p-55 */ P8 = -1.2518388626763144e-1; /* -0x1006068cc0b97c.0p-55 */ static volatile const double zero = 0; #define INTERVALS 128 #define LOG2_INTERVALS 7 #define TSIZE (INTERVALS + 1) #define G(i) (T[(i)].G) #define F_hi(i) (T[(i)].F_hi) #define F_lo(i) (T[(i)].F_lo) #define ln2_hi F_hi(TSIZE - 1) #define ln2_lo F_lo(TSIZE - 1) #define E(i) (U[(i)].E) #define H(i) (U[(i)].H) static const struct { float G; /* 1/(1 + i/128) rounded to 8/9 bits */ float F_hi; /* log(1 / G_i) rounded (see below) */ double F_lo; /* next 53 bits for log(1 / G_i) */ } T[TSIZE] = { /* * ln2_hi and each F_hi(i) are rounded to a number of bits that * makes F_hi(i) + dk*ln2_hi exact for all i and all dk. * * The last entry (for X just below 2) is used to define ln2_hi * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1. * This is needed for accuracy when x is just below 1. (To avoid * special cases, such x are "reduced" strangely to X just below * 2 and dk = -1, and then the exact cancellation is needed * because any the error from any non-exactness would be too * large). * * We want to share this table between double precision and ld80, * so the relevant range of dk is the larger one of ld80 * ([-16445, 16383]) and the relevant exactness requirement is * the stricter one of double precision. The maximum number of * bits in F_hi(i) that works is very dependent on i but has * a minimum of 33. We only need about 12 bits in F_hi(i) for * it to provide enough extra precision in double precision (11 * more than that are required for ld80). * * We round F_hi(i) to 24 bits so that it can have type float, * mainly to minimize the size of the table. Using all 24 bits * in a float for it automatically satisfies the above constraints. */ { 0x800000.0p-23, 0, 0 }, { 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6675.0p-84 }, { 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83718.0p-84 }, { 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173698.0p-83 }, { 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e79.0p-82 }, { 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82 }, { 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a1076.0p-83 }, { 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb9589.0p-82 }, { 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c5.0p-91 }, { 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560e.0p-81 }, { 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d503.0p-82 }, { 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83 }, { 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da9a.0p-81 }, { 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83 }, { 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251af0.0p-85 }, { 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d5.0p-84 }, { 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e676.0p-81 }, { 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f42.0p-82 }, { 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6b00.0p-80 }, { 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83 }, { 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82 }, { 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80 }, { 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c47.0p-82 }, { 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e569.0p-81 }, { 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba936770.0p-84 }, { 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d32.0p-80 }, { 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b7.0p-81 }, { 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06.0p-80 }, { 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82 }, { 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d6866.0p-81 }, { 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae55.0p-80 }, { 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc45954.0p-81 }, { 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d.0p-81 }, { 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df842.0p-85 }, { 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe.0p-87 }, { 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa69.0p-81 }, { 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb3283.0p-80 }, { 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e.0p-79 }, { 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f46.0p-79 }, { 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a.0p-81 }, { 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de9.0p-79 }, { 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5148.0p-81 }, { 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba4.0p-79 }, { 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b731.0p-80 }, { 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81 }, { 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79 }, { 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c566.0p-79 }, { 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb24.0p-81 }, { 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698.0p-81 }, { 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123616.0p-82 }, { 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b2.0p-80 }, { 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a424234.0p-79 }, { 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83 }, { 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770634.0p-79 }, { 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b152.0p-82 }, { 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f09.0p-80 }, { 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad89.0p-79 }, { 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf.0p-79 }, { 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab90486409.0p-80 }, { 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333.0p-79 }, { 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80 }, { 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c9.0p-80 }, { 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79 }, { 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a87.0p-81 }, { 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3cb.0p-79 }, { 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d.0p-81 }, { 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81 }, { 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79 }, { 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b61.0p-80 }, { 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a3.0p-80 }, { 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82 }, { 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80 }, { 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f57.0p-80 }, { 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80 }, { 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d4.0p-80 }, { 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd.0p-79 }, { 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f730190.0p-79 }, { 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cd.0p-80 }, { 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d.0p-81 }, { 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af2.0p-79 }, { 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84 }, { 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade0.0p-79 }, { 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1.0p-79 }, { 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c53.0p-79 }, { 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f.0p-78 }, { 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e5.0p-81 }, { 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b.0p-79 }, { 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb8287.0p-78 }, { 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9c.0p-78 }, { 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f0.0p-79 }, { 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd6.0p-80 }, { 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de.0p-78 }, { 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78 }, { 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79 }, { 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79 }, { 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f77.0p-78 }, { 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80 }, { 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d7.0p-79 }, { 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3237.0p-79 }, { 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d.0p-79 }, { 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c337.0p-79 }, { 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf3.0p-78 }, { 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79 }, { 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507c.0p-78 }, { 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e98.0p-79 }, { 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78 }, { 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f952.0p-78 }, { 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe.0p-78 }, { 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576b.0p-78 }, { 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a2.0p-79 }, { 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79 }, { 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f.0p-81 }, { 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79 }, { 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d20.0p-78 }, { 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c01.0p-79 }, { 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541ad.0p-79 }, { 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4572.0p-78 }, { 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c.0p-80 }, { 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d74936.0p-80 }, { 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce53266.0p-79 }, { 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d2.0p-79 }, { 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b36.0p-80 }, { 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3.0p-79 }, { 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80 }, { 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80 }, { 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a83.0p-81 }, { 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b.0p-78 }, { 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a198.0p-78 }, { 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c39.0p-81 }, }; #ifdef USE_UTAB static const struct { float H; /* 1 + i/INTERVALS (exact) */ float E; /* H(i) * G(i) - 1 (exact) */ } U[TSIZE] = { { 0x800000.0p-23, 0 }, { 0x810000.0p-23, -0x800000.0p-37 }, { 0x820000.0p-23, -0x800000.0p-35 }, { 0x830000.0p-23, -0x900000.0p-34 }, { 0x840000.0p-23, -0x800000.0p-33 }, { 0x850000.0p-23, -0xc80000.0p-33 }, { 0x860000.0p-23, -0xa00000.0p-36 }, { 0x870000.0p-23, 0x940000.0p-33 }, { 0x880000.0p-23, 0x800000.0p-35 }, { 0x890000.0p-23, -0xc80000.0p-34 }, { 0x8a0000.0p-23, 0xe00000.0p-36 }, { 0x8b0000.0p-23, 0x900000.0p-33 }, { 0x8c0000.0p-23, -0x800000.0p-35 }, { 0x8d0000.0p-23, -0xe00000.0p-33 }, { 0x8e0000.0p-23, 0x880000.0p-33 }, { 0x8f0000.0p-23, -0xa80000.0p-34 }, { 0x900000.0p-23, -0x800000.0p-35 }, { 0x910000.0p-23, 0x800000.0p-37 }, { 0x920000.0p-23, 0x900000.0p-35 }, { 0x930000.0p-23, 0xd00000.0p-35 }, { 0x940000.0p-23, 0xe00000.0p-35 }, { 0x950000.0p-23, 0xc00000.0p-35 }, { 0x960000.0p-23, 0xe00000.0p-36 }, { 0x970000.0p-23, -0x800000.0p-38 }, { 0x980000.0p-23, -0xc00000.0p-35 }, { 0x990000.0p-23, -0xd00000.0p-34 }, { 0x9a0000.0p-23, 0x880000.0p-33 }, { 0x9b0000.0p-23, 0xe80000.0p-35 }, { 0x9c0000.0p-23, -0x800000.0p-35 }, { 0x9d0000.0p-23, 0xb40000.0p-33 }, { 0x9e0000.0p-23, 0x880000.0p-34 }, { 0x9f0000.0p-23, -0xe00000.0p-35 }, { 0xa00000.0p-23, 0x800000.0p-33 }, { 0xa10000.0p-23, -0x900000.0p-36 }, { 0xa20000.0p-23, -0xb00000.0p-33 }, { 0xa30000.0p-23, -0xa00000.0p-36 }, { 0xa40000.0p-23, 0x800000.0p-33 }, { 0xa50000.0p-23, -0xf80000.0p-35 }, { 0xa60000.0p-23, 0x880000.0p-34 }, { 0xa70000.0p-23, -0x900000.0p-33 }, { 0xa80000.0p-23, -0x800000.0p-35 }, { 0xa90000.0p-23, 0x900000.0p-34 }, { 0xaa0000.0p-23, 0xa80000.0p-33 }, { 0xab0000.0p-23, -0xac0000.0p-34 }, { 0xac0000.0p-23, -0x800000.0p-37 }, { 0xad0000.0p-23, 0xf80000.0p-35 }, { 0xae0000.0p-23, 0xf80000.0p-34 }, { 0xaf0000.0p-23, -0xac0000.0p-33 }, { 0xb00000.0p-23, -0x800000.0p-33 }, { 0xb10000.0p-23, -0xb80000.0p-34 }, { 0xb20000.0p-23, -0x800000.0p-34 }, { 0xb30000.0p-23, -0xb00000.0p-35 }, { 0xb40000.0p-23, -0x800000.0p-35 }, { 0xb50000.0p-23, -0xe00000.0p-36 }, { 0xb60000.0p-23, -0x800000.0p-35 }, { 0xb70000.0p-23, -0xb00000.0p-35 }, { 0xb80000.0p-23, -0x800000.0p-34 }, { 0xb90000.0p-23, -0xb80000.0p-34 }, { 0xba0000.0p-23, -0x800000.0p-33 }, { 0xbb0000.0p-23, -0xac0000.0p-33 }, { 0xbc0000.0p-23, 0x980000.0p-33 }, { 0xbd0000.0p-23, 0xbc0000.0p-34 }, { 0xbe0000.0p-23, 0xe00000.0p-36 }, { 0xbf0000.0p-23, -0xb80000.0p-35 }, { 0xc00000.0p-23, -0x800000.0p-33 }, { 0xc10000.0p-23, 0xa80000.0p-33 }, { 0xc20000.0p-23, 0x900000.0p-34 }, { 0xc30000.0p-23, -0x800000.0p-35 }, { 0xc40000.0p-23, -0x900000.0p-33 }, { 0xc50000.0p-23, 0x820000.0p-33 }, { 0xc60000.0p-23, 0x800000.0p-38 }, { 0xc70000.0p-23, -0x820000.0p-33 }, { 0xc80000.0p-23, 0x800000.0p-33 }, { 0xc90000.0p-23, -0xa00000.0p-36 }, { 0xca0000.0p-23, -0xb00000.0p-33 }, { 0xcb0000.0p-23, 0x840000.0p-34 }, { 0xcc0000.0p-23, -0xd00000.0p-34 }, { 0xcd0000.0p-23, 0x800000.0p-33 }, { 0xce0000.0p-23, -0xe00000.0p-35 }, { 0xcf0000.0p-23, 0xa60000.0p-33 }, { 0xd00000.0p-23, -0x800000.0p-35 }, { 0xd10000.0p-23, 0xb40000.0p-33 }, { 0xd20000.0p-23, -0x800000.0p-35 }, { 0xd30000.0p-23, 0xaa0000.0p-33 }, { 0xd40000.0p-23, -0xe00000.0p-35 }, { 0xd50000.0p-23, 0x880000.0p-33 }, { 0xd60000.0p-23, -0xd00000.0p-34 }, { 0xd70000.0p-23, 0x9c0000.0p-34 }, { 0xd80000.0p-23, -0xb00000.0p-33 }, { 0xd90000.0p-23, -0x800000.0p-38 }, { 0xda0000.0p-23, 0xa40000.0p-33 }, { 0xdb0000.0p-23, -0xdc0000.0p-34 }, { 0xdc0000.0p-23, 0xc00000.0p-35 }, { 0xdd0000.0p-23, 0xca0000.0p-33 }, { 0xde0000.0p-23, -0xb80000.0p-34 }, { 0xdf0000.0p-23, 0xd00000.0p-35 }, { 0xe00000.0p-23, 0xc00000.0p-33 }, { 0xe10000.0p-23, -0xf40000.0p-34 }, { 0xe20000.0p-23, 0x800000.0p-37 }, { 0xe30000.0p-23, 0x860000.0p-33 }, { 0xe40000.0p-23, -0xc80000.0p-33 }, { 0xe50000.0p-23, -0xa80000.0p-34 }, { 0xe60000.0p-23, 0xe00000.0p-36 }, { 0xe70000.0p-23, 0x880000.0p-33 }, { 0xe80000.0p-23, -0xe00000.0p-33 }, { 0xe90000.0p-23, -0xfc0000.0p-34 }, { 0xea0000.0p-23, -0x800000.0p-35 }, { 0xeb0000.0p-23, 0xe80000.0p-35 }, { 0xec0000.0p-23, 0x900000.0p-33 }, { 0xed0000.0p-23, 0xe20000.0p-33 }, { 0xee0000.0p-23, -0xac0000.0p-33 }, { 0xef0000.0p-23, -0xc80000.0p-34 }, { 0xf00000.0p-23, -0x800000.0p-35 }, { 0xf10000.0p-23, 0x800000.0p-35 }, { 0xf20000.0p-23, 0xb80000.0p-34 }, { 0xf30000.0p-23, 0x940000.0p-33 }, { 0xf40000.0p-23, 0xc80000.0p-33 }, { 0xf50000.0p-23, -0xf20000.0p-33 }, { 0xf60000.0p-23, -0xc80000.0p-33 }, { 0xf70000.0p-23, -0xa20000.0p-33 }, { 0xf80000.0p-23, -0x800000.0p-33 }, { 0xf90000.0p-23, -0xc40000.0p-34 }, { 0xfa0000.0p-23, -0x900000.0p-34 }, { 0xfb0000.0p-23, -0xc80000.0p-35 }, { 0xfc0000.0p-23, -0x800000.0p-35 }, { 0xfd0000.0p-23, -0x900000.0p-36 }, { 0xfe0000.0p-23, -0x800000.0p-37 }, { 0xff0000.0p-23, -0x800000.0p-39 }, { 0x800000.0p-22, 0 }, }; #endif /* USE_UTAB */ #ifdef STRUCT_RETURN #define RETURN1(rp, v) do { \ (rp)->hi = (v); \ (rp)->lo_set = 0; \ return; \ } while (0) #define RETURN2(rp, h, l) do { \ (rp)->hi = (h); \ (rp)->lo = (l); \ (rp)->lo_set = 1; \ return; \ } while (0) struct ld { long double hi; long double lo; int lo_set; }; #else #define RETURN1(rp, v) RETURNF(v) #define RETURN2(rp, h, l) RETURNI((h) + (l)) #endif #ifdef STRUCT_RETURN static __always_inline void k_logl(long double x, struct ld *rp) #else long double logl(long double x) #endif { long double d, dk, val_hi, val_lo, z; uint64_t ix, lx; int i, k; uint16_t hx; EXTRACT_LDBL80_WORDS(hx, lx, x); k = -16383; #if 0 /* Hard to do efficiently. Don't do it until we support all modes. */ if (x == 1) RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */ #endif if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */ if (((hx & 0x7fff) | lx) == 0) RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */ if (hx != 0) /* log(neg or [pseudo-]NaN) = qNaN: */ RETURN1(rp, (x - x) / zero); x *= 0x1.0p65; /* subnormal; scale up x */ /* including pseudo-subnormals */ EXTRACT_LDBL80_WORDS(hx, lx, x); k = -16383 - 65; } else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0) RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */ /* log(pseudo-Inf) = qNaN */ /* log(pseudo-NaN) = qNaN */ /* log(unnormal) = qNaN */ #ifndef STRUCT_RETURN ENTERI(); #endif k += hx; ix = lx & 0x7fffffffffffffffULL; dk = k; /* Scale x to be in [1, 2). */ SET_LDBL_EXPSIGN(x, 0x3fff); /* 0 <= i <= INTERVALS: */ #define L2I (64 - LOG2_INTERVALS) i = (ix + (1LL << (L2I - 2))) >> (L2I - 1); /* * -0.005280 < d < 0.004838. In particular, the infinite- * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits * ensures that d is representable without extra precision for * this bound on |d| (since when this calculation is expressed * as x*G(i)-1, the multiplication needs as many extra bits as * G(i) has and the subtraction cancels 8 bits). But for * most i (107 cases out of 129), the infinite-precision |d| * is <= 2**-8. G(i) is rounded to 9 bits for such i to give * better accuracy (this works by improving the bound on |d|, * which in turn allows rounding to 9 bits in more cases). * This is only important when the original x is near 1 -- it * lets us avoid using a special method to give the desired * accuracy for such x. */ if (0) d = x * G(i) - 1; else { #ifdef USE_UTAB d = (x - H(i)) * G(i) + E(i); #else long double x_hi, x_lo; float fx_hi; /* * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly. * G(i) has at most 9 bits, so the splitting point is not * critical. */ SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000); x_hi = fx_hi; x_lo = x - x_hi; d = x_hi * G(i) - 1 + x_lo * G(i); #endif } /* * Our algorithm depends on exact cancellation of F_lo(i) and * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is * at the end of the table. This and other technical complications * make it difficult to avoid the double scaling in (dk*ln2) * * log(base) for base != e without losing more accuracy and/or * efficiency than is gained. */ z = d * d; val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) + (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2; val_hi = d; #ifdef DEBUG if (fetestexcept(FE_UNDERFLOW)) breakpoint(); #endif _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); RETURN2(rp, val_hi, val_lo); } long double log1pl(long double x) { long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z; long double f_hi, twopminusk; uint64_t ix, lx; int i, k; int16_t ax, hx; EXTRACT_LDBL80_WORDS(hx, lx, x); if (hx < 0x3fff) { /* x < 1, or x neg NaN */ ax = hx & 0x7fff; if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */ if (ax == 0x3fff && lx == 0x8000000000000000ULL) RETURNF(-1 / zero); /* log1p(-1) = -Inf */ /* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */ RETURNF((x - x) / (x - x)); } if (ax <= 0x3fbe) { /* |x| < 2**-64 */ if ((int)x == 0) RETURNF(x); /* x with inexact if x != 0 */ } f_hi = 1; f_lo = x; } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */ RETURNF(x + x); /* log1p(Inf or NaN) = Inf or qNaN */ /* log1p(pseudo-Inf) = qNaN */ /* log1p(pseudo-NaN) = qNaN */ /* log1p(unnormal) = qNaN */ } else if (hx < 0x407f) { /* 1 <= x < 2**128 */ f_hi = x; f_lo = 1; } else { /* 2**128 <= x < +Inf */ f_hi = x; f_lo = 0; /* avoid underflow of the P5 term */ } ENTERI(); x = f_hi + f_lo; f_lo = (f_hi - x) + f_lo; EXTRACT_LDBL80_WORDS(hx, lx, x); k = -16383; k += hx; ix = lx & 0x7fffffffffffffffULL; dk = k; SET_LDBL_EXPSIGN(x, 0x3fff); twopminusk = 1; SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff)); f_lo *= twopminusk; i = (ix + (1LL << (L2I - 2))) >> (L2I - 1); /* * x*G(i)-1 (with a reduced x) can be represented exactly, as * above, but now we need to evaluate the polynomial on d = * (x+f_lo)*G(i)-1 and extra precision is needed for that. * Since x+x_lo is a hi+lo decomposition and subtracting 1 * doesn't lose too many bits, an inexact calculation for * f_lo*G(i) is good enough. */ if (0) d_hi = x * G(i) - 1; else { #ifdef USE_UTAB d_hi = (x - H(i)) * G(i) + E(i); #else long double x_hi, x_lo; float fx_hi; SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000); x_hi = fx_hi; x_lo = x - x_hi; d_hi = x_hi * G(i) - 1 + x_lo * G(i); #endif } d_lo = f_lo * G(i); /* * This is _2sumF(d_hi, d_lo) inlined. The condition * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not * always satisifed, so it is not clear that this works, but * it works in practice. It works even if it gives a wrong * normalized d_lo, since |d_lo| > |d_hi| implies that i is * nonzero and d is tiny, so the F(i) term dominates d_lo. * In float precision: * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25. * And if d is only a little tinier than that, we would have * another underflow problem for the P3 term; this is also ruled * out by exhaustive testing.) */ d = d_hi + d_lo; d_lo = d_hi - d + d_lo; d_hi = d; z = d * d; val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) + (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2; val_hi = d_hi; #ifdef DEBUG if (fetestexcept(FE_UNDERFLOW)) breakpoint(); #endif _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); RETURNI(val_hi + val_lo); } #ifdef STRUCT_RETURN long double logl(long double x) { struct ld r; ENTERI(); k_logl(x, &r); RETURNSPI(&r); } /* Use macros since GCC < 8 rejects static const expressions in initializers. */ #define invln10_hi 4.3429448190317999e-1 /* 0x1bcb7b1526e000.0p-54 */ #define invln10_lo 7.1842412889749798e-14 /* 0x1438ca9aadd558.0p-96 */ #define invln2_hi 1.4426950408887933e0 /* 0x171547652b8000.0p-52 */ #define invln2_lo 1.7010652264631490e-13 /* 0x17f0bbbe87fed0.0p-95 */ /* Let the compiler pre-calculate this sum to avoid FE_INEXACT at run time. */ static const double invln10_lo_plus_hi = invln10_lo + invln10_hi; static const double invln2_lo_plus_hi = invln2_lo + invln2_hi; long double log10l(long double x) { struct ld r; long double hi, lo; ENTERI(); k_logl(x, &r); if (!r.lo_set) RETURNI(r.hi); _2sumF(r.hi, r.lo); hi = (float)r.hi; lo = r.lo + (r.hi - hi); RETURNI(invln10_hi * hi + (invln10_lo_plus_hi * lo + invln10_lo * hi)); } long double log2l(long double x) { struct ld r; long double hi, lo; ENTERI(); k_logl(x, &r); if (!r.lo_set) RETURNI(r.hi); _2sumF(r.hi, r.lo); hi = (float)r.hi; lo = r.lo + (r.hi - hi); RETURNI(invln2_hi * hi + (invln2_lo_plus_hi * lo + invln2_lo * hi)); } #endif /* STRUCT_RETURN */