/*- * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "math_private.h" /* * Polynomial evaluator: * P[0] x^n + P[1] x^(n-1) + ... + P[n] */ static inline long double __polevll(long double x, const long double *PP, int n) { long double y; const long double *P; P = PP; y = *P++; do { y = y * x + *P++; } while (--n); return (y); } /* * Polynomial evaluator: * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] */ static inline long double __p1evll(long double x, const long double *PP, int n) { long double y; const long double *P; P = PP; n -= 1; y = x + *P++; do { y = y * x + *P++; } while (--n); return (y); } /* powl.c * * Power function, long double precision * * * * SYNOPSIS: * * long double x, y, z, powl(); * * z = powl( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/32 and pseudo extended precision arithmetic to * obtain several extra bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * * The relative error of pow(x,y) can be estimated * by y dl ln(2), where dl is the absolute error of * the internally computed base 2 logarithm. At the ends * of the approximation interval the logarithm equal 1/32 * and its relative error is about 1 lsb = 1.1e-19. Hence * the predicted relative error in the result is 2.3e-21 y . * * Relative error: * arithmetic domain # trials peak rms * * IEEE +-1000 40000 2.8e-18 3.7e-19 * .001 < x < 1000, with log(x) uniformly distributed. * -1000 < y < 1000, y uniformly distributed. * * IEEE 0,8700 60000 6.5e-18 1.0e-18 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * pow overflow x**y > MAXNUM INFINITY * pow underflow x**y < 1/MAXNUM 0.0 * pow domain x<0 and y noninteger 0.0 * */ #include #include #include "math_private.h" /* Table size */ #define NXT 32 /* log2(Table size) */ #define LNXT 5 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 */ static const long double P[] = { 8.3319510773868690346226E-4L, 4.9000050881978028599627E-1L, 1.7500123722550302671919E0L, 1.4000100839971580279335E0L, }; static const long double Q[] = { /* 1.0000000000000000000000E0L,*/ 5.2500282295834889175431E0L, 8.4000598057587009834666E0L, 4.2000302519914740834728E0L, }; /* A[i] = 2^(-i/32), rounded to IEEE long double precision. * If i is even, A[i] + B[i/2] gives additional accuracy. */ static const long double A[33] = { 1.0000000000000000000000E0L, 9.7857206208770013448287E-1L, 9.5760328069857364691013E-1L, 9.3708381705514995065011E-1L, 9.1700404320467123175367E-1L, 8.9735453750155359320742E-1L, 8.7812608018664974155474E-1L, 8.5930964906123895780165E-1L, 8.4089641525371454301892E-1L, 8.2287773907698242225554E-1L, 8.0524516597462715409607E-1L, 7.8799042255394324325455E-1L, 7.7110541270397041179298E-1L, 7.5458221379671136985669E-1L, 7.3841307296974965571198E-1L, 7.2259040348852331001267E-1L, 7.0710678118654752438189E-1L, 6.9195494098191597746178E-1L, 6.7712777346844636413344E-1L, 6.6261832157987064729696E-1L, 6.4841977732550483296079E-1L, 6.3452547859586661129850E-1L, 6.2092890603674202431705E-1L, 6.0762367999023443907803E-1L, 5.9460355750136053334378E-1L, 5.8186242938878875689693E-1L, 5.6939431737834582684856E-1L, 5.5719337129794626814472E-1L, 5.4525386633262882960438E-1L, 5.3357020033841180906486E-1L, 5.2213689121370692017331E-1L, 5.1094857432705833910408E-1L, 5.0000000000000000000000E-1L, }; static const long double B[17] = { 0.0000000000000000000000E0L, 2.6176170809902549338711E-20L, -1.0126791927256478897086E-20L, 1.3438228172316276937655E-21L, 1.2207982955417546912101E-20L, -6.3084814358060867200133E-21L, 1.3164426894366316434230E-20L, -1.8527916071632873716786E-20L, 1.8950325588932570796551E-20L, 1.5564775779538780478155E-20L, 6.0859793637556860974380E-21L, -2.0208749253662532228949E-20L, 1.4966292219224761844552E-20L, 3.3540909728056476875639E-21L, -8.6987564101742849540743E-22L, -1.2327176863327626135542E-20L, 0.0000000000000000000000E0L, }; /* 2^x = 1 + x P(x), * on the interval -1/32 <= x <= 0 */ static const long double R[] = { 1.5089970579127659901157E-5L, 1.5402715328927013076125E-4L, 1.3333556028915671091390E-3L, 9.6181291046036762031786E-3L, 5.5504108664798463044015E-2L, 2.4022650695910062854352E-1L, 6.9314718055994530931447E-1L, }; #define douba(k) A[k] #define doubb(k) B[k] #define MEXP (NXT*16384.0L) /* The following if denormal numbers are supported, else -MEXP: */ #define MNEXP (-NXT*(16384.0L+64.0L)) /* log2(e) - 1 */ #define LOG2EA 0.44269504088896340735992L #define F W #define Fa Wa #define Fb Wb #define G W #define Ga Wa #define Gb u #define H W #define Ha Wb #define Hb Wb static const long double MAXLOGL = 1.1356523406294143949492E4L; static const long double MINLOGL = -1.13994985314888605586758E4L; static const long double LOGE2L = 6.9314718055994530941723E-1L; static _Thread_local volatile long double z; static _Thread_local long double w, W, Wa, Wb, ya, yb, u; static const long double huge = 0x1p10000L; #if 0 /* XXX Prevent gcc from erroneously constant folding this. */ static const long double twom10000 = 0x1p-10000L; #else static _Thread_local volatile long double twom10000 = 0x1p-10000L; #endif static long double reducl( long double ); static long double powil ( long double, int ); long double powl(long double x, long double y) { /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ int i, nflg, iyflg, yoddint; long e; if( y == 0.0L ) return( 1.0L ); if( x == 1.0L ) return( 1.0L ); if( isnan(x) ) return ( nan_mix(x, y) ); if( isnan(y) ) return ( nan_mix(x, y) ); if( y == 1.0L ) return( x ); if( !isfinite(y) && x == -1.0L ) return( 1.0L ); if( y >= LDBL_MAX ) { if( x > 1.0L ) return( INFINITY ); if( x > 0.0L && x < 1.0L ) return( 0.0L ); if( x < -1.0L ) return( INFINITY ); if( x > -1.0L && x < 0.0L ) return( 0.0L ); } if( y <= -LDBL_MAX ) { if( x > 1.0L ) return( 0.0L ); if( x > 0.0L && x < 1.0L ) return( INFINITY ); if( x < -1.0L ) return( 0.0L ); if( x > -1.0L && x < 0.0L ) return( INFINITY ); } if( x >= LDBL_MAX ) { if( y > 0.0L ) return( INFINITY ); return( 0.0L ); } w = floorl(y); /* Set iyflg to 1 if y is an integer. */ iyflg = 0; if( w == y ) iyflg = 1; /* Test for odd integer y. */ yoddint = 0; if( iyflg ) { ya = fabsl(y); ya = floorl(0.5L * ya); yb = 0.5L * fabsl(w); if( ya != yb ) yoddint = 1; } if( x <= -LDBL_MAX ) { if( y > 0.0L ) { if( yoddint ) return( -INFINITY ); return( INFINITY ); } if( y < 0.0L ) { if( yoddint ) return( -0.0L ); return( 0.0 ); } } nflg = 0; /* flag = 1 if x<0 raised to integer power */ if( x <= 0.0L ) { if( x == 0.0L ) { if( y < 0.0 ) { if( signbit(x) && yoddint ) return( -INFINITY ); return( INFINITY ); } if( y > 0.0 ) { if( signbit(x) && yoddint ) return( -0.0L ); return( 0.0 ); } if( y == 0.0L ) return( 1.0L ); /* 0**0 */ else return( 0.0L ); /* 0**y */ } else { if( iyflg == 0 ) return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ nflg = 1; } } /* Integer power of an integer. */ if( iyflg ) { i = w; w = floorl(x); if( (w == x) && (fabsl(y) < 32768.0) ) { w = powil( x, (int) y ); return( w ); } } if( nflg ) x = fabsl(x); /* separate significand from exponent */ x = frexpl( x, &i ); e = i; /* find significand in antilog table A[] */ i = 1; if( x <= douba(17) ) i = 17; if( x <= douba(i+8) ) i += 8; if( x <= douba(i+4) ) i += 4; if( x <= douba(i+2) ) i += 2; if( x >= douba(1) ) i = -1; i += 1; /* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */ x -= douba(i); x -= doubb(i/2); x /= douba(i); /* rational approximation for log(1+v): * * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) */ z = x*x; w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) ); w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ /* Convert to base 2 logarithm: * multiply by log2(e) = 1 + LOG2EA */ z = LOG2EA * w; z += w; z += LOG2EA * x; z += x; /* Compute exponent term of the base 2 logarithm. */ w = -i; w = ldexpl( w, -LNXT ); /* divide by NXT */ w += e; /* Now base 2 log of x is w + z. */ /* Multiply base 2 log by y, in extended precision. */ /* separate y into large part ya * and small part yb less than 1/NXT */ ya = reducl(y); yb = y - ya; /* (w+z)(ya+yb) * = w*ya + w*yb + z*y */ F = z * y + w * yb; Fa = reducl(F); Fb = F - Fa; G = Fa + w * ya; Ga = reducl(G); Gb = G - Ga; H = Fb + Gb; Ha = reducl(H); w = ldexpl( Ga+Ha, LNXT ); /* Test the power of 2 for overflow */ if( w > MEXP ) return (huge * huge); /* overflow */ if( w < MNEXP ) return (twom10000 * twom10000); /* underflow */ e = w; Hb = H - Ha; if( Hb > 0.0L ) { e += 1; Hb -= (1.0L/NXT); /*0.0625L;*/ } /* Now the product y * log2(x) = Hb + e/NXT. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. */ z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. * Find lookup table entry for the fractional power of 2. */ if( e < 0 ) i = 0; else i = 1; i = e/NXT + i; e = NXT*i - e; w = douba( e ); z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = z + w; z = ldexpl( z, i ); /* multiply by integer power of 2 */ if( nflg ) { /* For negative x, * find out if the integer exponent * is odd or even. */ w = ldexpl( y, -1 ); w = floorl(w); w = ldexpl( w, 1 ); if( w != y ) z = -z; /* odd exponent */ } return( z ); } /* Find a multiple of 1/NXT that is within 1/NXT of x. */ static inline long double reducl(long double x) { long double t; t = ldexpl( x, LNXT ); t = floorl( t ); t = ldexpl( t, -LNXT ); return(t); } /* powil.c * * Real raised to integer power, long double precision * * * * SYNOPSIS: * * long double x, y, powil(); * int n; * * y = powil( x, n ); * * * * DESCRIPTION: * * Returns argument x raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x. Thus to compute the 32767 power of x requires * 28 multiplications instead of 32767 multiplications. * * * * ACCURACY: * * * Relative error: * arithmetic x domain n domain # trials peak rms * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 * * Returns MAXNUM on overflow, zero on underflow. * */ static long double powil(long double x, int nn) { long double ww, y; long double s; int n, e, sign, asign, lx; if( x == 0.0L ) { if( nn == 0 ) return( 1.0L ); else if( nn < 0 ) return( LDBL_MAX ); else return( 0.0L ); } if( nn == 0 ) return( 1.0L ); if( x < 0.0L ) { asign = -1; x = -x; } else asign = 0; if( nn < 0 ) { sign = -1; n = -nn; } else { sign = 1; n = nn; } /* Overflow detection */ /* Calculate approximate logarithm of answer */ s = x; s = frexpl( s, &lx ); e = (lx - 1)*n; if( (e == 0) || (e > 64) || (e < -64) ) { s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; } else { s = LOGE2L * e; } if( s > MAXLOGL ) return (huge * huge); /* overflow */ if( s < MINLOGL ) return (twom10000 * twom10000); /* underflow */ /* Handle tiny denormal answer, but with less accuracy * since roundoff error in 1.0/x will be amplified. * The precise demarcation should be the gradual underflow threshold. */ if( s < (-MAXLOGL+2.0L) ) { x = 1.0L/x; sign = -sign; } /* First bit of the power */ if( n & 1 ) y = x; else { y = 1.0L; asign = 0; } ww = x; n >>= 1; while( n ) { ww = ww * ww; /* arg to the 2-to-the-kth power */ if( n & 1 ) /* if that bit is set, then include in product */ y *= ww; n >>= 1; } if( asign ) y = -y; /* odd power of negative number */ if( sign < 0 ) y = 1.0L/y; return(y); }