/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * Optimized by Bruce D. Evans. */ #include /* ld128 version of __ieee754_rem_pio2l(x,y) * * return the remainder of x rem pi/2 in y[0]+y[1] * use __kernel_rem_pio2() */ #include #include "math.h" #include "math_private.h" #include "fpmath.h" #define BIAS (LDBL_MAX_EXP - 1) /* * XXX need to verify that nonzero integer multiples of pi/2 within the * range get no closer to a long double than 2**-140, or that * ilogb(x) + ilogb(min_delta) < 45 - -140. */ /* * invpio2: 113 bits of 2/pi * pio2_1: first 68 bits of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 68 bits of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 68 bits of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ static const double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ two24 = 1.67772160000000000000e+07; /* 0x41700000, 0x00000000 */ static const long double invpio2 = 6.3661977236758134307553505349005747e-01L, /* 0x145f306dc9c882a53f84eafa3ea6a.0p-113 */ pio2_1 = 1.5707963267948966192292994253909555e+00L, /* 0x1921fb54442d18469800000000000.0p-112 */ pio2_1t = 2.0222662487959507323996846200947577e-21L, /* 0x13198a2e03707344a4093822299f3.0p-181 */ pio2_2 = 2.0222662487959507323994779168837751e-21L, /* 0x13198a2e03707344a400000000000.0p-181 */ pio2_2t = 2.0670321098263988236496903051604844e-43L, /* 0x127044533e63a0105df531d89cd91.0p-254 */ pio2_3 = 2.0670321098263988236499468110329591e-43L, /* 0x127044533e63a0105e00000000000.0p-254 */ pio2_3t = -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */ static inline __always_inline int __ieee754_rem_pio2l(long double x, long double *y) { union IEEEl2bits u,u1; long double z,w,t,r,fn; double tx[5],ty[3]; int64_t n; int e0,ex,i,j,nx; int16_t expsign; u.e = x; expsign = u.xbits.expsign; ex = expsign & 0x7fff; if (ex < BIAS + 45 || ex == BIAS + 45 && u.bits.manh < 0x921fb54442d1LL) { /* |x| ~< 2^45*(pi/2), medium size */ /* TODO: use only double precision for fn, as in expl(). */ fn = rnintl(x * invpio2); n = i64rint(fn); r = x-fn*pio2_1; w = fn*pio2_1t; /* 1st round good to 180 bit */ { union IEEEl2bits u2; int ex1; j = ex; y[0] = r-w; u2.e = y[0]; ex1 = u2.xbits.expsign & 0x7fff; i = j-ex1; if(i>51) { /* 2nd iteration needed, good to 248 */ t = r; w = fn*pio2_2; r = t-w; w = fn*pio2_2t-((t-r)-w); y[0] = r-w; u2.e = y[0]; ex1 = u2.xbits.expsign & 0x7fff; i = j-ex1; if(i>119) { /* 3rd iteration need, 316 bits acc */ t = r; /* will cover all possible cases */ w = fn*pio2_3; r = t-w; w = fn*pio2_3t-((t-r)-w); y[0] = r-w; } } } y[1] = (r-y[0])-w; return n; } /* * all other (large) arguments */ if(ex==0x7fff) { /* x is inf or NaN */ y[0]=y[1]=x-x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ u1.e = x; e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */ u1.xbits.expsign = ex - e0; z = u1.e; for(i=0;i<4;i++) { tx[i] = (double)((int32_t)(z)); z = (z-tx[i])*two24; } tx[4] = z; nx = 5; while(tx[nx-1]==zero) nx--; /* skip zero term */ n = __kernel_rem_pio2(tx,ty,e0,nx,3); t = (long double)ty[2] + ty[1]; r = t + ty[0]; w = ty[0] - (r - t); if(expsign<0) {y[0] = -r; y[1] = -w; return -n;} y[0] = r; y[1] = w; return n; }