/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef WITH_VMMAPI_SNAPSHOT #include #endif #include #include "vmmapi.h" #include "internal.h" #define MB (1024 * 1024UL) #define GB (1024 * 1024 * 1024UL) #ifdef __amd64__ #define VM_LOWMEM_LIMIT (3 * GB) #else #define VM_LOWMEM_LIMIT 0 #endif #define VM_HIGHMEM_BASE (4 * GB) /* * Size of the guard region before and after the virtual address space * mapping the guest physical memory. This must be a multiple of the * superpage size for performance reasons. */ #define VM_MMAP_GUARD_SIZE (4 * MB) #define PROT_RW (PROT_READ | PROT_WRITE) #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) static int vm_device_open(const char *name) { char devpath[PATH_MAX]; assert(strlen(name) <= VM_MAX_NAMELEN); (void)snprintf(devpath, sizeof(devpath), "/dev/vmm/%s", name); return (open(devpath, O_RDWR)); } static int vm_ctl_create(const char *name, int ctlfd) { struct vmmctl_vm_create vmc; memset(&vmc, 0, sizeof(vmc)); if (strlcpy(vmc.name, name, sizeof(vmc.name)) >= sizeof(vmc.name)) { errno = ENAMETOOLONG; return (-1); } return (ioctl(ctlfd, VMMCTL_VM_CREATE, &vmc)); } int vm_create(const char *name) { int error, fd; /* Try to load vmm(4) module before creating a guest. */ if (modfind("vmm") < 0) { error = kldload("vmm"); if (error != 0) return (-1); } fd = open("/dev/vmmctl", O_RDWR, 0); if (fd < 0) return (fd); error = vm_ctl_create(name, fd); if (error != 0) { error = errno; (void)close(fd); errno = error; return (-1); } (void)close(fd); return (0); } struct vmctx * vm_open(const char *name) { return (vm_openf(name, 0)); } struct vmctx * vm_openf(const char *name, int flags) { struct vmctx *vm; int saved_errno; bool created; created = false; vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); assert(vm != NULL); vm->fd = vm->ctlfd = -1; vm->memflags = 0; vm->name = (char *)(vm + 1); strcpy(vm->name, name); memset(vm->memsegs, 0, sizeof(vm->memsegs)); if ((vm->ctlfd = open("/dev/vmmctl", O_RDWR, 0)) < 0) goto err; vm->fd = vm_device_open(vm->name); if (vm->fd < 0 && errno == ENOENT) { if (flags & VMMAPI_OPEN_CREATE) { if (vm_ctl_create(vm->name, vm->ctlfd) != 0) goto err; vm->fd = vm_device_open(vm->name); created = true; } } if (vm->fd < 0) goto err; if (!created && (flags & VMMAPI_OPEN_REINIT) != 0 && vm_reinit(vm) != 0) goto err; return (vm); err: saved_errno = errno; if (created) vm_destroy(vm); else vm_close(vm); errno = saved_errno; return (NULL); } void vm_close(struct vmctx *vm) { assert(vm != NULL); if (vm->fd >= 0) (void)close(vm->fd); if (vm->ctlfd >= 0) (void)close(vm->ctlfd); free(vm); } void vm_destroy(struct vmctx *vm) { struct vmmctl_vm_destroy vmd; memset(&vmd, 0, sizeof(vmd)); (void)strlcpy(vmd.name, vm->name, sizeof(vmd.name)); if (ioctl(vm->ctlfd, VMMCTL_VM_DESTROY, &vmd) != 0) warn("ioctl(VMMCTL_VM_DESTROY)"); vm_close(vm); } struct vcpu * vm_vcpu_open(struct vmctx *ctx, int vcpuid) { struct vcpu *vcpu; vcpu = malloc(sizeof(*vcpu)); vcpu->ctx = ctx; vcpu->vcpuid = vcpuid; return (vcpu); } void vm_vcpu_close(struct vcpu *vcpu) { free(vcpu); } int vcpu_id(struct vcpu *vcpu) { return (vcpu->vcpuid); } int vm_parse_memsize(const char *opt, size_t *ret_memsize) { char *endptr; size_t optval; int error; optval = strtoul(opt, &endptr, 0); if (*opt != '\0' && *endptr == '\0') { /* * For the sake of backward compatibility if the memory size * specified on the command line is less than a megabyte then * it is interpreted as being in units of MB. */ if (optval < MB) optval *= MB; *ret_memsize = optval; error = 0; } else error = expand_number(opt, ret_memsize); return (error); } uint32_t vm_get_lowmem_limit(struct vmctx *ctx __unused) { return (VM_LOWMEM_LIMIT); } void vm_set_memflags(struct vmctx *ctx, int flags) { ctx->memflags = flags; } int vm_get_memflags(struct vmctx *ctx) { return (ctx->memflags); } /* * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). */ int vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, size_t len, int prot) { struct vm_memmap memmap; int error, flags; memmap.gpa = gpa; memmap.segid = segid; memmap.segoff = off; memmap.len = len; memmap.prot = prot; memmap.flags = 0; if (ctx->memflags & VM_MEM_F_WIRED) memmap.flags |= VM_MEMMAP_F_WIRED; /* * If this mapping already exists then don't create it again. This * is the common case for SYSMEM mappings created by bhyveload(8). */ error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); if (error == 0 && gpa == memmap.gpa) { if (segid != memmap.segid || off != memmap.segoff || prot != memmap.prot || flags != memmap.flags) { errno = EEXIST; return (-1); } else { return (0); } } error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); return (error); } int vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, size_t *lowmem_size, size_t *highmem_size) { *guest_baseaddr = ctx->baseaddr; *lowmem_size = ctx->memsegs[VM_MEMSEG_LOW].size; *highmem_size = ctx->memsegs[VM_MEMSEG_HIGH].size; return (0); } int vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) { struct vm_munmap munmap; int error; munmap.gpa = gpa; munmap.len = len; error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); return (error); } int vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) { struct vm_memmap memmap; int error; bzero(&memmap, sizeof(struct vm_memmap)); memmap.gpa = *gpa; error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); if (error == 0) { *gpa = memmap.gpa; *segid = memmap.segid; *segoff = memmap.segoff; *len = memmap.len; *prot = memmap.prot; *flags = memmap.flags; } return (error); } /* * Return 0 if the segments are identical and non-zero otherwise. * * This is slightly complicated by the fact that only device memory segments * are named. */ static int cmpseg(size_t len, const char *str, size_t len2, const char *str2) { if (len == len2) { if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) return (0); } return (-1); } static int vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) { struct vm_memseg memseg; size_t n; int error; /* * If the memory segment has already been created then just return. * This is the usual case for the SYSMEM segment created by userspace * loaders like bhyveload(8). */ error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, sizeof(memseg.name)); if (error) return (error); if (memseg.len != 0) { if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { errno = EINVAL; return (-1); } else { return (0); } } bzero(&memseg, sizeof(struct vm_memseg)); memseg.segid = segid; memseg.len = len; if (name != NULL) { n = strlcpy(memseg.name, name, sizeof(memseg.name)); if (n >= sizeof(memseg.name)) { errno = ENAMETOOLONG; return (-1); } } error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); return (error); } int vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, size_t bufsize) { struct vm_memseg memseg; size_t n; int error; bzero(&memseg, sizeof(memseg)); memseg.segid = segid; error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); if (error == 0) { *lenp = memseg.len; n = strlcpy(namebuf, memseg.name, bufsize); if (n >= bufsize) { errno = ENAMETOOLONG; error = -1; } } return (error); } static int setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) { char *ptr; int error, flags; /* Map 'len' bytes starting at 'gpa' in the guest address space */ error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); if (error) return (error); flags = MAP_SHARED | MAP_FIXED; if ((ctx->memflags & VM_MEM_F_INCORE) == 0) flags |= MAP_NOCORE; /* mmap into the process address space on the host */ ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); if (ptr == MAP_FAILED) return (-1); return (0); } int vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) { size_t objsize, len; vm_paddr_t gpa; char *baseaddr, *ptr; int error; assert(vms == VM_MMAP_ALL); /* * If 'memsize' cannot fit entirely in the 'lowmem' segment then create * another 'highmem' segment above VM_HIGHMEM_BASE for the remainder. */ if (memsize > VM_LOWMEM_LIMIT) { ctx->memsegs[VM_MEMSEG_LOW].size = VM_LOWMEM_LIMIT; ctx->memsegs[VM_MEMSEG_HIGH].size = memsize - VM_LOWMEM_LIMIT; objsize = VM_HIGHMEM_BASE + ctx->memsegs[VM_MEMSEG_HIGH].size; } else { ctx->memsegs[VM_MEMSEG_LOW].size = memsize; ctx->memsegs[VM_MEMSEG_HIGH].size = 0; objsize = memsize; } error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); if (error) return (error); /* * Stake out a contiguous region covering the guest physical memory * and the adjoining guard regions. */ len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); if (ptr == MAP_FAILED) return (-1); baseaddr = ptr + VM_MMAP_GUARD_SIZE; if (ctx->memsegs[VM_MEMSEG_HIGH].size > 0) { gpa = VM_HIGHMEM_BASE; len = ctx->memsegs[VM_MEMSEG_HIGH].size; error = setup_memory_segment(ctx, gpa, len, baseaddr); if (error) return (error); } if (ctx->memsegs[VM_MEMSEG_LOW].size > 0) { gpa = 0; len = ctx->memsegs[VM_MEMSEG_LOW].size; error = setup_memory_segment(ctx, gpa, len, baseaddr); if (error) return (error); } ctx->baseaddr = baseaddr; return (0); } /* * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in * the lowmem or highmem regions. * * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. * The instruction emulation code depends on this behavior. */ void * vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) { vm_size_t lowsize, highsize; lowsize = ctx->memsegs[VM_MEMSEG_LOW].size; if (lowsize > 0) { if (gaddr < lowsize && len <= lowsize && gaddr + len <= lowsize) return (ctx->baseaddr + gaddr); } highsize = ctx->memsegs[VM_MEMSEG_HIGH].size; if (highsize > 0 && gaddr >= VM_HIGHMEM_BASE) { if (gaddr < VM_HIGHMEM_BASE + highsize && len <= highsize && gaddr + len <= VM_HIGHMEM_BASE + highsize) return (ctx->baseaddr + gaddr); } return (NULL); } vm_paddr_t vm_rev_map_gpa(struct vmctx *ctx, void *addr) { vm_paddr_t offaddr; vm_size_t lowsize, highsize; offaddr = (char *)addr - ctx->baseaddr; lowsize = ctx->memsegs[VM_MEMSEG_LOW].size; if (lowsize > 0) if (offaddr <= lowsize) return (offaddr); highsize = ctx->memsegs[VM_MEMSEG_HIGH].size; if (highsize > 0) if (offaddr >= VM_HIGHMEM_BASE && offaddr < VM_HIGHMEM_BASE + highsize) return (offaddr); return ((vm_paddr_t)-1); } const char * vm_get_name(struct vmctx *ctx) { return (ctx->name); } size_t vm_get_lowmem_size(struct vmctx *ctx) { return (ctx->memsegs[VM_MEMSEG_LOW].size); } vm_paddr_t vm_get_highmem_base(struct vmctx *ctx __unused) { return (VM_HIGHMEM_BASE); } size_t vm_get_highmem_size(struct vmctx *ctx) { return (ctx->memsegs[VM_MEMSEG_HIGH].size); } void * vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) { char pathname[MAXPATHLEN]; size_t len2; char *base, *ptr; int fd, error, flags; fd = -1; ptr = MAP_FAILED; if (name == NULL || strlen(name) == 0) { errno = EINVAL; goto done; } error = vm_alloc_memseg(ctx, segid, len, name); if (error) goto done; strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); strlcat(pathname, ctx->name, sizeof(pathname)); strlcat(pathname, ".", sizeof(pathname)); strlcat(pathname, name, sizeof(pathname)); fd = open(pathname, O_RDWR); if (fd < 0) goto done; /* * Stake out a contiguous region covering the device memory and the * adjoining guard regions. */ len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); if (base == MAP_FAILED) goto done; flags = MAP_SHARED | MAP_FIXED; if ((ctx->memflags & VM_MEM_F_INCORE) == 0) flags |= MAP_NOCORE; /* mmap the devmem region in the host address space */ ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); done: if (fd >= 0) close(fd); return (ptr); } int vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg) { /* * XXX: fragile, handle with care * Assumes that the first field of the ioctl data * is the vcpuid. */ *(int *)arg = vcpu->vcpuid; return (ioctl(vcpu->ctx->fd, cmd, arg)); } int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) { int error; struct vm_register vmreg; bzero(&vmreg, sizeof(vmreg)); vmreg.regnum = reg; vmreg.regval = val; error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg); return (error); } int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val) { int error; struct vm_register vmreg; bzero(&vmreg, sizeof(vmreg)); vmreg.regnum = reg; error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg); *ret_val = vmreg.regval; return (error); } int vm_set_register_set(struct vcpu *vcpu, unsigned int count, const int *regnums, uint64_t *regvals) { int error; struct vm_register_set vmregset; bzero(&vmregset, sizeof(vmregset)); vmregset.count = count; vmregset.regnums = regnums; vmregset.regvals = regvals; error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset); return (error); } int vm_get_register_set(struct vcpu *vcpu, unsigned int count, const int *regnums, uint64_t *regvals) { int error; struct vm_register_set vmregset; bzero(&vmregset, sizeof(vmregset)); vmregset.count = count; vmregset.regnums = regnums; vmregset.regvals = regvals; error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset); return (error); } int vm_run(struct vcpu *vcpu, struct vm_run *vmrun) { return (vcpu_ioctl(vcpu, VM_RUN, vmrun)); } int vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) { struct vm_suspend vmsuspend; bzero(&vmsuspend, sizeof(vmsuspend)); vmsuspend.how = how; return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); } int vm_reinit(struct vmctx *ctx) { return (ioctl(ctx->fd, VM_REINIT, 0)); } int vm_capability_name2type(const char *capname) { int i; for (i = 0; i < VM_CAP_MAX; i++) { if (vm_capstrmap[i] != NULL && strcmp(vm_capstrmap[i], capname) == 0) return (i); } return (-1); } const char * vm_capability_type2name(int type) { if (type >= 0 && type < VM_CAP_MAX) return (vm_capstrmap[type]); return (NULL); } int vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval) { int error; struct vm_capability vmcap; bzero(&vmcap, sizeof(vmcap)); vmcap.captype = cap; error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap); *retval = vmcap.capval; return (error); } int vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val) { struct vm_capability vmcap; bzero(&vmcap, sizeof(vmcap)); vmcap.captype = cap; vmcap.capval = val; return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap)); } uint64_t * vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv, int *ret_entries) { static _Thread_local uint64_t *stats_buf; static _Thread_local u_int stats_count; uint64_t *new_stats; struct vm_stats vmstats; u_int count, index; bool have_stats; have_stats = false; count = 0; for (index = 0;; index += nitems(vmstats.statbuf)) { vmstats.index = index; if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0) break; if (stats_count < index + vmstats.num_entries) { new_stats = realloc(stats_buf, (index + vmstats.num_entries) * sizeof(uint64_t)); if (new_stats == NULL) { errno = ENOMEM; return (NULL); } stats_count = index + vmstats.num_entries; stats_buf = new_stats; } memcpy(stats_buf + index, vmstats.statbuf, vmstats.num_entries * sizeof(uint64_t)); count += vmstats.num_entries; have_stats = true; if (vmstats.num_entries != nitems(vmstats.statbuf)) break; } if (have_stats) { if (ret_entries) *ret_entries = count; if (ret_tv) *ret_tv = vmstats.tv; return (stats_buf); } else return (NULL); } const char * vm_get_stat_desc(struct vmctx *ctx, int index) { static struct vm_stat_desc statdesc; statdesc.index = index; if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) return (statdesc.desc); else return (NULL); } #ifdef __amd64__ int vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) { int error, i; struct vm_gpa_pte gpapte; bzero(&gpapte, sizeof(gpapte)); gpapte.gpa = gpa; error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); if (error == 0) { *num = gpapte.ptenum; for (i = 0; i < gpapte.ptenum; i++) pte[i] = gpapte.pte[i]; } return (error); } int vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging, uint64_t gla, int prot, uint64_t *gpa, int *fault) { struct vm_gla2gpa gg; int error; bzero(&gg, sizeof(struct vm_gla2gpa)); gg.prot = prot; gg.gla = gla; gg.paging = *paging; error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg); if (error == 0) { *fault = gg.fault; *gpa = gg.gpa; } return (error); } #endif int vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, uint64_t gla, int prot, uint64_t *gpa, int *fault) { struct vm_gla2gpa gg; int error; bzero(&gg, sizeof(struct vm_gla2gpa)); gg.prot = prot; gg.gla = gla; gg.paging = *paging; error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg); if (error == 0) { *fault = gg.fault; *gpa = gg.gpa; } return (error); } #ifndef min #define min(a,b) (((a) < (b)) ? (a) : (b)) #endif #ifdef __amd64__ int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, int *fault) { void *va; uint64_t gpa, off; int error, i, n; for (i = 0; i < iovcnt; i++) { iov[i].iov_base = 0; iov[i].iov_len = 0; } while (len) { assert(iovcnt > 0); error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); if (error || *fault) return (error); off = gpa & PAGE_MASK; n = MIN(len, PAGE_SIZE - off); va = vm_map_gpa(vcpu->ctx, gpa, n); if (va == NULL) return (EFAULT); iov->iov_base = va; iov->iov_len = n; iov++; iovcnt--; gla += n; len -= n; } return (0); } #endif void vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused) { /* * Intentionally empty. This is used by the instruction * emulation code shared with the kernel. The in-kernel * version of this is non-empty. */ } void vm_copyin(struct iovec *iov, void *vp, size_t len) { const char *src; char *dst; size_t n; dst = vp; while (len) { assert(iov->iov_len); n = min(len, iov->iov_len); src = iov->iov_base; bcopy(src, dst, n); iov++; dst += n; len -= n; } } void vm_copyout(const void *vp, struct iovec *iov, size_t len) { const char *src; char *dst; size_t n; src = vp; while (len) { assert(iov->iov_len); n = min(len, iov->iov_len); dst = iov->iov_base; bcopy(src, dst, n); iov++; src += n; len -= n; } } static int vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) { struct vm_cpuset vm_cpuset; int error; bzero(&vm_cpuset, sizeof(struct vm_cpuset)); vm_cpuset.which = which; vm_cpuset.cpusetsize = sizeof(cpuset_t); vm_cpuset.cpus = cpus; error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); return (error); } int vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) { return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); } int vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) { return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); } int vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) { return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); } int vm_activate_cpu(struct vcpu *vcpu) { struct vm_activate_cpu ac; int error; bzero(&ac, sizeof(struct vm_activate_cpu)); error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac); return (error); } int vm_suspend_all_cpus(struct vmctx *ctx) { struct vm_activate_cpu ac; int error; bzero(&ac, sizeof(struct vm_activate_cpu)); ac.vcpuid = -1; error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); return (error); } int vm_suspend_cpu(struct vcpu *vcpu) { struct vm_activate_cpu ac; int error; bzero(&ac, sizeof(struct vm_activate_cpu)); error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac); return (error); } int vm_resume_cpu(struct vcpu *vcpu) { struct vm_activate_cpu ac; int error; bzero(&ac, sizeof(struct vm_activate_cpu)); error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac); return (error); } int vm_resume_all_cpus(struct vmctx *ctx) { struct vm_activate_cpu ac; int error; bzero(&ac, sizeof(struct vm_activate_cpu)); ac.vcpuid = -1; error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); return (error); } #ifdef __amd64__ int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) { struct vm_intinfo vmii; int error; bzero(&vmii, sizeof(struct vm_intinfo)); error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii); if (error == 0) { *info1 = vmii.info1; *info2 = vmii.info2; } return (error); } int vm_set_intinfo(struct vcpu *vcpu, uint64_t info1) { struct vm_intinfo vmii; int error; bzero(&vmii, sizeof(struct vm_intinfo)); vmii.info1 = info1; error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii); return (error); } #endif #ifdef WITH_VMMAPI_SNAPSHOT int vm_restart_instruction(struct vcpu *vcpu) { int arg; return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg)); } int vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta) { if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { #ifdef SNAPSHOT_DEBUG fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", __func__, meta->dev_name, errno); #endif return (-1); } return (0); } int vm_restore_time(struct vmctx *ctx) { int dummy; dummy = 0; return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); } #endif int vm_set_topology(struct vmctx *ctx, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) { struct vm_cpu_topology topology; bzero(&topology, sizeof (struct vm_cpu_topology)); topology.sockets = sockets; topology.cores = cores; topology.threads = threads; topology.maxcpus = maxcpus; return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); } int vm_get_topology(struct vmctx *ctx, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) { struct vm_cpu_topology topology; int error; bzero(&topology, sizeof (struct vm_cpu_topology)); error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); if (error == 0) { *sockets = topology.sockets; *cores = topology.cores; *threads = topology.threads; *maxcpus = topology.maxcpus; } return (error); } int vm_limit_rights(struct vmctx *ctx) { cap_rights_t rights; cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW); if (caph_rights_limit(ctx->fd, &rights) != 0) return (-1); if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, vm_ioctl_ncmds) != 0) return (-1); return (0); } /* * Avoid using in new code. Operations on the fd should be wrapped here so that * capability rights can be kept in sync. */ int vm_get_device_fd(struct vmctx *ctx) { return (ctx->fd); } /* Legacy interface, do not use. */ const cap_ioctl_t * vm_get_ioctls(size_t *len) { cap_ioctl_t *cmds; size_t sz; if (len == NULL) { sz = vm_ioctl_ncmds * sizeof(vm_ioctl_cmds[0]); cmds = malloc(sz); if (cmds == NULL) return (NULL); bcopy(vm_ioctl_cmds, cmds, sz); return (cmds); } *len = vm_ioctl_ncmds; return (NULL); }