/*- * Copyright (c) 2005-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "memstat.h" #include "memstat_internal.h" static struct nlist namelist[] = { #define X_UMA_KEGS 0 { .n_name = "_uma_kegs" }, #define X_MP_MAXID 1 { .n_name = "_mp_maxid" }, #define X_ALL_CPUS 2 { .n_name = "_all_cpus" }, { .n_name = "" }, }; /* * Extract uma(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_uma(struct memory_type_list *list, int flags) { struct uma_stream_header *ushp; struct uma_type_header *uthp; struct uma_percpu_stat *upsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus, maxid; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxid); if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxid)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) * (maxid + 1)); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*ushp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; ushp = (struct uma_stream_header *)p; p += sizeof(*ushp); if (ushp->ush_version != UMA_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = ushp->ush_maxcpus; count = ushp->ush_count; for (i = 0; i < count; i++) { uthp = (struct uma_type_header *)p; p += sizeof(*uthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_UMA, uthp->uth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, uthp->uth_name, maxid + 1); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxid + 1); mtp->mt_numallocs = uthp->uth_allocs; mtp->mt_numfrees = uthp->uth_frees; mtp->mt_failures = uthp->uth_fails; mtp->mt_sleeps = uthp->uth_sleeps; for (j = 0; j < maxcpus; j++) { upsp = (struct uma_percpu_stat *)p; p += sizeof(*upsp); mtp->mt_percpu_cache[j].mtp_free = upsp->ups_cache_free; mtp->mt_free += upsp->ups_cache_free; mtp->mt_numallocs += upsp->ups_allocs; mtp->mt_numfrees += upsp->ups_frees; } mtp->mt_size = uthp->uth_size; mtp->mt_rsize = uthp->uth_rsize; mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size; mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size; mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_countlimit = uthp->uth_limit; mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; mtp->mt_zonefree = uthp->uth_zone_free; /* * UMA secondary zones share a keg with the primary zone. To * avoid double-reporting of free items, report keg free * items only in the primary zone. */ if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) { mtp->mt_kegfree = uthp->uth_keg_free; mtp->mt_free += mtp->mt_kegfree; } mtp->mt_free += mtp->mt_zonefree; } free(buffer); return (0); } static int kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } static int kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen) { ssize_t ret; int i; for (i = 0; i < buflen; i++) { ret = kvm_read(kvm, (unsigned long)kvm_pointer + i, &(buffer[i]), sizeof(char)); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != sizeof(char)) return (MEMSTAT_ERROR_KVM_SHORTREAD); if (buffer[i] == '\0') return (0); } /* Truncate. */ buffer[i-1] = '\0'; return (0); } static int kread_symbol(kvm_t *kvm, int index, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, namelist[index].n_value + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } /* * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts * UMA(9) statistics from a kernel core/memory file. */ int memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle) { LIST_HEAD(, uma_keg) uma_kegs; struct memory_type *mtp; struct uma_bucket *ubp, ub; struct uma_cache *ucp, *ucp_array; struct uma_zone *uzp, uz; struct uma_keg *kzp, kz; int hint_dontsearch, i, mp_maxid, ret; char name[MEMTYPE_MAXNAME]; cpuset_t all_cpus; long cpusetsize; kvm_t *kvm; kvm = (kvm_t *)kvm_handle; hint_dontsearch = LIST_EMPTY(&list->mtl_list); if (kvm_nlist(kvm, namelist) != 0) { list->mtl_error = MEMSTAT_ERROR_KVM; return (-1); } if (namelist[X_UMA_KEGS].n_type == 0 || namelist[X_UMA_KEGS].n_value == 0) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } cpusetsize = sysconf(_SC_CPUSET_SIZE); if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } CPU_ZERO(&all_cpus); ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1)); if (ucp_array == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp = LIST_NEXT(&kz, uk_link)) { ret = kread(kvm, kzp, &kz, sizeof(kz), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp = LIST_NEXT(&uz, uz_link)) { ret = kread(kvm, uzp, &uz, sizeof(uz), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } ret = kread(kvm, uzp, ucp_array, sizeof(struct uma_cache) * (mp_maxid + 1), offsetof(struct uma_zone, uz_cpu[0])); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } ret = kread_string(kvm, uz.uz_name, name, MEMTYPE_MAXNAME); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_UMA, name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, name, mp_maxid + 1); if (mtp == NULL) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, mp_maxid + 1); mtp->mt_numallocs = uz.uz_allocs; mtp->mt_numfrees = uz.uz_frees; mtp->mt_failures = uz.uz_fails; mtp->mt_sleeps = uz.uz_sleeps; if (kz.uk_flags & UMA_ZFLAG_INTERNAL) goto skip_percpu; for (i = 0; i < mp_maxid + 1; i++) { if (!CPU_ISSET(i, &all_cpus)) continue; ucp = &ucp_array[i]; mtp->mt_numallocs += ucp->uc_allocs; mtp->mt_numfrees += ucp->uc_frees; if (ucp->uc_allocbucket != NULL) { ret = kread(kvm, ucp->uc_allocbucket, &ub, sizeof(ub), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } mtp->mt_free += ub.ub_cnt; } if (ucp->uc_freebucket != NULL) { ret = kread(kvm, ucp->uc_freebucket, &ub, sizeof(ub), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } mtp->mt_free += ub.ub_cnt; } } skip_percpu: mtp->mt_size = kz.uk_size; mtp->mt_rsize = kz.uk_rsize; mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size; mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size; mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; if (kz.uk_ppera > 1) mtp->mt_countlimit = kz.uk_maxpages / kz.uk_ipers; else mtp->mt_countlimit = kz.uk_maxpages * kz.uk_ipers; mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; for (ubp = LIST_FIRST(&uz.uz_buckets); ubp != NULL; ubp = LIST_NEXT(&ub, ub_link)) { ret = kread(kvm, ubp, &ub, sizeof(ub), 0); mtp->mt_zonefree += ub.ub_cnt; } if (!((kz.uk_flags & UMA_ZONE_SECONDARY) && LIST_FIRST(&kz.uk_zones) != uzp)) { mtp->mt_kegfree = kz.uk_free; mtp->mt_free += mtp->mt_kegfree; } mtp->mt_free += mtp->mt_zonefree; } } free(ucp_array); return (0); }