/* $NetBSD: clnt_bcast.c,v 1.3 2000/07/06 03:05:20 christos Exp $ */ /*- * Copyright (c) 2009, Sun Microsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of Sun Microsystems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1986-1991 by Sun Microsystems Inc. */ #if defined(LIBC_SCCS) && !defined(lint) #ident "@(#)clnt_bcast.c 1.18 94/05/03 SMI" static char sccsid[] = "@(#)clnt_bcast.c 1.15 89/04/21 Copyr 1988 Sun Micro"; #endif #include __FBSDID("$FreeBSD$"); /* * clnt_bcast.c * Client interface to broadcast service. * * Copyright (C) 1988, Sun Microsystems, Inc. * * The following is kludged-up support for simple rpc broadcasts. * Someday a large, complicated system will replace these routines. */ #include "namespace.h" #include #include #include #include #include #include #include #include #ifdef PORTMAP #include #include #include #endif /* PORTMAP */ #include #include #ifdef RPC_DEBUG #include #endif #include #include #include #include #include #include #include "un-namespace.h" #include "rpc_com.h" #define MAXBCAST 20 /* Max no of broadcasting transports */ #define INITTIME 4000 /* Time to wait initially */ #define WAITTIME 8000 /* Maximum time to wait */ /* * If nettype is NULL, it broadcasts on all the available * datagram_n transports. May potentially lead to broadacst storms * and hence should be used with caution, care and courage. * * The current parameter xdr packet size is limited by the max tsdu * size of the transport. If the max tsdu size of any transport is * smaller than the parameter xdr packet, then broadcast is not * sent on that transport. * * Also, the packet size should be less the packet size of * the data link layer (for ethernet it is 1400 bytes). There is * no easy way to find out the max size of the data link layer and * we are assuming that the args would be smaller than that. * * The result size has to be smaller than the transport tsdu size. * * If PORTMAP has been defined, we send two packets for UDP, one for * rpcbind and one for portmap. For those machines which support * both rpcbind and portmap, it will cause them to reply twice, and * also here it will get two responses ... inefficient and clumsy. */ struct broadif { int index; struct sockaddr_storage broadaddr; TAILQ_ENTRY(broadif) link; }; typedef TAILQ_HEAD(, broadif) broadlist_t; int __rpc_getbroadifs(int, int, int, broadlist_t *); void __rpc_freebroadifs(broadlist_t *); int __rpc_broadenable(int, int, struct broadif *); int __rpc_lowvers = 0; int __rpc_getbroadifs(int af, int proto, int socktype, broadlist_t *list) { int count = 0; struct broadif *bip; struct ifaddrs *ifap, *ifp; #ifdef INET6 struct sockaddr_in6 *sin6; #endif struct sockaddr_in *sin; struct addrinfo hints, *res; if (getifaddrs(&ifp) < 0) return 0; memset(&hints, 0, sizeof hints); hints.ai_family = af; hints.ai_protocol = proto; hints.ai_socktype = socktype; if (getaddrinfo(NULL, "sunrpc", &hints, &res) != 0) { freeifaddrs(ifp); return 0; } for (ifap = ifp; ifap != NULL; ifap = ifap->ifa_next) { if (ifap->ifa_addr->sa_family != af || !(ifap->ifa_flags & IFF_UP)) continue; bip = (struct broadif *)malloc(sizeof *bip); if (bip == NULL) break; bip->index = if_nametoindex(ifap->ifa_name); if ( #ifdef INET6 af != AF_INET6 && #endif (ifap->ifa_flags & IFF_BROADCAST) && ifap->ifa_broadaddr) { memcpy(&bip->broadaddr, ifap->ifa_broadaddr, (size_t)ifap->ifa_broadaddr->sa_len); sin = (struct sockaddr_in *)(void *)&bip->broadaddr; sin->sin_port = ((struct sockaddr_in *) (void *)res->ai_addr)->sin_port; } else #ifdef INET6 if (af == AF_INET6 && (ifap->ifa_flags & IFF_MULTICAST)) { sin6 = (struct sockaddr_in6 *)(void *)&bip->broadaddr; inet_pton(af, RPCB_MULTICAST_ADDR, &sin6->sin6_addr); sin6->sin6_family = af; sin6->sin6_len = sizeof *sin6; sin6->sin6_port = ((struct sockaddr_in6 *) (void *)res->ai_addr)->sin6_port; sin6->sin6_scope_id = bip->index; } else #endif { free(bip); continue; } TAILQ_INSERT_TAIL(list, bip, link); count++; } freeifaddrs(ifp); freeaddrinfo(res); return count; } void __rpc_freebroadifs(broadlist_t *list) { struct broadif *bip, *next; bip = TAILQ_FIRST(list); while (bip != NULL) { next = TAILQ_NEXT(bip, link); free(bip); bip = next; } } int /*ARGSUSED*/ __rpc_broadenable(int af, int s, struct broadif *bip) { int o = 1; #if 0 if (af == AF_INET6) { fprintf(stderr, "set v6 multicast if to %d\n", bip->index); if (_setsockopt(s, IPPROTO_IPV6, IPV6_MULTICAST_IF, &bip->index, sizeof bip->index) < 0) return -1; } else #endif if (_setsockopt(s, SOL_SOCKET, SO_BROADCAST, &o, sizeof o) < 0) return -1; return 0; } /* * rpc_broadcast_exp() * * prog - program number * vers - version number * proc - procedure number * xargs - xdr routine for args * argsp - pointer to args * xresults - xdr routine for results * resultsp - pointer to results * eachresult - call with each result obtained * inittime - how long to wait initially * waittime - maximum time to wait * nettype - transport type */ enum clnt_stat rpc_broadcast_exp(rpcprog_t prog, rpcvers_t vers, rpcproc_t proc, xdrproc_t xargs, caddr_t argsp, xdrproc_t xresults, caddr_t resultsp, resultproc_t eachresult, int inittime, int waittime, const char *nettype) { enum clnt_stat stat = RPC_SUCCESS; /* Return status */ XDR xdr_stream; /* XDR stream */ XDR *xdrs = &xdr_stream; struct rpc_msg msg; /* RPC message */ struct timeval t; char *outbuf = NULL; /* Broadcast msg buffer */ char *inbuf = NULL; /* Reply buf */ int inlen; u_int maxbufsize = 0; AUTH *sys_auth = authunix_create_default(); u_int i; void *handle; char uaddress[1024]; /* A self imposed limit */ char *uaddrp = uaddress; int pmap_reply_flag; /* reply recvd from PORTMAP */ /* An array of all the suitable broadcast transports */ struct { int fd; /* File descriptor */ int af; int proto; struct netconfig *nconf; /* Netconfig structure */ u_int asize; /* Size of the addr buf */ u_int dsize; /* Size of the data buf */ struct sockaddr_storage raddr; /* Remote address */ broadlist_t nal; } fdlist[MAXBCAST]; struct pollfd pfd[MAXBCAST]; size_t fdlistno = 0; struct r_rpcb_rmtcallargs barg; /* Remote arguments */ struct r_rpcb_rmtcallres bres; /* Remote results */ size_t outlen; struct netconfig *nconf; int msec; int pollretval; int fds_found; #ifdef PORTMAP size_t outlen_pmap = 0; u_long port; /* Remote port number */ int pmap_flag = 0; /* UDP exists ? */ char *outbuf_pmap = NULL; struct rmtcallargs barg_pmap; /* Remote arguments */ struct rmtcallres bres_pmap; /* Remote results */ u_int udpbufsz = 0; #endif /* PORTMAP */ if (sys_auth == NULL) { return (RPC_SYSTEMERROR); } /* * initialization: create a fd, a broadcast address, and send the * request on the broadcast transport. * Listen on all of them and on replies, call the user supplied * function. */ if (nettype == NULL) nettype = "datagram_n"; if ((handle = __rpc_setconf(nettype)) == NULL) { AUTH_DESTROY(sys_auth); return (RPC_UNKNOWNPROTO); } while ((nconf = __rpc_getconf(handle)) != NULL) { int fd; struct __rpc_sockinfo si; if (nconf->nc_semantics != NC_TPI_CLTS) continue; if (fdlistno >= MAXBCAST) break; /* No more slots available */ if (!__rpc_nconf2sockinfo(nconf, &si)) continue; TAILQ_INIT(&fdlist[fdlistno].nal); if (__rpc_getbroadifs(si.si_af, si.si_proto, si.si_socktype, &fdlist[fdlistno].nal) == 0) continue; fd = _socket(si.si_af, si.si_socktype, si.si_proto); if (fd < 0) { stat = RPC_CANTSEND; continue; } fdlist[fdlistno].af = si.si_af; fdlist[fdlistno].proto = si.si_proto; fdlist[fdlistno].fd = fd; fdlist[fdlistno].nconf = nconf; fdlist[fdlistno].asize = __rpc_get_a_size(si.si_af); pfd[fdlistno].events = POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND; pfd[fdlistno].fd = fdlist[fdlistno].fd = fd; fdlist[fdlistno].dsize = __rpc_get_t_size(si.si_af, si.si_proto, 0); if (maxbufsize <= fdlist[fdlistno].dsize) maxbufsize = fdlist[fdlistno].dsize; #ifdef PORTMAP if (si.si_af == AF_INET && si.si_proto == IPPROTO_UDP) { udpbufsz = fdlist[fdlistno].dsize; if ((outbuf_pmap = malloc(udpbufsz)) == NULL) { _close(fd); stat = RPC_SYSTEMERROR; goto done_broad; } pmap_flag = 1; } #endif /* PORTMAP */ fdlistno++; } if (fdlistno == 0) { if (stat == RPC_SUCCESS) stat = RPC_UNKNOWNPROTO; goto done_broad; } if (maxbufsize == 0) { if (stat == RPC_SUCCESS) stat = RPC_CANTSEND; goto done_broad; } inbuf = malloc(maxbufsize); outbuf = malloc(maxbufsize); if ((inbuf == NULL) || (outbuf == NULL)) { stat = RPC_SYSTEMERROR; goto done_broad; } /* Serialize all the arguments which have to be sent */ (void) gettimeofday(&t, NULL); msg.rm_xid = __RPC_GETXID(&t); msg.rm_direction = CALL; msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; msg.rm_call.cb_prog = RPCBPROG; msg.rm_call.cb_vers = RPCBVERS; msg.rm_call.cb_proc = RPCBPROC_CALLIT; barg.prog = prog; barg.vers = vers; barg.proc = proc; barg.args.args_val = argsp; barg.xdr_args = xargs; bres.addr = uaddrp; bres.results.results_val = resultsp; bres.xdr_res = xresults; msg.rm_call.cb_cred = sys_auth->ah_cred; msg.rm_call.cb_verf = sys_auth->ah_verf; xdrmem_create(xdrs, outbuf, maxbufsize, XDR_ENCODE); if ((!xdr_callmsg(xdrs, &msg)) || (!xdr_rpcb_rmtcallargs(xdrs, (struct rpcb_rmtcallargs *)(void *)&barg))) { stat = RPC_CANTENCODEARGS; goto done_broad; } outlen = xdr_getpos(xdrs); xdr_destroy(xdrs); #ifdef PORTMAP /* Prepare the packet for version 2 PORTMAP */ if (pmap_flag) { msg.rm_xid++; /* One way to distinguish */ msg.rm_call.cb_prog = PMAPPROG; msg.rm_call.cb_vers = PMAPVERS; msg.rm_call.cb_proc = PMAPPROC_CALLIT; barg_pmap.prog = prog; barg_pmap.vers = vers; barg_pmap.proc = proc; barg_pmap.args_ptr = argsp; barg_pmap.xdr_args = xargs; bres_pmap.port_ptr = &port; bres_pmap.xdr_results = xresults; bres_pmap.results_ptr = resultsp; xdrmem_create(xdrs, outbuf_pmap, udpbufsz, XDR_ENCODE); if ((! xdr_callmsg(xdrs, &msg)) || (! xdr_rmtcall_args(xdrs, &barg_pmap))) { stat = RPC_CANTENCODEARGS; goto done_broad; } outlen_pmap = xdr_getpos(xdrs); xdr_destroy(xdrs); } #endif /* PORTMAP */ /* * Basic loop: broadcast the packets to transports which * support data packets of size such that one can encode * all the arguments. * Wait a while for response(s). * The response timeout grows larger per iteration. */ for (msec = inittime; msec <= waittime; msec += msec) { struct broadif *bip; /* Broadcast all the packets now */ for (i = 0; i < fdlistno; i++) { if (fdlist[i].dsize < outlen) { stat = RPC_CANTSEND; continue; } for (bip = TAILQ_FIRST(&fdlist[i].nal); bip != NULL; bip = TAILQ_NEXT(bip, link)) { void *addr; addr = &bip->broadaddr; __rpc_broadenable(fdlist[i].af, fdlist[i].fd, bip); /* * Only use version 3 if lowvers is not set */ if (!__rpc_lowvers) if (_sendto(fdlist[i].fd, outbuf, outlen, 0, (struct sockaddr*)addr, (size_t)fdlist[i].asize) != outlen) { #ifdef RPC_DEBUG perror("sendto"); #endif warnx("clnt_bcast: cannot send " "broadcast packet"); stat = RPC_CANTSEND; continue; }; #ifdef RPC_DEBUG if (!__rpc_lowvers) fprintf(stderr, "Broadcast packet sent " "for %s\n", fdlist[i].nconf->nc_netid); #endif #ifdef PORTMAP /* * Send the version 2 packet also * for UDP/IP */ if (pmap_flag && fdlist[i].proto == IPPROTO_UDP) { if (_sendto(fdlist[i].fd, outbuf_pmap, outlen_pmap, 0, addr, (size_t)fdlist[i].asize) != outlen_pmap) { warnx("clnt_bcast: " "Cannot send broadcast packet"); stat = RPC_CANTSEND; continue; } } #ifdef RPC_DEBUG fprintf(stderr, "PMAP Broadcast packet " "sent for %s\n", fdlist[i].nconf->nc_netid); #endif #endif /* PORTMAP */ } /* End for sending all packets on this transport */ } /* End for sending on all transports */ if (eachresult == NULL) { stat = RPC_SUCCESS; goto done_broad; } /* * Get all the replies from these broadcast requests */ recv_again: switch (pollretval = _poll(pfd, fdlistno, msec)) { case 0: /* timed out */ stat = RPC_TIMEDOUT; continue; case -1: /* some kind of error - we ignore it */ goto recv_again; } /* end of poll results switch */ for (i = fds_found = 0; i < fdlistno && fds_found < pollretval; i++) { bool_t done = FALSE; if (pfd[i].revents == 0) continue; else if (pfd[i].revents & POLLNVAL) { /* * Something bad has happened to this descri- * ptor. We can cause _poll() to ignore * it simply by using a negative fd. We do that * rather than compacting the pfd[] and fdlist[] * arrays. */ pfd[i].fd = -1; fds_found++; continue; } else fds_found++; #ifdef RPC_DEBUG fprintf(stderr, "response for %s\n", fdlist[i].nconf->nc_netid); #endif try_again: inlen = _recvfrom(fdlist[i].fd, inbuf, fdlist[i].dsize, 0, (struct sockaddr *)(void *)&fdlist[i].raddr, &fdlist[i].asize); if (inlen < 0) { if (errno == EINTR) goto try_again; warnx("clnt_bcast: Cannot receive reply to " "broadcast"); stat = RPC_CANTRECV; continue; } if (inlen < sizeof (u_int32_t)) continue; /* Drop that and go ahead */ /* * see if reply transaction id matches sent id. * If so, decode the results. If return id is xid + 1 * it was a PORTMAP reply */ if (*((u_int32_t *)(void *)(inbuf)) == *((u_int32_t *)(void *)(outbuf))) { pmap_reply_flag = 0; msg.acpted_rply.ar_verf = _null_auth; msg.acpted_rply.ar_results.where = (caddr_t)(void *)&bres; msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_rpcb_rmtcallres; #ifdef PORTMAP } else if (pmap_flag && *((u_int32_t *)(void *)(inbuf)) == *((u_int32_t *)(void *)(outbuf_pmap))) { pmap_reply_flag = 1; msg.acpted_rply.ar_verf = _null_auth; msg.acpted_rply.ar_results.where = (caddr_t)(void *)&bres_pmap; msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_rmtcallres; #endif /* PORTMAP */ } else continue; xdrmem_create(xdrs, inbuf, (u_int)inlen, XDR_DECODE); if (xdr_replymsg(xdrs, &msg)) { if ((msg.rm_reply.rp_stat == MSG_ACCEPTED) && (msg.acpted_rply.ar_stat == SUCCESS)) { struct netbuf taddr, *np; struct sockaddr_in *sin; #ifdef PORTMAP if (pmap_flag && pmap_reply_flag) { sin = (struct sockaddr_in *) (void *)&fdlist[i].raddr; sin->sin_port = htons((u_short)port); taddr.len = taddr.maxlen = fdlist[i].raddr.ss_len; taddr.buf = &fdlist[i].raddr; done = (*eachresult)(resultsp, &taddr, fdlist[i].nconf); } else { #endif /* PORTMAP */ #ifdef RPC_DEBUG fprintf(stderr, "uaddr %s\n", uaddrp); #endif np = uaddr2taddr( fdlist[i].nconf, uaddrp); done = (*eachresult)(resultsp, np, fdlist[i].nconf); free(np); #ifdef PORTMAP } #endif /* PORTMAP */ } /* otherwise, we just ignore the errors ... */ } /* else some kind of deserialization problem ... */ xdrs->x_op = XDR_FREE; msg.acpted_rply.ar_results.proc = (xdrproc_t) xdr_void; (void) xdr_replymsg(xdrs, &msg); (void) (*xresults)(xdrs, resultsp); XDR_DESTROY(xdrs); if (done) { stat = RPC_SUCCESS; goto done_broad; } else { goto recv_again; } } /* The recv for loop */ } /* The giant for loop */ done_broad: if (inbuf) (void) free(inbuf); if (outbuf) (void) free(outbuf); #ifdef PORTMAP if (outbuf_pmap) (void) free(outbuf_pmap); #endif /* PORTMAP */ for (i = 0; i < fdlistno; i++) { (void)_close(fdlist[i].fd); __rpc_freebroadifs(&fdlist[i].nal); } AUTH_DESTROY(sys_auth); (void) __rpc_endconf(handle); return (stat); } /* * rpc_broadcast() * * prog - program number * vers - version number * proc - procedure number * xargs - xdr routine for args * argsp - pointer to args * xresults - xdr routine for results * resultsp - pointer to results * eachresult - call with each result obtained * nettype - transport type */ enum clnt_stat rpc_broadcast(rpcprog_t prog, rpcvers_t vers, rpcproc_t proc, xdrproc_t xargs, caddr_t argsp, xdrproc_t xresults, caddr_t resultsp, resultproc_t eachresult, const char *nettype) { enum clnt_stat dummy; dummy = rpc_broadcast_exp(prog, vers, proc, xargs, argsp, xresults, resultsp, eachresult, INITTIME, WAITTIME, nettype); return (dummy); }