/* * Copyright (C) 2017 - This file is part of libecc project * * Authors: * Ryad BENADJILA * Arnaud EBALARD * Jean-Pierre FLORI * * Contributors: * Nicolas VIVET * Karim KHALFALLAH * * This software is licensed under a dual BSD and GPL v2 license. * See LICENSE file at the root folder of the project. */ #include #if defined(WITH_HASH_SHA512) || defined(WITH_HASH_SHA512_224) || defined(WITH_HASH_SHA512_256) #include /* SHA-2 core processing. Returns 0 on success, -1 on error. */ ATTRIBUTE_WARN_UNUSED_RET static int sha512_core_process(sha512_core_context *ctx, const u8 data[SHA512_CORE_BLOCK_SIZE]) { u64 a, b, c, d, e, f, g, h; u64 W[80]; unsigned int i; int ret; MUST_HAVE(((ctx != NULL) && (data != NULL)), ret, err); /* Init our inner variables */ a = ctx->sha512_state[0]; b = ctx->sha512_state[1]; c = ctx->sha512_state[2]; d = ctx->sha512_state[3]; e = ctx->sha512_state[4]; f = ctx->sha512_state[5]; g = ctx->sha512_state[6]; h = ctx->sha512_state[7]; for (i = 0; i < 16; i++) { GET_UINT64_BE(W[i], data, 8 * i); SHA2CORE_SHA512(a, b, c, d, e, f, g, h, W[i], K_SHA512[i]); } for (i = 16; i < 80; i++) { SHA2CORE_SHA512(a, b, c, d, e, f, g, h, UPDATEW_SHA512(W, i), K_SHA512[i]); } /* Update state */ ctx->sha512_state[0] += a; ctx->sha512_state[1] += b; ctx->sha512_state[2] += c; ctx->sha512_state[3] += d; ctx->sha512_state[4] += e; ctx->sha512_state[5] += f; ctx->sha512_state[6] += g; ctx->sha512_state[7] += h; ret = 0; err: return ret; } /* Core update hash function. Returns 0 on success, -1 on error. */ int sha512_core_update(sha512_core_context *ctx, const u8 *input, u32 ilen) { const u8 *data_ptr = input; u32 remain_ilen = ilen; u16 fill; u8 left; int ret; MUST_HAVE(((ctx != NULL) && ((input != NULL) || (ilen == 0))), ret, err); /* Nothing to process, return */ if (ilen == 0) { ret = 0; goto err; } /* Get what's left in our local buffer */ left = ctx->sha512_total[0] & 0x7F; fill = (u16)(SHA512_CORE_BLOCK_SIZE - left); ADD_UINT128_UINT64(ctx->sha512_total[0], ctx->sha512_total[1], ilen); if ((left > 0) && (remain_ilen >= fill)) { /* Copy data at the end of the buffer */ ret = local_memcpy(ctx->sha512_buffer + left, data_ptr, fill); EG(ret, err); ret = sha512_core_process(ctx, ctx->sha512_buffer); EG(ret, err); data_ptr += fill; remain_ilen -= fill; left = 0; } while (remain_ilen >= SHA512_CORE_BLOCK_SIZE) { ret = sha512_core_process(ctx, data_ptr); EG(ret, err); data_ptr += SHA512_CORE_BLOCK_SIZE; remain_ilen -= SHA512_CORE_BLOCK_SIZE; } if (remain_ilen > 0) { ret = local_memcpy(ctx->sha512_buffer + left, data_ptr, remain_ilen); EG(ret, err); } ret = 0; err: return ret; } /* Core finalize. Returns 0 on success, -1 on error. */ int sha512_core_final(sha512_core_context *ctx, u8 *output, u32 output_size) { unsigned int block_present = 0; u8 last_padded_block[2 * SHA512_CORE_BLOCK_SIZE]; int ret; MUST_HAVE(((ctx != NULL) && (output != NULL)), ret, err); /* Fill in our last block with zeroes */ ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err); /* This is our final step, so we proceed with the padding */ block_present = ctx->sha512_total[0] % SHA512_CORE_BLOCK_SIZE; if (block_present != 0) { /* Copy what's left in our temporary context buffer */ ret = local_memcpy(last_padded_block, ctx->sha512_buffer, block_present); EG(ret, err); } /* Put the 0x80 byte, beginning of padding */ last_padded_block[block_present] = 0x80; /* Handle possible additional block */ if (block_present > (SHA512_CORE_BLOCK_SIZE - 1 - (2 * sizeof(u64)))) { /* We need an additional block */ PUT_MUL8_UINT128_BE(ctx->sha512_total[0], ctx->sha512_total[1], last_padded_block, 2 * (SHA512_CORE_BLOCK_SIZE - sizeof(u64))); ret = sha512_core_process(ctx, last_padded_block); EG(ret, err); ret = sha512_core_process(ctx, last_padded_block + SHA512_CORE_BLOCK_SIZE); EG(ret, err); } else { /* We do not need an additional block */ PUT_MUL8_UINT128_BE(ctx->sha512_total[0], ctx->sha512_total[1], last_padded_block, SHA512_CORE_BLOCK_SIZE - (2 * sizeof(u64))); ret = sha512_core_process(ctx, last_padded_block); EG(ret, err); } /* Output the hash result truncated to the output size */ if(output_size >= SHA512_CORE_DIGEST_SIZE){ PUT_UINT64_BE(ctx->sha512_state[0], output, 0); PUT_UINT64_BE(ctx->sha512_state[1], output, 8); PUT_UINT64_BE(ctx->sha512_state[2], output, 16); PUT_UINT64_BE(ctx->sha512_state[3], output, 24); PUT_UINT64_BE(ctx->sha512_state[4], output, 32); PUT_UINT64_BE(ctx->sha512_state[5], output, 40); PUT_UINT64_BE(ctx->sha512_state[6], output, 48); PUT_UINT64_BE(ctx->sha512_state[7], output, 56); } else { u8 tmp_output[SHA512_CORE_DIGEST_SIZE] = { 0 }; PUT_UINT64_BE(ctx->sha512_state[0], tmp_output, 0); PUT_UINT64_BE(ctx->sha512_state[1], tmp_output, 8); PUT_UINT64_BE(ctx->sha512_state[2], tmp_output, 16); PUT_UINT64_BE(ctx->sha512_state[3], tmp_output, 24); PUT_UINT64_BE(ctx->sha512_state[4], tmp_output, 32); PUT_UINT64_BE(ctx->sha512_state[5], tmp_output, 40); PUT_UINT64_BE(ctx->sha512_state[6], tmp_output, 48); PUT_UINT64_BE(ctx->sha512_state[7], tmp_output, 56); ret = local_memcpy(output, tmp_output, output_size); EG(ret, err); } ret = 0; err: return ret; } #else /* defined(WITH_HASH_SHA512) || defined(WITH_HASH_SHA512_224) || defined(WITH_HASH_SHA512_256) */ /* * Dummy definition to avoid the empty translation unit ISO C warning */ typedef int dummy; #endif /* WITH_HASH_SHA512 */