/* * Copyright (C) 2021 - This file is part of libecc project * * Authors: * Arnaud EBALARD * Ryad BENADJILA * * This software is licensed under a dual BSD and GPL v2 license. * See LICENSE file at the root folder of the project. */ #include #ifdef WITH_HASH_RIPEMD160 #include /****************************************************/ /* * 32-bit integer manipulation macros (big endian) */ #ifndef GET_UINT32_LE #define GET_UINT32_LE(n, b, i) \ do { \ (n) = ( ((u32) (b)[(i) + 3]) << 24 ) \ | ( ((u32) (b)[(i) + 2]) << 16 ) \ | ( ((u32) (b)[(i) + 1]) << 8 ) \ | ( ((u32) (b)[(i) ]) ); \ } while( 0 ) #endif #ifndef PUT_UINT32_LE #define PUT_UINT32_LE(n, b, i) \ do { \ (b)[(i) + 3] = (u8) ( (n) >> 24 ); \ (b)[(i) + 2] = (u8) ( (n) >> 16 ); \ (b)[(i) + 1] = (u8) ( (n) >> 8 ); \ (b)[(i) ] = (u8) ( (n) ); \ } while( 0 ) #endif /* * 64-bit integer manipulation macros (big endian) */ #ifndef PUT_UINT64_LE #define PUT_UINT64_LE(n,b,i) \ do { \ (b)[(i) + 7] = (u8) ( (n) >> 56 ); \ (b)[(i) + 6] = (u8) ( (n) >> 48 ); \ (b)[(i) + 5] = (u8) ( (n) >> 40 ); \ (b)[(i) + 4] = (u8) ( (n) >> 32 ); \ (b)[(i) + 3] = (u8) ( (n) >> 24 ); \ (b)[(i) + 2] = (u8) ( (n) >> 16 ); \ (b)[(i) + 1] = (u8) ( (n) >> 8 ); \ (b)[(i) ] = (u8) ( (n) ); \ } while( 0 ) #endif /* PUT_UINT64_LE */ /* Elements related to RIPEMD160 */ #define ROTL_RIPEMD160(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n)))) #define F1_RIPEMD160(x, y, z) ((x) ^ (y) ^ (z)) #define F2_RIPEMD160(x, y, z) (((x) & (y)) | ((~(x)) & (z))) #define F3_RIPEMD160(x, y, z) (((x) | (~(y))) ^ (z)) #define F4_RIPEMD160(x, y, z) (((x) & (z)) | ((y) & (~(z)))) #define F5_RIPEMD160(x, y, z) ((x) ^ ((y) | (~(z)))) /* Left constants */ static const u32 KL_RIPEMD160[5] = { 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e }; /* Right constants */ static const u32 KR_RIPEMD160[5] = { 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 }; /* Left line */ static const u8 RL_RIPEMD160[5][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }, { 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 }, { 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 }, { 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 } }; static const u8 SL_RIPEMD160[5][16] = { { 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 }, { 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 }, { 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 }, { 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 }, { 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 } }; /* Right line */ static const u8 RR_RIPEMD160[5][16] = { { 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 }, { 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 }, { 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 }, { 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 }, { 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 } }; static const u8 SR_RIPEMD160[5][16] = { { 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 }, { 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 }, { 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 }, { 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 }, { 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 } }; #define RIPEMD160_CORE(a, b, c, d, e, round, idx, w, F, S, R, K) do { \ u32 t = ROTL_RIPEMD160(a + F(b, c, d) + w[R[round][idx]] + K[round], S[round][idx]) + e;\ a = e; e = d; d = ROTL_RIPEMD160(c, 10); c = b; b = t; \ } while(0) /* RIPEMD160 core processing */ ATTRIBUTE_WARN_UNUSED_RET static int ripemd160_process(ripemd160_context *ctx, const u8 data[RIPEMD160_BLOCK_SIZE]) { /* Left line */ u32 al, bl, cl, dl, el; /* Right line */ u32 ar, br, cr, dr, er; /* Temporary data */ u32 tt; /* Data */ u32 W[16]; unsigned int i; int ret; MUST_HAVE((data != NULL), ret, err); RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); /* Init our inner variables */ al = ar = ctx->ripemd160_state[0]; bl = br = ctx->ripemd160_state[1]; cl = cr = ctx->ripemd160_state[2]; dl = dr = ctx->ripemd160_state[3]; el = er = ctx->ripemd160_state[4]; /* Load data */ for (i = 0; i < 16; i++) { GET_UINT32_LE(W[i], data, (4 * i)); } /* Round 1 */ for(i = 0; i < 16; i++){ RIPEMD160_CORE(al, bl, cl, dl, el, 0, i, W, F1_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); RIPEMD160_CORE(ar, br, cr, dr, er, 0, i, W, F5_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); } /* Round 2 */ for(i = 0; i < 16; i++){ RIPEMD160_CORE(al, bl, cl, dl, el, 1, i, W, F2_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); RIPEMD160_CORE(ar, br, cr, dr, er, 1, i, W, F4_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); } /* Round 3 */ for(i = 0; i < 16; i++){ RIPEMD160_CORE(al, bl, cl, dl, el, 2, i, W, F3_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); RIPEMD160_CORE(ar, br, cr, dr, er, 2, i, W, F3_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); } /* Round 4 */ for(i = 0; i < 16; i++){ RIPEMD160_CORE(al, bl, cl, dl, el, 3, i, W, F4_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); RIPEMD160_CORE(ar, br, cr, dr, er, 3, i, W, F2_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); } /* Round 5 */ for(i = 0; i < 16; i++){ RIPEMD160_CORE(al, bl, cl, dl, el, 4, i, W, F5_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); RIPEMD160_CORE(ar, br, cr, dr, er, 4, i, W, F1_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); } /* Mix the lines and update state */ tt = (ctx->ripemd160_state[1] + cl + dr); ctx->ripemd160_state[1] = (ctx->ripemd160_state[2] + dl + er); ctx->ripemd160_state[2] = (ctx->ripemd160_state[3] + el + ar); ctx->ripemd160_state[3] = (ctx->ripemd160_state[4] + al + br); ctx->ripemd160_state[4] = (ctx->ripemd160_state[0] + bl + cr); ctx->ripemd160_state[0] = tt; ret = 0; err: return ret; } /* Init hash function */ int ripemd160_init(ripemd160_context *ctx) { int ret; MUST_HAVE((ctx != NULL), ret, err); ctx->ripemd160_total = 0; ctx->ripemd160_state[0] = 0x67452301; ctx->ripemd160_state[1] = 0xefcdab89; ctx->ripemd160_state[2] = 0x98badcfe; ctx->ripemd160_state[3] = 0x10325476; ctx->ripemd160_state[4] = 0xc3d2e1f0; /* Tell that we are initialized */ ctx->magic = RIPEMD160_HASH_MAGIC; ret = 0; err: return ret; } /* Update hash function */ int ripemd160_update(ripemd160_context *ctx, const u8 *input, u32 ilen) { const u8 *data_ptr = input; u32 remain_ilen = ilen; u16 fill; u8 left; int ret; MUST_HAVE((input != NULL) || (ilen == 0), ret, err); RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); /* Nothing to process, return */ if (ilen == 0) { ret = 0; goto err; } /* Get what's left in our local buffer */ left = (ctx->ripemd160_total & 0x3F); fill = (u16)(RIPEMD160_BLOCK_SIZE - left); ctx->ripemd160_total += ilen; if ((left > 0) && (remain_ilen >= fill)) { /* Copy data at the end of the buffer */ ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, fill); EG(ret, err); ret = ripemd160_process(ctx, ctx->ripemd160_buffer); EG(ret, err); data_ptr += fill; remain_ilen -= fill; left = 0; } while (remain_ilen >= RIPEMD160_BLOCK_SIZE) { ret = ripemd160_process(ctx, data_ptr); EG(ret, err); data_ptr += RIPEMD160_BLOCK_SIZE; remain_ilen -= RIPEMD160_BLOCK_SIZE; } if (remain_ilen > 0) { ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, remain_ilen); EG(ret, err); } ret = 0; err: return ret; } /* Finalize */ int ripemd160_final(ripemd160_context *ctx, u8 output[RIPEMD160_DIGEST_SIZE]) { unsigned int block_present = 0; u8 last_padded_block[2 * RIPEMD160_BLOCK_SIZE]; int ret; MUST_HAVE((output != NULL), ret, err); RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); /* Fill in our last block with zeroes */ ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err); /* This is our final step, so we proceed with the padding */ block_present = (ctx->ripemd160_total % RIPEMD160_BLOCK_SIZE); if (block_present != 0) { /* Copy what's left in our temporary context buffer */ ret = local_memcpy(last_padded_block, ctx->ripemd160_buffer, block_present); EG(ret, err); } /* Put the 0x80 byte, beginning of padding */ last_padded_block[block_present] = 0x80; /* Handle possible additional block */ if (block_present > (RIPEMD160_BLOCK_SIZE - 1 - sizeof(u64))) { /* We need an additional block */ PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block, (2 * RIPEMD160_BLOCK_SIZE) - sizeof(u64)); ret = ripemd160_process(ctx, last_padded_block); EG(ret, err); ret = ripemd160_process(ctx, last_padded_block + RIPEMD160_BLOCK_SIZE); EG(ret, err); } else { /* We do not need an additional block */ PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block, RIPEMD160_BLOCK_SIZE - sizeof(u64)); ret = ripemd160_process(ctx, last_padded_block); EG(ret, err); } /* Output the hash result */ PUT_UINT32_LE(ctx->ripemd160_state[0], output, 0); PUT_UINT32_LE(ctx->ripemd160_state[1], output, 4); PUT_UINT32_LE(ctx->ripemd160_state[2], output, 8); PUT_UINT32_LE(ctx->ripemd160_state[3], output, 12); PUT_UINT32_LE(ctx->ripemd160_state[4], output, 16); /* Tell that we are uninitialized */ ctx->magic = WORD(0); ret = 0; err: return ret; } int ripemd160_scattered(const u8 **inputs, const u32 *ilens, u8 output[RIPEMD160_DIGEST_SIZE]) { ripemd160_context ctx; int ret, pos = 0; MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err); ret = ripemd160_init(&ctx); EG(ret, err); while (inputs[pos] != NULL) { ret = ripemd160_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err); pos += 1; } ret = ripemd160_final(&ctx, output); err: return ret; } int ripemd160(const u8 *input, u32 ilen, u8 output[RIPEMD160_DIGEST_SIZE]) { ripemd160_context ctx; int ret; ret = ripemd160_init(&ctx); EG(ret, err); ret = ripemd160_update(&ctx, input, ilen); EG(ret, err); ret = ripemd160_final(&ctx, output); err: return ret; } #else /* WITH_HASH_RIPEMD160 */ /* * Dummy definition to avoid the empty translation unit ISO C warning */ typedef int dummy; #endif /* WITH_HASH_RIPEMD160 */