/* * Copyright (C) 2017 - This file is part of libecc project * * Authors: * Ryad BENADJILA * Arnaud EBALARD * Jean-Pierre FLORI * * Contributors: * Nicolas VIVET * Karim KHALFALLAH * * This software is licensed under a dual BSD and GPL v2 license. * See LICENSE file at the root folder of the project. */ #include #include #include #include #include /* Include the "internal" header as we use non public API here */ #include "../nn/nn_div.h" /* * Compute out = in1 * in2 mod p. 'out' parameter must have been initialized * by the caller. Returns 0 on success, -1 on error. * * Aliasing is supported. */ int fp_mul(fp_t out, fp_src_t in1, fp_src_t in2) { int ret; ret = fp_check_initialized(in1); EG(ret, err); ret = fp_check_initialized(in2); EG(ret, err); ret = fp_check_initialized(out); EG(ret, err); MUST_HAVE(out->ctx == in1->ctx, ret, err); MUST_HAVE(out->ctx == in2->ctx, ret, err); ret = nn_mul(&(out->fp_val), &(in1->fp_val), &(in2->fp_val)); EG(ret, err); ret = nn_mod_unshifted(&(out->fp_val), &(out->fp_val), &(in1->ctx->p_normalized), in1->ctx->p_reciprocal, in1->ctx->p_shift); err: return ret; } /* * Compute out = in * in mod p. 'out' parameter must have been initialized * by the caller. Returns 0 on success, -1 on error. * * Aliasing is supported. */ int fp_sqr(fp_t out, fp_src_t in) { return fp_mul(out, in, in); } /* We use Fermat's little theorem for our inversion in Fp: * x^(p-1) = 1 mod (p) means that x^(p-2) mod(p) is the modular * inverse of x mod (p) * * Aliasing is supported. */ int fp_inv(fp_t out, fp_src_t in) { /* Use our lower layer Fermat modular inversion with precomputed * Montgomery coefficients. */ int ret; ret = fp_check_initialized(in); EG(ret, err); ret = fp_check_initialized(out); EG(ret, err); MUST_HAVE(out->ctx == in->ctx, ret, err); /* We can use the Fermat inversion as p is surely prime here */ ret = nn_modinv_fermat_redc(&(out->fp_val), &(in->fp_val), &(in->ctx->p), &(in->ctx->r), &(in->ctx->r_square), in->ctx->mpinv); err: return ret; } /* * Compute out = w^-1 mod p. 'out' parameter must have been initialized * by the caller. Returns 0 on success, -1 on error. */ int fp_inv_word(fp_t out, word_t w) { int ret; ret = fp_check_initialized(out); EG(ret, err); ret = nn_modinv_word(&(out->fp_val), w, &(out->ctx->p)); err: return ret; } /* * Compute out such that num = out * den mod p. 'out' parameter must have been initialized * by the caller. Returns 0 on success, -1 on error. * * Aliasing is supported. */ int fp_div(fp_t out, fp_src_t num, fp_src_t den) { int ret; ret = fp_check_initialized(num); EG(ret, err); ret = fp_check_initialized(den); EG(ret, err); ret = fp_check_initialized(out); EG(ret, err); MUST_HAVE(out->ctx == num->ctx, ret, err); MUST_HAVE(out->ctx == den->ctx, ret, err); if(out == num){ /* Handle aliasing of out and num */ fp _num; _num.magic = WORD(0); ret = fp_copy(&_num, num); EG(ret, err1); ret = fp_inv(out, den); EG(ret, err1); ret = fp_mul(out, &_num, out); err1: fp_uninit(&_num); EG(ret, err); } else{ ret = fp_inv(out, den); EG(ret, err); ret = fp_mul(out, num, out); } err: return ret; }