/* * Copyright (C) 2021 - This file is part of libecc project * * Authors: * Ryad BENADJILA * Arnaud EBALARD * * This software is licensed under a dual BSD and GPL v2 license. * See LICENSE file at the root folder of the project. */ #include "sss_private.h" #include "sss.h" /* * The purpose of this example is to implement the SSS * (Shamir's Secret Sharing) scheme based on libecc arithmetic * primitives. The scheme is implemented over a ~256 bit prime * field. * * Secret sharing allows to combine some shares (at least k among n >= k) * to regenerate a secret. The current code also ensures the integrity * of the shares using HMAC. A maximum of (2**16 - 1) shares can be * generated, and beware that the time complexity of generation heavily * increases with k and n, and the time complexity of shares combination * increases with k. * * Shares regeneration from exisiting ones is also offered although it * is expensive in CPU cycles (as the Lagrange interpolation polynomials * have to be evaluated for each existing share before computing new ones). * * !! DISCLAIMER !! * ================ * Some efforts have been put on providing a clean code and constant time * as well as some SCA (side-channel attacks) resistance (e.g. blinding some * operations manipulating secrets). However, no absolute guarantee can be claimed: * use this code knowingly and at your own risks! * * Also, as for all other libecc primitives, beware of randomness sources. By default, * the library uses the OS random sources (e.g. "/dev/urandom"), but the user * is encouraged to adapt the ../external_deps/rand.c source file to combine * multiple sources and add entropy there depending on the context where this * code is integrated. The security level of all the cryptographic primitives * heavily relies on random sources quality. * */ #ifndef GET_UINT16_BE #define GET_UINT16_BE(n, b, i) \ do { \ (n) = (u16)( ((u16) (b)[(i) ]) << 8 ) \ | (u16)( ((u16) (b)[(i) + 1]) ); \ } while( 0 ) #endif #ifndef PUT_UINT16_BE #define PUT_UINT16_BE(n, b, i) \ do { \ (b)[(i) ] = (u8) ( (n) >> 8 ); \ (b)[(i) + 1] = (u8) ( (n) ); \ } while( 0 ) #endif /* The prime number we use: it is close to (2**256-1) but still stricly less * than this value, hence a theoretical security of more than 255 bits but less than * 256 bits. This prime p is used in the prime field of secp256k1, the "bitcoin" * curve. * * This can be modified with another prime, beware however of the size * of the prime to be in line with the shared secrets sizes, and also * that all our shares and secret lie in Fp, and hence are < p, * * Although bigger primes could be used, beware that SSS shares recombination * complexity is quadratic in the number of shares, yielding impractical * computation time when the prime is too big. Also, some elements related to * the share generation (_sss_derive_seed) must be adapated to keep proper entropy * if the prime (size) is modified. */ static const u8 prime[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, }; ATTRIBUTE_WARN_UNUSED_RET static int _sss_derive_seed(fp_t out, const u8 seed[SSS_SECRET_SIZE], u16 idx) { int ret; u8 hmac_val[SHA512_DIGEST_SIZE]; u8 C[2]; u8 len; nn nn_val; /* Sanity check on sizes to avoid entropy loss through reduction biases */ MUST_HAVE((SHA512_DIGEST_SIZE >= (2 * SSS_SECRET_SIZE)), ret, err); /* out must be initialized with a context */ ret = fp_check_initialized(out); EG(ret, err); ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err); ret = local_memset(C, 0, sizeof(C)); EG(ret, err); /* Export our idx in big endian representation on two bytes */ PUT_UINT16_BE(idx, C, 0); len = sizeof(hmac_val); ret = hmac(seed, SSS_SECRET_SIZE, SHA512, C, sizeof(C), hmac_val, &len); EG(ret, err); ret = nn_init_from_buf(&nn_val, hmac_val, len); EG(ret, err); /* Since we will put this in Fp, take the modulo */ ret = nn_mod(&nn_val, &nn_val, &(out->ctx->p)); EG(ret, err); /* Now import our reduced value in Fp as the result of the derivation */ ret = fp_set_nn(out, &nn_val); err: /* Cleanup secret data */ IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val))); IGNORE_RET_VAL(local_memset(C, 0, sizeof(C))); nn_uninit(&nn_val); return ret; } /***** Raw versions ***********************/ /* SSS shares and secret generation */ ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_generate(sss_share *shares, u16 k, u16 n, sss_secret *secret, boolean input_secret) { fp_ctx ctx; nn p; fp a0, a, s; fp exp, base, tmp; fp blind, blind_inv; u8 secret_seed[SSS_SECRET_SIZE]; u16 idx_shift, num_shares; int ret; unsigned int i, j; p.magic = WORD(0); exp.magic = base.magic = tmp.magic = s.magic = a.magic = a0.magic = WORD(0); blind.magic = blind_inv.magic = WORD(0); ret = local_memset(secret_seed, 0, sizeof(secret_seed)); EG(ret, err); MUST_HAVE((shares != NULL) && (secret != NULL), ret, err); /* Sanity checks */ MUST_HAVE((n <= (u16)(0xffff - 1)), ret, err); MUST_HAVE((k <= n), ret, err); MUST_HAVE((k >= 1), ret, err); MUST_HAVE((SSS_SECRET_SIZE == sizeof(prime)), ret, err); /* Import our prime number and create the Fp context */ ret = nn_init_from_buf(&p, prime, sizeof(prime)); EG(ret, err); ret = fp_ctx_init_from_p(&ctx, &p); EG(ret, err); /* Generate a secret seed of the size of the secret that will be our base to * generate the plolynomial coefficients. */ ret = get_random(secret_seed, sizeof(secret_seed)); EG(ret, err); /* NOTE: although we could generate all our a[i] coefficients using our randomness * source, we prefer to derive them from a single secret seed in order to optimize * the storage space as our share generation algorithm needs to parse these a[i] multiple * times. This time / memory tradeoff saves a lot of memory space for embedded contexts and * avoids "malloc" usage (preserving the "no dynamic allocation" philosophy of libecc). * * Our secret seed is SSS_SECRET_SIZE long, so on the security side there should be no * loss of strength/entropy. For each index i, a[i] is computed as follows: * * a[i] = HMAC(secret_seed, i) * where the HMAC is interpreted as a value in Fp (i.e. modulo p), and i is represented * as a string of 2 elements. The HMAC uses a hash function of at least twice the * size of the secret to avoid biases in modular reduction. */ /* a0 is either derived from the secret seed or taken from input if * provided. */ ret = fp_init(&a0, &ctx); EG(ret, err); if(input_secret == SSS_TRUE){ /* Import the secret the user provides * XXX: NOTE: the user shared secret MUST be in Fp! Since our prime is < (2**256 - 1), * some 256 bit strings can be rejected here (namely those >= p and <= (2**256 - 1)). */ ret = fp_import_from_buf(&a0, secret->secret, SSS_SECRET_SIZE); EG(ret, err); } else{ /* Generate the secret from our seed */ ret = _sss_derive_seed(&a0, secret_seed, 0); EG(ret, err); } /* Compute the shares P(x) for x in [idx_shift + 0, ..., idx_shift + n] (or * [idx_shift + 0, ..., idx_shift + n + 1] to avoid the 0 index), * with idx_shift a non-zero random index shift to avoid leaking the number of shares. */ ret = fp_init(&base, &ctx); EG(ret, err); ret = fp_init(&exp, &ctx); EG(ret, err); ret = fp_init(&tmp, &ctx); EG(ret, err); ret = fp_init(&s, &ctx); EG(ret, err); ret = fp_init(&a, &ctx); EG(ret, err); /* Get a random blind mask and invert it */ ret = fp_get_random(&blind, &ctx); EG(ret, err); ret = fp_init(&blind_inv, &ctx); EG(ret, err); ret = fp_inv(&blind_inv, &blind); EG(ret, err); /* Generate a non-zero random index base for x to avoid leaking * the number of shares. We could use a static sequence from x = 1 to n * but this would leak some information to the participants about the number * of shares (e.g. if a participant gets the share with x = 4, she surely knows * that n >= 4). To avoid the leak we randomize the base value of the index where * we begin our x. */ idx_shift = 0; while(idx_shift == 0){ ret = get_random((u8*)&idx_shift, sizeof(idx_shift)); EG(ret, err); } num_shares = 0; i = 0; while(num_shares < n){ _sss_raw_share *cur_share_i = &(shares[num_shares].raw_share); u16 curr_idx = (u16)(idx_shift + i); if(curr_idx == 0){ /* Skip the index 0 specific case */ i++; continue; } /* Set s[i] to the a[0] as blinded initial value */ ret = fp_mul(&s, &blind, &a0); EG(ret, err); /* Get a random base x as u16 for share index */ ret = fp_set_word_value(&base, (word_t)curr_idx); EG(ret, err); /* Set the exp to 1 */ ret = fp_one(&exp); EG(ret, err); for(j = 1; j < k; j++){ /* Compute x**j by iterative multiplications */ ret = fp_mul_monty(&exp, &exp, &base); EG(ret, err); /* Compute our a[j] coefficient */ ret = _sss_derive_seed(&a, secret_seed, (u16)j); EG(ret, err); /* Blind a[j] */ ret = fp_mul_monty(&a, &a, &blind); EG(ret, err); /* NOTE1: actually, the real a[j] coefficients are _sss_derive_seed(secret_seed, j) * multiplied by some power of r^-1 (the Montgomery constant), but this is OK as * we need any random values (computable from the secret seed) here. We use this "trick" * to be able to use our more performant redcified versions of Fp multiplication. * * NOTE2: this trick makes also this generation not deterministic with the same seed * on binaries with different WORD sizes (16, 32, 64 bits) as the r Montgomery constant will * differ depending on this size. However, this is not really an issue per se for our SSS * as we are in our generation primitive and the a[j] coefficients are expected to be * random (the only drawback is that deterministic test vectors will not be consistent * across WORD sizes). */ /* Accumulate */ ret = fp_mul_monty(&tmp, &exp, &a); EG(ret, err); ret = fp_add(&s, &s, &tmp); EG(ret, err); } /* Export the computed share */ PUT_UINT16_BE(curr_idx, (u8*)&(cur_share_i->index), 0); /* Unblind */ ret = fp_mul(&s, &s, &blind_inv); EG(ret, err); ret = fp_export_to_buf(cur_share_i->share, SSS_SECRET_SIZE, &s); EG(ret, err); num_shares++; i++; } /* The secret is a[0] */ ret = fp_export_to_buf(secret->secret, SSS_SECRET_SIZE, &a0); err: /* We can throw away our secret seed now that the shares have * been generated. */ IGNORE_RET_VAL(local_memset(secret_seed, 0, sizeof(secret_seed))); IGNORE_RET_VAL(local_memset(&ctx, 0, sizeof(ctx))); nn_uninit(&p); fp_uninit(&a0); fp_uninit(&a); fp_uninit(&s); fp_uninit(&base); fp_uninit(&exp); fp_uninit(&tmp); fp_uninit(&blind); fp_uninit(&blind_inv); return ret; } /* SSS helper to compute Lagrange interpolation on an input value. * - k is the number of shares pointed by the shares pointer * - secret is the computed secret * - val is the 'index' on which the Lagrange interpolation must be computed, i.e. * the idea is to have using Lagrage formulas the value f(val) where f is our polynomial. Of course * the proper value can only be computed if enough shares k are provided (the interpolation * does not hold in other cases and the result will be an incorrect value) */ ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_lagrange(const sss_share *shares, u16 k, sss_secret *secret, u16 val) { fp_ctx ctx; nn p; fp s, x, y; fp x_i, x_j, tmp, tmp2; fp blind, blind_inv, r_inv; int ret; unsigned int i, j; p.magic = WORD(0); x_i.magic = x_j.magic = tmp.magic = tmp2.magic = s.magic = y.magic = x.magic = WORD(0); blind.magic = blind_inv.magic = r_inv.magic = WORD(0); MUST_HAVE((shares != NULL) && (secret != NULL), ret, err); /* Sanity checks */ MUST_HAVE((k >= 1), ret, err); MUST_HAVE((SSS_SECRET_SIZE == sizeof(prime)), ret, err); /* Import our prime number and create the Fp context */ ret = nn_init_from_buf(&p, prime, sizeof(prime)); EG(ret, err); ret = fp_ctx_init_from_p(&ctx, &p); EG(ret, err); /* Recombine our shared secrets */ ret = fp_init(&s, &ctx); EG(ret, err); ret = fp_init(&y, &ctx); EG(ret, err); ret = fp_init(&x_i, &ctx); EG(ret, err); ret = fp_init(&x_j, &ctx); EG(ret, err); ret = fp_init(&tmp, &ctx); EG(ret, err); ret = fp_init(&tmp2, &ctx); EG(ret, err); if(val != 0){ /* NOTE: we treat the case 'val = 0' in a specific case for * optimization. This optimization is of interest since computing * f(0) (where f(.) is our polynomial) is the formula for getting the * SSS secret (which happens to be the constant of degree 0 of the * polynomial). */ ret = fp_init(&x, &ctx); EG(ret, err); ret = fp_set_word_value(&x, (word_t)val); EG(ret, err); } /* Get a random blind mask and invert it */ ret = fp_get_random(&blind, &ctx); EG(ret, err); ret = fp_init(&blind_inv, &ctx); EG(ret, err); ret = fp_inv(&blind_inv, &blind); EG(ret, err); /* Perform the computation of r^-1 to optimize our multiplications using Montgomery * multiplication in the main loop. */ ret = fp_init(&r_inv, &ctx); EG(ret, err); ret = fp_set_nn(&r_inv, &(ctx.r)); EG(ret, err); ret = fp_inv(&r_inv, &r_inv); EG(ret, err); /* Proceed with the interpolation */ for(i = 0; i < k; i++){ u16 curr_idx; const _sss_raw_share *cur_share_i = &(shares[i].raw_share); /* Import s[i] */ ret = fp_import_from_buf(&s, cur_share_i->share, SSS_SECRET_SIZE); EG(ret, err); /* Blind s[i] */ ret = fp_mul_monty(&s, &s, &blind); EG(ret, err); /* Get the index */ GET_UINT16_BE(curr_idx, (const u8*)&(cur_share_i->index), 0); ret = fp_set_word_value(&x_i, (word_t)(curr_idx)); EG(ret, err); /* Initialize multiplication with "one" (actually Montgomery r^-1 for multiplication optimization) */ ret = fp_copy(&tmp2, &r_inv); EG(ret, err); /* Compute the product for all k other than i * NOTE: we use fp_mul in its redcified version as the multiplication by r^-1 is * cancelled by the fraction of (x_j - x) * r^-1 / (x_j - x_i) * r^-1 = (x_j - x) / (x_j - x_i) */ for(j = 0; j < k; j++){ const _sss_raw_share *cur_share_j = &(shares[j].raw_share); GET_UINT16_BE(curr_idx, (const u8*)&(cur_share_j->index), 0); ret = fp_set_word_value(&x_j, (word_t)(curr_idx)); EG(ret, err); if(j != i){ if(val != 0){ ret = fp_sub(&tmp, &x_j, &x); EG(ret, err); ret = fp_mul_monty(&s, &s, &tmp); EG(ret, err); } else{ /* NOTE: we treat the case 'val = 0' in a specific case for * optimization. This optimization is of interest since computing * f(0) (where f(.) is our polynomial) is the formula for getting the * SSS secret (which happens to be the constant of degree 0 of the * polynomial). */ ret = fp_mul_monty(&s, &s, &x_j); EG(ret, err); } ret = fp_sub(&tmp, &x_j, &x_i); EG(ret, err); ret = fp_mul_monty(&tmp2, &tmp2, &tmp); EG(ret, err); } } /* Invert all the (x_j - x_i) poducts */ ret = fp_inv(&tmp, &tmp2); EG(ret, err); ret = fp_mul_monty(&s, &s, &tmp); EG(ret, err); /* Accumulate in secret */ ret = fp_add(&y, &y, &s); EG(ret, err); } /* Unblind y */ ret = fp_redcify(&y, &y); EG(ret, err); ret = fp_mul(&y, &y, &blind_inv); EG(ret, err); /* We should have our secret in y */ ret = fp_export_to_buf(secret->secret, SSS_SECRET_SIZE, &y); err: IGNORE_RET_VAL(local_memset(&ctx, 0, sizeof(ctx))); nn_uninit(&p); fp_uninit(&s); fp_uninit(&y); fp_uninit(&x_i); fp_uninit(&x_j); fp_uninit(&tmp); fp_uninit(&tmp2); fp_uninit(&blind); fp_uninit(&blind_inv); fp_uninit(&r_inv); if(val != 0){ fp_uninit(&x); } return ret; } /* SSS shares and secret combination */ ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_combine(const sss_share *shares, u16 k, sss_secret *secret) { return _sss_raw_lagrange(shares, k, secret, 0); } /***** Secure versions (public APIs) ***********************/ /* SSS shares and secret generation: * Inputs: * - n: is the number of shares to generate * - k: the quorum of shares to regenerate the secret (of course k <= n) * - secret: the secret value when input_secret is set to 'true' * Output: * - shares: a pointer to the generated n shares * - secret: the secret value when input_secret is set to 'false', this * value being randomly generated */ int sss_generate(sss_share *shares, unsigned short k, unsigned short n, sss_secret *secret, boolean input_secret) { int ret; unsigned int i; u8 len; u8 session_id[SSS_SESSION_ID_SIZE]; ret = local_memset(session_id, 0, sizeof(session_id)); EG(ret, err); /* Generate raw shares */ ret = _sss_raw_generate(shares, k, n, secret, input_secret); EG(ret, err); /* Sanity check */ MUST_HAVE((SSS_HMAC_SIZE == sizeof(shares[0].raw_share_hmac)), ret, err); MUST_HAVE((SHA256_DIGEST_SIZE >= sizeof(shares[0].raw_share_hmac)), ret, err); /* Generate a random session ID */ ret = get_random(session_id, sizeof(session_id)); EG(ret, err); /* Compute the authenticity seal for each share with HMAC */ for(i = 0; i < n; i++){ _sss_raw_share *cur_share = &(shares[i].raw_share); u8 *cur_id = (u8*)&(shares[i].session_id); u8 *cur_share_hmac = (u8*)&(shares[i].raw_share_hmac); /* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since * our structures are packed. */ const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL }; const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 }; /* Copy the session ID */ ret = local_memcpy(cur_id, session_id, SSS_SESSION_ID_SIZE); EG(ret, err); len = SSS_HMAC_SIZE; ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, cur_share_hmac, &len); EG(ret, err); } err: IGNORE_RET_VAL(local_memset(session_id, 0, sizeof(session_id))); return ret; } /* SSS shares and secret combination * Inputs: * - k: the quorum of shares to regenerate the secret * - shares: a pointer to the k shares * Output: * - secret: the secret value computed from the k shares */ int sss_combine(const sss_share *shares, unsigned short k, sss_secret *secret) { int ret, cmp; unsigned int i; u8 hmac_val[SSS_HMAC_SIZE]; u8 len; ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err); /* Recombine raw shares */ ret = _sss_raw_combine(shares, k, secret); EG(ret, err); /* Compute and check the authenticity seal for each HMAC */ for(i = 0; i < k; i++){ const _sss_raw_share *cur_share = &(shares[i].raw_share); const u8 *cur_id = (const u8*)&(shares[i].session_id); const u8 *cur_id0 = (const u8*)&(shares[0].session_id); const u8 *cur_share_hmac = (const u8*)&(shares[i].raw_share_hmac); /* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since * our structures are packed. */ const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL }; const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 }; /* Check that all our shares have the same session ID, return an error otherwise */ ret = are_equal(cur_id, cur_id0, SSS_SESSION_ID_SIZE, &cmp); EG(ret, err); if(!cmp){ #ifdef VERBOSE ext_printf("[-] sss_combine error for share %d / %d: session ID is not OK!\n", i, k); #endif ret = -1; goto err; } len = sizeof(hmac_val); ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, hmac_val, &len); EG(ret, err); /* Check the HMAC */ ret = are_equal(hmac_val, cur_share_hmac, len, &cmp); EG(ret, err); if(!cmp){ #ifdef VERBOSE ext_printf("[-] sss_combine error for share %d / %d: HMAC is not OK!\n", i, k); #endif ret = -1; goto err; } } err: IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val))); return ret; } /* SSS shares regeneration from existing shares * Inputs: * - shares: a pointer to the input k shares allowing the regeneration * - n: is the number of shares to regenerate * - k: the input shares (of course k <= n) * Output: * - shares: a pointer to the generated n shares (among which the k first are * the ones provided as inputs) * - secret: the recomputed secret value */ int sss_regenerate(sss_share *shares, unsigned short k, unsigned short n, sss_secret *secret) { int ret, cmp; unsigned int i; u16 max_idx, num_shares; u8 hmac_val[SSS_HMAC_SIZE]; u8 len; /* Sanity check */ MUST_HAVE((n <= (u16)(0xffff - 1)), ret, err); MUST_HAVE((n >= k), ret, err); ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err); /* Compute the secret */ ret = _sss_raw_lagrange(shares, k, secret, 0); EG(ret, err); /* Check the authenticity of our shares */ for(i = 0; i < k; i++){ _sss_raw_share *cur_share = &(shares[i].raw_share); u8 *cur_id = (u8*)&(shares[i].session_id); u8 *cur_id0 = (u8*)&(shares[0].session_id); u8 *cur_share_hmac = (u8*)&(shares[i].raw_share_hmac); /* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since * our structures are packed. */ const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL }; const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 }; /* Check that all our shares have the same session ID, return an error otherwise */ ret = are_equal(cur_id, cur_id0, SSS_SESSION_ID_SIZE, &cmp); EG(ret, err); if(!cmp){ #ifdef VERBOSE ext_printf("[-] sss_regenerate error for share %d / %d: session ID is not OK!\n", i, k); #endif ret = -1; goto err; } len = sizeof(hmac_val); /* NOTE: we 'abuse' cast here for secret to (const u8*), but this should be OK since our * structures are packed. */ ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, hmac_val, &len); EG(ret, err); ret = are_equal(hmac_val, cur_share_hmac, len, &cmp); EG(ret, err); if(!cmp){ #ifdef VERBOSE ext_printf("[-] sss_regenerate error for share %d / %d: HMAC is not OK!\n", i, k); #endif ret = -1; goto err; } } /* Our secret regeneration consists of determining the maximum index, and * proceed with Lagrange interpolation on new values. */ max_idx = 0; for(i = 0; i < k; i++){ u16 curr_idx; GET_UINT16_BE(curr_idx, (u8*)&(shares[i].raw_share.index), 0); if(curr_idx > max_idx){ max_idx = curr_idx; } } /* Now regenerate as many shares as we need */ num_shares = 0; i = k; while(num_shares < (n - k)){ _sss_raw_share *cur_share = &(shares[k + num_shares].raw_share); u8 *cur_id = (u8*)&(shares[k + num_shares].session_id); u8 *cur_id0 = (u8*)&(shares[0].session_id); u8 *cur_share_hmac = (u8*)&(shares[k + num_shares].raw_share_hmac); u16 curr_idx; /* NOTE: we 'abuse' casts here for shares[i].raw_share.share to sss_secret*, but this should be OK since * our shares[i].raw_share.share is a SSS_SECRET_SIZE as the sss_secret.secret type encapsulates and our * structures are packed. */ const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL }; const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 }; /* Skip the index = 0 case */ curr_idx = (u16)(max_idx + (u16)(i - k + 1)); if(curr_idx == 0){ i++; continue; } /* Copy our session ID */ ret = local_memcpy(cur_id, cur_id0, SSS_SESSION_ID_SIZE); EG(ret, err); ret = _sss_raw_lagrange(shares, k, (sss_secret*)(cur_share->share), curr_idx); EG(ret, err); PUT_UINT16_BE(curr_idx, (u8*)&(cur_share->index), 0); /* Compute the HMAC */ len = SSS_HMAC_SIZE; ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, cur_share_hmac, &len); EG(ret, err); num_shares++; i++; } err: IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val))); return ret; } /********* main test program for SSS *************/ #ifdef SSS #include #define K 50 #define N 150 #define MAX_N 200 int main(int argc, char *argv[]) { int ret = 0; unsigned int i; sss_share shares[MAX_N]; sss_share shares_[MAX_N]; sss_secret secret; FORCE_USED_VAR(argc); FORCE_USED_VAR(argv); /* Generate N shares for SSS with at least K shares OK among N */ ext_printf("[+] Generating the secrets %d / %d, call should be OK\n", K, N); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); /* NOTE: 'false' here means that we let the library generate the secret randomly */ ret = sss_generate(shares, K, N, &secret, SSS_FALSE); if(ret){ ext_printf(" [X] Error: sss_generate error\n"); goto err; } else{ buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); EG(ret, err); } /* Shuffle shares */ for(i = 0; i < N; i++){ shares_[i] = shares[N - 1 - i]; } /* Combine (k-1) shares: this call should trigger an ERROR */ ext_printf("[+] Combining the secrets with less shares: call should trigger an error\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); ret = sss_combine(shares_, K - 1, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); } else{ buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Combine k shares: this call should be OK and recombine the initial * secret */ ext_printf("[+] Combining the secrets with minimum shares: call should be OK\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); ret = sss_combine(shares_, K, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); goto err; } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Combine k shares: this call should be OK and recombine the initial * secret */ ext_printf("[+] Combining the secrets with more shares: call should be OK\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); ret = sss_combine(shares_, K + 1, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); goto err; } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Combine with a corrupted share: call should trigger an error */ ext_printf("[+] Combining the secrets with more shares but one corrupted: call should trigger an error\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); shares_[K].raw_share.share[0] = 0x00; ret = sss_combine(shares_, K + 1, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Regenerate more shares! call should be OK */ ext_printf("[+] Regenerating more shares: call should be OK\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); ret = sss_regenerate(shares, K, MAX_N, &secret); EG(ret, err); if (ret) { ext_printf(" [X] Error: sss_regenerate error\n"); goto err; } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Shuffle shares */ for(i = 0; i < MAX_N; i++){ shares_[i] = shares[MAX_N - 1 - i]; } /* Combine newly generated shares: call should be OK */ ext_printf("[+] Combining the secrets with newly generated shares: call should be OK\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); ret = sss_combine(shares_, K, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); goto err; } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } /* Modify the session ID of one of the shares: call should trigger an error */ ext_printf("[+] Combining the secrets with newly generated shares and a bad session ID: call should trigger an error\n"); ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err); shares_[1].session_id[0] = 0x00; ret = sss_combine(shares_, K, &secret); if (ret) { ext_printf(" [X] Error: sss_combine error\n"); } else { buf_print(" secret", (u8*)&secret, SSS_SECRET_SIZE); } ret = 0; err: return ret; } #endif