/* Some common helpers useful for many algorithms */ #ifndef __COMMON_H__ #define __COMMON_H__ /* Include our arithmetic layer */ #include /* I2OSP and OS2IP internal primitives */ ATTRIBUTE_WARN_UNUSED_RET static inline int _i2osp(nn_src_t x, u8 *buf, u16 buflen) { int ret; bitcnt_t blen; /* Sanity checks */ MUST_HAVE((buf != NULL), ret, err); ret = nn_check_initialized(x); EG(ret, err); /* If x >= 256^xLen (the integer does not fit in the buffer), * return an error. */ ret = nn_bitlen(x, &blen); EG(ret, err); MUST_HAVE(((8 * buflen) >= blen), ret, err); /* Export to the buffer */ ret = nn_export_to_buf(buf, buflen, x); err: return ret; } ATTRIBUTE_WARN_UNUSED_RET static inline int _os2ip(nn_t x, const u8 *buf, u16 buflen) { int ret; /* We do not want to exceed our computation compatible * size. */ MUST_HAVE((buflen <= NN_USABLE_MAX_BYTE_LEN), ret, err); /* Import the NN */ ret = nn_init_from_buf(x, buf, buflen); err: return ret; } /* Reverses the endiannes of a buffer in place */ ATTRIBUTE_WARN_UNUSED_RET static inline int _reverse_endianness(u8 *buf, u16 buf_size) { u16 i; u8 tmp; int ret; MUST_HAVE((buf != NULL), ret, err); if(buf_size > 1){ for(i = 0; i < (buf_size / 2); i++){ tmp = buf[i]; buf[i] = buf[buf_size - 1 - i]; buf[buf_size - 1 - i] = tmp; } } ret = 0; err: return ret; } /* Helper to fix the MSB of a scalar using the trick in * https://eprint.iacr.org/2011/232.pdf * * We distinguish three situations: * - The scalar m is < q (the order), in this case we compute: * - * | m' = m + (2 * q) if [log(k + q)] == [log(q)], * | m' = m + q otherwise. * - * - The scalar m is >= q and < q**2, in this case we compute: * - * | m' = m + (2 * (q**2)) if [log(k + (q**2))] == [log(q**2)], * | m' = m + (q**2) otherwise. * - * - The scalar m is >= (q**2), in this case m == m' * We only deal with 0 <= m < (q**2) using the countermeasure. When m >= (q**2), * we stick with m' = m, accepting MSB issues (not much can be done in this case * anyways). */ ATTRIBUTE_WARN_UNUSED_RET static inline int _fix_scalar_msb(nn_src_t m, nn_src_t q, nn_t m_msb_fixed) { int ret, cmp; /* _m_msb_fixed to handle aliasing */ nn q_square, _m_msb_fixed; q_square.magic = _m_msb_fixed.magic = WORD(0); /* Sanity checks */ ret = nn_check_initialized(m); EG(ret, err); ret = nn_check_initialized(q); EG(ret, err); ret = nn_check_initialized(m_msb_fixed); EG(ret, err); ret = nn_init(&q_square, 0); EG(ret, err); ret = nn_init(&_m_msb_fixed, 0); EG(ret, err); /* First compute q**2 */ ret = nn_sqr(&q_square, q); EG(ret, err); /* Then compute m' depending on m size */ ret = nn_cmp(m, q, &cmp); EG(ret, err); if (cmp < 0){ bitcnt_t msb_bit_len, q_bitlen; /* Case where m < q */ ret = nn_add(&_m_msb_fixed, m, q); EG(ret, err); ret = nn_bitlen(&_m_msb_fixed, &msb_bit_len); EG(ret, err); ret = nn_bitlen(q, &q_bitlen); EG(ret, err); ret = nn_cnd_add((msb_bit_len == q_bitlen), m_msb_fixed, &_m_msb_fixed, q); EG(ret, err); } else { ret = nn_cmp(m, &q_square, &cmp); EG(ret, err); if (cmp < 0) { bitcnt_t msb_bit_len, q_square_bitlen; /* Case where m >= q and m < (q**2) */ ret = nn_add(&_m_msb_fixed, m, &q_square); EG(ret, err); ret = nn_bitlen(&_m_msb_fixed, &msb_bit_len); EG(ret, err); ret = nn_bitlen(&q_square, &q_square_bitlen); EG(ret, err); ret = nn_cnd_add((msb_bit_len == q_square_bitlen), m_msb_fixed, &_m_msb_fixed, &q_square); EG(ret, err); } else { /* Case where m >= (q**2) */ ret = nn_copy(m_msb_fixed, m); EG(ret, err); } } err: nn_uninit(&q_square); nn_uninit(&_m_msb_fixed); return ret; } /* Helper to blind the scalar. * Compute m_blind = m + (b * q) where b is a random value modulo q. * Aliasing is supported. */ ATTRIBUTE_WARN_UNUSED_RET static inline int _blind_scalar(nn_src_t m, nn_src_t q, nn_t m_blind) { int ret; nn tmp; tmp.magic = WORD(0); /* Sanity checks */ ret = nn_check_initialized(m); EG(ret, err); ret = nn_check_initialized(q); EG(ret, err); ret = nn_check_initialized(m_blind); EG(ret, err); ret = nn_get_random_mod(&tmp, q); EG(ret, err); ret = nn_mul(&tmp, &tmp, q); EG(ret, err); ret = nn_add(m_blind, &tmp, m); err: nn_uninit(&tmp); return ret; } /* * NOT constant time at all and not secure against side-channels. This is * an internal function only used for DSA verification on public data. * * Compute (base ** exp) mod (mod) using a square and multiply algorithm. * Internally, this computes Montgomery coefficients and uses the redc * function. * * Returns 0 on success, -1 on error. */ ATTRIBUTE_WARN_UNUSED_RET static inline int _nn_mod_pow_insecure(nn_t out, nn_src_t base, nn_src_t exp, nn_src_t mod) { int ret, isodd, cmp; bitcnt_t explen; u8 expbit; nn r, r_square, _base, one; word_t mpinv; r.magic = r_square.magic = _base.magic = one.magic = WORD(0); /* Aliasing is not supported for this internal helper */ MUST_HAVE((out != base) && (out != exp) && (out != mod), ret, err); /* Check initializations */ ret = nn_check_initialized(base); EG(ret, err); ret = nn_check_initialized(exp); EG(ret, err); ret = nn_check_initialized(mod); EG(ret, err); ret = nn_bitlen(exp, &explen); EG(ret, err); /* Sanity check */ MUST_HAVE((explen > 0), ret, err); /* Check that the modulo is indeed odd */ ret = nn_isodd(mod, &isodd); EG(ret, err); MUST_HAVE(isodd, ret, err); /* Compute the Montgomery coefficients */ ret = nn_compute_redc1_coefs(&r, &r_square, mod, &mpinv); EG(ret, err); /* Reduce the base if necessary */ ret = nn_cmp(base, mod, &cmp); EG(ret, err); if(cmp >= 0){ ret = nn_mod(&_base, base, mod); EG(ret, err); } else{ ret = nn_copy(&_base, base); EG(ret, err); } ret = nn_mul_redc1(&_base, &_base, &r_square, mod, mpinv); EG(ret, err); ret = nn_copy(out, &r); EG(ret, err); ret = nn_init(&one, 0); EG(ret, err); ret = nn_one(&one); EG(ret, err); while (explen > 0) { explen = (bitcnt_t)(explen - 1); /* Get the bit */ ret = nn_getbit(exp, explen, &expbit); EG(ret, err); /* Square */ ret = nn_mul_redc1(out, out, out, mod, mpinv); EG(ret, err); if(expbit){ /* Multiply */ ret = nn_mul_redc1(out, out, &_base, mod, mpinv); EG(ret, err); } } /* Unredcify the output */ ret = nn_mul_redc1(out, out, &one, mod, mpinv); err: nn_uninit(&r); nn_uninit(&r_square); nn_uninit(&_base); nn_uninit(&one); return ret; } #endif /* __COMMON_H__ */