#/* # * Copyright (C) 2017 - This file is part of libecc project # * # * Authors: # * Ryad BENADJILA # * Arnaud EBALARD # * Jean-Pierre FLORI # * # * Contributors: # * Nicolas VIVET # * Karim KHALFALLAH # * # * This software is licensed under a dual BSD and GPL v2 license. # * See LICENSE file at the root folder of the project. # */ #! /usr/bin/env python import random, sys, re, math, os, getopt, glob, copy, hashlib, binascii, string, signal, base64 # External dependecy for SHA-3 # It is an independent module, since hashlib has no support # for SHA-3 functions for now import sha3 # Handle Python 2/3 issues def is_python_2(): if sys.version_info[0] < 3: return True else: return False ### Ctrl-C handler def handler(signal, frame): print("\nSIGINT caught: exiting ...") exit(0) # Helper to ask the user for something def get_user_input(prompt): # Handle the Python 2/3 issue if is_python_2() == False: return input(prompt) else: return raw_input(prompt) ########################################################## #### Math helpers def egcd(b, n): x0, x1, y0, y1 = 1, 0, 0, 1 while n != 0: q, b, n = b // n, n, b % n x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 return b, x0, y0 def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception("Error: modular inverse does not exist") else: return x % m def compute_monty_coef(prime, pbitlen, wlen): """ Compute montgomery coeff r, r^2 and mpinv. pbitlen is the size of p in bits. It is expected to be a multiple of word bit size. """ r = (1 << int(pbitlen)) % prime r_square = (1 << (2 * int(pbitlen))) % prime mpinv = 2**wlen - (modinv(prime, 2**wlen)) return r, r_square, mpinv def compute_div_coef(prime, pbitlen, wlen): """ Compute division coeffs p_normalized, p_shift and p_reciprocal. """ tmp = prime cnt = 0 while tmp != 0: tmp = tmp >> 1 cnt += 1 pshift = int(pbitlen - cnt) primenorm = prime << pshift B = 2**wlen prec = B**3 // ((primenorm >> int(pbitlen - 2*wlen)) + 1) - B return pshift, primenorm, prec def is_probprime(n): # ensure n is odd if n % 2 == 0: return False # write n-1 as 2**s * d # repeatedly try to divide n-1 by 2 s = 0 d = n-1 while True: quotient, remainder = divmod(d, 2) if remainder == 1: break s += 1 d = quotient assert(2**s * d == n-1) # test the base a to see whether it is a witness for the compositeness of n def try_composite(a): if pow(a, d, n) == 1: return False for i in range(s): if pow(a, 2**i * d, n) == n-1: return False return True # n is definitely composite for i in range(5): a = random.randrange(2, n) if try_composite(a): return False return True # no base tested showed n as composite def legendre_symbol(a, p): ls = pow(a, (p - 1) // 2, p) return -1 if ls == p - 1 else ls # Tonelli-Shanks algorithm to find square roots # over prime fields def mod_sqrt(a, p): # Square root of 0 is 0 if a == 0: return 0 # Simple cases if legendre_symbol(a, p) != 1: # No square residue return None elif p == 2: return a elif p % 4 == 3: return pow(a, (p + 1) // 4, p) s = p - 1 e = 0 while s % 2 == 0: s = s // 2 e += 1 n = 2 while legendre_symbol(n, p) != -1: n += 1 x = pow(a, (s + 1) // 2, p) b = pow(a, s, p) g = pow(n, s, p) r = e while True: t = b m = 0 if is_python_2(): for m in xrange(r): if t == 1: break t = pow(t, 2, p) else: for m in range(r): if t == 1: break t = pow(t, 2, p) if m == 0: return x gs = pow(g, 2 ** (r - m - 1), p) g = (gs * gs) % p x = (x * gs) % p b = (b * g) % p r = m ########################################################## ### Math elliptic curves basic blocks # WARNING: these blocks are only here for testing purpose and # are not intended to be used in a security oriented library! # This explains the usage of naive affine coordinates fomulas class Curve(object): def __init__(self, a, b, prime, order, cofactor, gx, gy, npoints, name, oid): self.a = a self.b = b self.p = prime self.q = order self.c = cofactor self.gx = gx self.gy = gy self.n = npoints self.name = name self.oid = oid # Equality testing def __eq__(self, other): return self.__dict__ == other.__dict__ # Deep copy is implemented using the ~X operator def __invert__(self): return copy.deepcopy(self) class Point(object): # Affine coordinates (x, y), infinity point is (None, None) def __init__(self, curve, x, y): self.curve = curve if x != None: self.x = (x % curve.p) else: self.x = None if y != None: self.y = (y % curve.p) else: self.y = None # Check that the point is indeed on the curve if (x != None): if (pow(y, 2, curve.p) != ((pow(x, 3, curve.p) + (curve.a * x) + curve.b ) % curve.p)): raise Exception("Error: point is not on curve!") # Addition def __add__(self, Q): x1 = self.x y1 = self.y x2 = Q.x y2 = Q.y curve = self.curve # Check that we are on the same curve if Q.curve != curve: raise Exception("Point add error: two point don't have the same curve") # If Q is infinity point, return ourself if Q.x == None: return Point(self.curve, self.x, self.y) # If we are the infinity point return Q if self.x == None: return Q # Infinity point or Doubling if (x1 == x2): if (((y1 + y2) % curve.p) == 0): # Return infinity point return Point(self.curve, None, None) else: # Doubling L = ((3*pow(x1, 2, curve.p) + curve.a) * modinv(2*y1, curve.p)) % curve.p # Addition else: L = ((y2 - y1) * modinv((x2 - x1) % curve.p, curve.p)) % curve.p resx = (pow(L, 2, curve.p) - x1 - x2) % curve.p resy = ((L * (x1 - resx)) - y1) % curve.p # Return the point return Point(self.curve, resx, resy) # Negation def __neg__(self): if (self.x == None): return Point(self.curve, None, None) else: return Point(self.curve, self.x, -self.y) # Subtraction def __sub__(self, other): return self + (-other) # Scalar mul def __rmul__(self, scalar): # Implement simple double and add algorithm P = self Q = Point(P.curve, None, None) for i in range(getbitlen(scalar), 0, -1): Q = Q + Q if (scalar >> (i-1)) & 0x1 == 0x1: Q = Q + P return Q # Equality testing def __eq__(self, other): return self.__dict__ == other.__dict__ # Deep copy is implemented using the ~X operator def __invert__(self): return copy.deepcopy(self) def __str__(self): if self.x == None: return "Inf" else: return ("(x = %s, y = %s)" % (hex(self.x), hex(self.y))) ########################################################## ### Private and public keys structures class PrivKey(object): def __init__(self, curve, x): self.curve = curve self.x = x class PubKey(object): def __init__(self, curve, Y): # Sanity check if Y.curve != curve: raise Exception("Error: curve and point curve differ in public key!") self.curve = curve self.Y = Y class KeyPair(object): def __init__(self, pubkey, privkey): self.pubkey = pubkey self.privkey = privkey def fromprivkey(privkey, is_eckcdsa=False): curve = privkey.curve q = curve.q gx = curve.gx gy = curve.gy G = Point(curve, gx, gy) if is_eckcdsa == False: return PubKey(curve, privkey.x * G) else: return PubKey(curve, modinv(privkey.x, q) * G) def genKeyPair(curve, is_eckcdsa=False): p = curve.p q = curve.q gx = curve.gx gy = curve.gy G = Point(curve, gx, gy) OK = False while OK == False: x = getrandomint(q) if x == 0: continue OK = True privkey = PrivKey(curve, x) pubkey = fromprivkey(privkey, is_eckcdsa) return KeyPair(pubkey, privkey) ########################################################## ### Signature algorithms helpers def getrandomint(modulo): return random.randrange(0, modulo+1) def getbitlen(bint): """ Returns the number of bits encoding an integer """ if bint == None: return 0 if bint == 0: # Zero is encoded on one bit return 1 else: return int(bint).bit_length() def getbytelen(bint): """ Returns the number of bytes encoding an integer """ bitsize = getbitlen(bint) bytesize = int(bitsize // 8) if bitsize % 8 != 0: bytesize += 1 return bytesize def stringtoint(bitstring): acc = 0 size = len(bitstring) for i in range(0, size): acc = acc + (ord(bitstring[i]) * (2**(8*(size - 1 - i)))) return acc def inttostring(a): size = int(getbytelen(a)) outstr = "" for i in range(0, size): outstr = outstr + chr((a >> (8*(size - 1 - i))) & 0xFF) return outstr def expand(bitstring, bitlen, direction): bytelen = int(math.ceil(bitlen / 8.)) if len(bitstring) >= bytelen: return bitstring else: if direction == "LEFT": return ((bytelen-len(bitstring))*"\x00") + bitstring elif direction == "RIGHT": return bitstring + ((bytelen-len(bitstring))*"\x00") else: raise Exception("Error: unknown direction "+direction+" in expand") def truncate(bitstring, bitlen, keep): """ Takes a bit string and truncates it to keep the left most or the right most bits """ strbitlen = 8*len(bitstring) # Check if truncation is needed if strbitlen > bitlen: if keep == "LEFT": return expand(inttostring(stringtoint(bitstring) >> int(strbitlen - bitlen)), bitlen, "LEFT") elif keep == "RIGHT": mask = (2**bitlen)-1 return expand(inttostring(stringtoint(bitstring) & mask), bitlen, "LEFT") else: raise Exception("Error: unknown direction "+keep+" in truncate") else: # No need to truncate! return bitstring ########################################################## ### Hash algorithms def sha224(message): ctx = hashlib.sha224() if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha256(message): ctx = hashlib.sha256() if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha384(message): ctx = hashlib.sha384() if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha512(message): ctx = hashlib.sha512() if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha3_224(message): ctx = sha3.Sha3_ctx(224) if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha3_256(message): ctx = sha3.Sha3_ctx(256) if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha3_384(message): ctx = sha3.Sha3_ctx(384) if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) def sha3_512(message): ctx = sha3.Sha3_ctx(512) if(is_python_2() == True): ctx.update(message) digest = ctx.digest() else: ctx.update(message.encode('latin-1')) digest = ctx.digest().decode('latin-1') return (digest, ctx.digest_size, ctx.block_size) ########################################################## ### Signature algorithms # *| IUF - ECDSA signature # *| # *| UF 1. Compute h = H(m) # *| F 2. If |h| > bitlen(q), set h to bitlen(q) # *| leftmost (most significant) bits of h # *| F 3. e = OS2I(h) mod q # *| F 4. Get a random value k in ]0,q[ # *| F 5. Compute W = (W_x,W_y) = kG # *| F 6. Compute r = W_x mod q # *| F 7. If r is 0, restart the process at step 4. # *| F 8. If e == rx, restart the process at step 4. # *| F 9. Compute s = k^-1 * (xr + e) mod q # *| F 10. If s is 0, restart the process at step 4. # *| F 11. Return (r,s) def ecdsa_sign(hashfunc, keypair, message, k=None): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) q_limit_len = getbitlen(q) # Compute the hash (h, _, _) = hashfunc(message) # Truncate hash value h = truncate(h, q_limit_len, "LEFT") # Convert the hash value to an int e = stringtoint(h) % q OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G r = W.x % q if r == 0: continue if e == r * privkey.x: continue s = (modinv(k, q) * ((privkey.x * r) + e)) % q if s == 0: continue OK = True return ((expand(inttostring(r), 8*getbytelen(q), "LEFT") + expand(inttostring(s), 8*getbytelen(q), "LEFT")), k) # *| IUF - ECDSA verification # *| # *| I 1. Reject the signature if r or s is 0. # *| UF 2. Compute h = H(m) # *| F 3. If |h| > bitlen(q), set h to bitlen(q) # *| leftmost (most significant) bits of h # *| F 4. Compute e = OS2I(h) mod q # *| F 5. Compute u = (s^-1)e mod q # *| F 6. Compute v = (s^-1)r mod q # *| F 7. Compute W' = uG + vY # *| F 8. If W' is the point at infinity, reject the signature. # *| F 9. Compute r' = W'_x mod q # *| F 10. Accept the signature if and only if r equals r' def ecdsa_verify(hashfunc, keypair, message, sig): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy q_limit_len = getbitlen(q) G = Point(pubkey.curve, gx, gy) # Extract r and s if len(sig) != 2*getbytelen(q): raise Exception("ECDSA verify: bad signature length!") r = stringtoint(sig[0:int(len(sig)/2)]) s = stringtoint(sig[int(len(sig)/2):]) if r == 0 or s == 0: return False # Compute the hash (h, _, _) = hashfunc(message) # Truncate hash value h = truncate(h, q_limit_len, "LEFT") # Convert the hash value to an int e = stringtoint(h) % q u = (modinv(s, q) * e) % q v = (modinv(s, q) * r) % q W_ = (u * G) + (v * pubkey.Y) if W_.x == None: return False r_ = W_.x % q if r == r_: return True else: return False def eckcdsa_genKeyPair(curve): return genKeyPair(curve, True) # *| IUF - ECKCDSA signature # *| # *| IUF 1. Compute h = H(z||m) # *| F 2. If hsize > bitlen(q), set h to bitlen(q) # *| rightmost (less significant) bits of h. # *| F 3. Get a random value k in ]0,q[ # *| F 4. Compute W = (W_x,W_y) = kG # *| F 5. Compute r = h(FE2OS(W_x)). # *| F 6. If hsize > bitlen(q), set r to bitlen(q) # *| rightmost (less significant) bits of r. # *| F 7. Compute e = OS2I(r XOR h) mod q # *| F 8. Compute s = x(k - e) mod q # *| F 9. if s == 0, restart at step 3. # *| F 10. return (r,s) def eckcdsa_sign(hashfunc, keypair, message, k=None): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) q_limit_len = getbitlen(q) # Compute the certificate data (_, _, hblocksize) = hashfunc("") z = expand(inttostring(keypair.pubkey.Y.x), 8*getbytelen(p), "LEFT") z = z + expand(inttostring(keypair.pubkey.Y.y), 8*getbytelen(p), "LEFT") if len(z) > hblocksize: # Truncate z = truncate(z, 8*hblocksize, "LEFT") else: # Expand z = expand(z, 8*hblocksize, "RIGHT") # Compute the hash (h, _, _) = hashfunc(z + message) # Truncate hash value h = truncate(h, 8 * int(math.ceil(q_limit_len / 8)), "RIGHT") OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G (r, _, _) = hashfunc(expand(inttostring(W.x), 8*getbytelen(p), "LEFT")) r = truncate(r, 8 * int(math.ceil(q_limit_len / 8)), "RIGHT") e = (stringtoint(r) ^ stringtoint(h)) % q s = (privkey.x * (k - e)) % q if s == 0: continue OK = True return (r + expand(inttostring(s), 8*getbytelen(q), "LEFT"), k) # *| IUF - ECKCDSA verification # *| # *| I 1. Check the length of r: # *| - if hsize > bitlen(q), r must be of # *| length bitlen(q) # *| - if hsize <= bitlen(q), r must be of # *| length hsize # *| I 2. Check that s is in ]0,q[ # *| IUF 3. Compute h = H(z||m) # *| F 4. If hsize > bitlen(q), set h to bitlen(q) # *| rightmost (less significant) bits of h. # *| F 5. Compute e = OS2I(r XOR h) mod q # *| F 6. Compute W' = sY + eG, where Y is the public key # *| F 7. Compute r' = h(FE2OS(W'x)) # *| F 8. If hsize > bitlen(q), set r' to bitlen(q) # *| rightmost (less significant) bits of r'. # *| F 9. Check if r == r' def eckcdsa_verify(hashfunc, keypair, message, sig): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy G = Point(pubkey.curve, gx, gy) q_limit_len = getbitlen(q) (_, hsize, hblocksize) = hashfunc("") # Extract r and s if (8*hsize) > q_limit_len: r_len = int(math.ceil(q_limit_len / 8.)) else: r_len = hsize r = stringtoint(sig[0:int(r_len)]) s = stringtoint(sig[int(r_len):]) if (s >= q) or (s < 0): return False # Compute the certificate data z = expand(inttostring(keypair.pubkey.Y.x), 8*getbytelen(p), "LEFT") z = z + expand(inttostring(keypair.pubkey.Y.y), 8*getbytelen(p), "LEFT") if len(z) > hblocksize: # Truncate z = truncate(z, 8*hblocksize, "LEFT") else: # Expand z = expand(z, 8*hblocksize, "RIGHT") # Compute the hash (h, _, _) = hashfunc(z + message) # Truncate hash value h = truncate(h, 8 * int(math.ceil(q_limit_len / 8)), "RIGHT") e = (r ^ stringtoint(h)) % q W_ = (s * pubkey.Y) + (e * G) (h, _, _) = hashfunc(expand(inttostring(W_.x), 8*getbytelen(p), "LEFT")) r_ = truncate(h, 8 * int(math.ceil(q_limit_len / 8)), "RIGHT") if stringtoint(r_) == r: return True else: return False # *| IUF - ECFSDSA signature # *| # *| I 1. Get a random value k in ]0,q[ # *| I 2. Compute W = (W_x,W_y) = kG # *| I 3. Compute r = FE2OS(W_x)||FE2OS(W_y) # *| I 4. If r is an all zero string, restart the process at step 1. # *| IUF 5. Compute h = H(r||m) # *| F 6. Compute e = OS2I(h) mod q # *| F 7. Compute s = (k + ex) mod q # *| F 8. If s is 0, restart the process at step 1 (see c. below) # *| F 9. Return (r,s) def ecfsdsa_sign(hashfunc, keypair, message, k=None): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G r = expand(inttostring(W.x), 8*getbytelen(p), "LEFT") + expand(inttostring(W.y), 8*getbytelen(p), "LEFT") if stringtoint(r) == 0: continue (h, _, _) = hashfunc(r + message) e = stringtoint(h) % q s = (k + e * privkey.x) % q if s == 0: continue OK = True return (r + expand(inttostring(s), 8*getbytelen(q), "LEFT"), k) # *| IUF - ECFSDSA verification # *| # *| I 1. Reject the signature if r is not a valid point on the curve. # *| I 2. Reject the signature if s is not in ]0,q[ # *| IUF 3. Compute h = H(r||m) # *| F 4. Convert h to an integer and then compute e = -h mod q # *| F 5. compute W' = sG + eY, where Y is the public key # *| F 6. Compute r' = FE2OS(W'_x)||FE2OS(W'_y) # *| F 7. Accept the signature if and only if r equals r' def ecfsdsa_verify(hashfunc, keypair, message, sig): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy G = Point(pubkey.curve, gx, gy) # Extract coordinates from r and s from signature if len(sig) != (2*getbytelen(p)) + getbytelen(q): raise Exception("ECFSDSA verify: bad signature length!") wx = sig[:int(getbytelen(p))] wy = sig[int(getbytelen(p)):int(2*getbytelen(p))] r = wx + wy s = stringtoint(sig[int(2*getbytelen(p)):int((2*getbytelen(p))+getbytelen(q))]) # Check r is on the curve W = Point(pubkey.curve, stringtoint(wx), stringtoint(wy)) # Check s is in ]0,q[ if s == 0 or s > q: raise Exception("ECFSDSA verify: s not in ]0,q[") (h, _, _) = hashfunc(r + message) e = (-stringtoint(h)) % q W_ = s * G + e * pubkey.Y r_ = expand(inttostring(W_.x), 8*getbytelen(p), "LEFT") + expand(inttostring(W_.y), 8*getbytelen(p), "LEFT") if r == r_: return True else: return False # NOTE: ISO/IEC 14888-3 standard seems to diverge from the existing implementations # of ECRDSA when treating the message hash, and from the examples of certificates provided # in RFC 7091 and draft-deremin-rfc4491-bis. While in ISO/IEC 14888-3 it is explicitely asked # to proceed with the hash of the message as big endian, the RFCs derived from the Russian # standard expect the hash value to be treated as little endian when importing it as an integer # (this discrepancy is exhibited and confirmed by test vectors present in ISO/IEC 14888-3, and # by X.509 certificates present in the RFCs). This seems (to be confirmed) to be a discrepancy of # ISO/IEC 14888-3 algorithm description that must be fixed there. # # In order to be conservative, libecc uses the Russian standard behavior as expected to be in line with # other implemetations, but keeps the ISO/IEC 14888-3 behavior if forced/asked by the user using # the USE_ISO14888_3_ECRDSA toggle. This allows to keep backward compatibility with previous versions of the # library if needed. # *| IUF - ECRDSA signature # *| # *| UF 1. Compute h = H(m) # *| F 2. Get a random value k in ]0,q[ # *| F 3. Compute W = (W_x,W_y) = kG # *| F 4. Compute r = W_x mod q # *| F 5. If r is 0, restart the process at step 2. # *| F 6. Compute e = OS2I(h) mod q. If e is 0, set e to 1. # *| NOTE: here, ISO/IEC 14888-3 and RFCs differ in the way e treated. # *| e = OS2I(h) for ISO/IEC 14888-3, or e = OS2I(reversed(h)) when endianness of h # *| is reversed for RFCs. # *| F 7. Compute s = (rx + ke) mod q # *| F 8. If s is 0, restart the process at step 2. # *| F 11. Return (r,s) def ecrdsa_sign(hashfunc, keypair, message, k=None, use_iso14888_divergence=False): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) (h, _, _) = hashfunc(message) if use_iso14888_divergence == False: # Reverse the endianness for Russian standard RFC ECRDSA (contrary to ISO/IEC 14888-3 case) h = h[::-1] OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G r = W.x % q if r == 0: continue e = stringtoint(h) % q if e == 0: e = 1 s = ((r * privkey.x) + (k * e)) % q if s == 0: continue OK = True return (expand(inttostring(r), 8*getbytelen(q), "LEFT") + expand(inttostring(s), 8*getbytelen(q), "LEFT"), k) # *| IUF - ECRDSA verification # *| # *| UF 1. Check that r and s are both in ]0,q[ # *| F 2. Compute h = H(m) # *| F 3. Compute e = OS2I(h)^-1 mod q # *| NOTE: here, ISO/IEC 14888-3 and RFCs differ in the way e treated. # *| e = OS2I(h) for ISO/IEC 14888-3, or e = OS2I(reversed(h)) when endianness of h # *| is reversed for RFCs. # *| F 4. Compute u = es mod q # *| F 4. Compute v = -er mod q # *| F 5. Compute W' = uG + vY = (W'_x, W'_y) # *| F 6. Let's now compute r' = W'_x mod q # *| F 7. Check r and r' are the same def ecrdsa_verify(hashfunc, keypair, message, sig, use_iso14888_divergence=False): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy G = Point(pubkey.curve, gx, gy) # Extract coordinates from r and s from signature if len(sig) != 2*getbytelen(q): raise Exception("ECRDSA verify: bad signature length!") r = stringtoint(sig[:int(getbytelen(q))]) s = stringtoint(sig[int(getbytelen(q)):int(2*getbytelen(q))]) if r == 0 or r > q: raise Exception("ECRDSA verify: r not in ]0,q[") if s == 0 or s > q: raise Exception("ECRDSA verify: s not in ]0,q[") (h, _, _) = hashfunc(message) if use_iso14888_divergence == False: # Reverse the endianness for Russian standard RFC ECRDSA (contrary to ISO/IEC 14888-3 case) h = h[::-1] e = modinv(stringtoint(h) % q, q) u = (e * s) % q v = (-e * r) % q W_ = u * G + v * pubkey.Y r_ = W_.x % q if r == r_: return True else: return False # *| IUF - ECGDSA signature # *| # *| UF 1. Compute h = H(m). If |h| > bitlen(q), set h to bitlen(q) # *| leftmost (most significant) bits of h # *| F 2. Convert e = - OS2I(h) mod q # *| F 3. Get a random value k in ]0,q[ # *| F 4. Compute W = (W_x,W_y) = kG # *| F 5. Compute r = W_x mod q # *| F 6. If r is 0, restart the process at step 4. # *| F 7. Compute s = x(kr + e) mod q # *| F 8. If s is 0, restart the process at step 4. # *| F 9. Return (r,s) def ecgdsa_sign(hashfunc, keypair, message, k=None): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) (h, _, _) = hashfunc(message) q_limit_len = getbitlen(q) # Truncate hash value h = truncate(h, q_limit_len, "LEFT") e = (-stringtoint(h)) % q OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G r = W.x % q if r == 0: continue s = (privkey.x * ((k * r) + e)) % q if s == 0: continue OK = True return (expand(inttostring(r), 8*getbytelen(q), "LEFT") + expand(inttostring(s), 8*getbytelen(q), "LEFT"), k) # *| IUF - ECGDSA verification # *| # *| I 1. Reject the signature if r or s is 0. # *| UF 2. Compute h = H(m). If |h| > bitlen(q), set h to bitlen(q) # *| leftmost (most significant) bits of h # *| F 3. Compute e = OS2I(h) mod q # *| F 4. Compute u = ((r^-1)e mod q) # *| F 5. Compute v = ((r^-1)s mod q) # *| F 6. Compute W' = uG + vY # *| F 7. Compute r' = W'_x mod q # *| F 8. Accept the signature if and only if r equals r' def ecgdsa_verify(hashfunc, keypair, message, sig): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy G = Point(pubkey.curve, gx, gy) # Extract coordinates from r and s from signature if len(sig) != 2*getbytelen(q): raise Exception("ECGDSA verify: bad signature length!") r = stringtoint(sig[:int(getbytelen(q))]) s = stringtoint(sig[int(getbytelen(q)):int(2*getbytelen(q))]) if r == 0 or r > q: raise Exception("ECGDSA verify: r not in ]0,q[") if s == 0 or s > q: raise Exception("ECGDSA verify: s not in ]0,q[") (h, _, _) = hashfunc(message) q_limit_len = getbitlen(q) # Truncate hash value h = truncate(h, q_limit_len, "LEFT") e = stringtoint(h) % q r_inv = modinv(r, q) u = (r_inv * e) % q v = (r_inv * s) % q W_ = u * G + v * pubkey.Y r_ = W_.x % q if r == r_: return True else: return False # *| IUF - ECSDSA/ECOSDSA signature # *| # *| I 1. Get a random value k in ]0, q[ # *| I 2. Compute W = kG = (Wx, Wy) # *| IUF 3. Compute r = H(Wx [|| Wy] || m) # *| - In the normal version (ECSDSA), r = h(Wx || Wy || m). # *| - In the optimized version (ECOSDSA), r = h(Wx || m). # *| F 4. Compute e = OS2I(r) mod q # *| F 5. if e == 0, restart at step 1. # *| F 6. Compute s = (k + ex) mod q. # *| F 7. if s == 0, restart at step 1. # *| F 8. Return (r, s) def ecsdsa_common_sign(hashfunc, keypair, message, optimized, k=None): privkey = keypair.privkey # Get important parameters from the curve p = privkey.curve.p q = privkey.curve.q gx = privkey.curve.gx gy = privkey.curve.gy G = Point(privkey.curve, gx, gy) OK = False while OK == False: if k == None: k = getrandomint(q) if k == 0: continue W = k * G if optimized == False: (r, _, _) = hashfunc(expand(inttostring(W.x), 8*getbytelen(p), "LEFT") + expand(inttostring(W.y), 8*getbytelen(p), "LEFT") + message) else: (r, _, _) = hashfunc(expand(inttostring(W.x), 8*getbytelen(p), "LEFT") + message) e = stringtoint(r) % q if e == 0: continue s = (k + (e * privkey.x)) % q if s == 0: continue OK = True return (r + expand(inttostring(s), 8*getbytelen(q), "LEFT"), k) def ecsdsa_sign(hashfunc, keypair, message, k=None): return ecsdsa_common_sign(hashfunc, keypair, message, False, k) def ecosdsa_sign(hashfunc, keypair, message, k=None): return ecsdsa_common_sign(hashfunc, keypair, message, True, k) # *| IUF - ECSDSA/ECOSDSA verification # *| # *| I 1. if s is not in ]0,q[, reject the signature.x # *| I 2. Compute e = -r mod q # *| I 3. If e == 0, reject the signature. # *| I 4. Compute W' = sG + eY # *| IUF 5. Compute r' = H(W'x [|| W'y] || m) # *| - In the normal version (ECSDSA), r = h(W'x || W'y || m). # *| - In the optimized version (ECOSDSA), r = h(W'x || m). # *| F 6. Accept the signature if and only if r and r' are the same def ecsdsa_common_verify(hashfunc, keypair, message, sig, optimized): pubkey = keypair.pubkey # Get important parameters from the curve p = pubkey.curve.p q = pubkey.curve.q gx = pubkey.curve.gx gy = pubkey.curve.gy G = Point(pubkey.curve, gx, gy) (_, hlen, _) = hashfunc("") # Extract coordinates from r and s from signature if len(sig) != hlen + getbytelen(q): raise Exception("EC[O]SDSA verify: bad signature length!") r = stringtoint(sig[:int(hlen)]) s = stringtoint(sig[int(hlen):int(hlen+getbytelen(q))]) if s == 0 or s > q: raise Exception("EC[O]DSA verify: s not in ]0,q[") e = (-r) % q if e == 0: raise Exception("EC[O]DSA verify: e is null") W_ = s * G + e * pubkey.Y if optimized == False: (r_, _, _) = hashfunc(expand(inttostring(W_.x), 8*getbytelen(p), "LEFT") + expand(inttostring(W_.y), 8*getbytelen(p), "LEFT") + message) else: (r_, _, _) = hashfunc(expand(inttostring(W_.x), 8*getbytelen(p), "LEFT") + message) if sig[:int(hlen)] == r_: return True else: return False def ecsdsa_verify(hashfunc, keypair, message, sig): return ecsdsa_common_verify(hashfunc, keypair, message, sig, False) def ecosdsa_verify(hashfunc, keypair, message, sig): return ecsdsa_common_verify(hashfunc, keypair, message, sig, True) ########################################################## ### Generate self-tests for all the algorithms all_hash_funcs = [ (sha224, "SHA224"), (sha256, "SHA256"), (sha384, "SHA384"), (sha512, "SHA512"), (sha3_224, "SHA3_224"), (sha3_256, "SHA3_256"), (sha3_384, "SHA3_384"), (sha3_512, "SHA3_512") ] all_sig_algs = [ (ecdsa_sign, ecdsa_verify, genKeyPair, "ECDSA"), (eckcdsa_sign, eckcdsa_verify, eckcdsa_genKeyPair, "ECKCDSA"), (ecfsdsa_sign, ecfsdsa_verify, genKeyPair, "ECFSDSA"), (ecrdsa_sign, ecrdsa_verify, genKeyPair, "ECRDSA"), (ecgdsa_sign, ecgdsa_verify, eckcdsa_genKeyPair, "ECGDSA"), (ecsdsa_sign, ecsdsa_verify, genKeyPair, "ECSDSA"), (ecosdsa_sign, ecosdsa_verify, genKeyPair, "ECOSDSA"), ] curr_test = 0 def pretty_print_curr_test(num_test, total_gen_tests): num_decimal = int(math.log10(total_gen_tests))+1 format_buf = "%0"+str(num_decimal)+"d/%0"+str(num_decimal)+"d" sys.stdout.write('\b'*((2*num_decimal)+1)) sys.stdout.flush() sys.stdout.write(format_buf % (num_test, total_gen_tests)) if num_test == total_gen_tests: print("") return def gen_self_test(curve, hashfunc, sig_alg_sign, sig_alg_verify, sig_alg_genkeypair, num, hashfunc_name, sig_alg_name, total_gen_tests): global curr_test curr_test = curr_test + 1 if num != 0: pretty_print_curr_test(curr_test, total_gen_tests) output_list = [] for test_num in range(0, num): out_vectors = "" # Generate a random key pair keypair = sig_alg_genkeypair(curve) # Generate a random message with a random size size = getrandomint(256) if is_python_2(): message = ''.join([random.choice(string.ascii_letters + string.digits) for n in xrange(size)]) else: message = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(size)]) test_name = sig_alg_name + "_" + hashfunc_name + "_" + curve.name.upper() + "_" + str(test_num) # Sign the message (sig, k) = sig_alg_sign(hashfunc, keypair, message) # Check that everything is OK with a verify if sig_alg_verify(hashfunc, keypair, message, sig) != True: raise Exception("Error during self test generation: sig verify failed! "+test_name+ " / msg="+message+" / sig="+binascii.hexlify(sig)+" / k="+hex(k)+" / privkey.x="+hex(keypair.privkey.x)) if sig_alg_name == "ECRDSA": out_vectors += "#ifndef USE_ISO14888_3_ECRDSA\n" # Now generate the test vector out_vectors += "#ifdef WITH_HASH_"+hashfunc_name.upper()+"\n" out_vectors += "#ifdef WITH_CURVE_"+curve.name.upper()+"\n" out_vectors += "#ifdef WITH_SIG_"+sig_alg_name.upper()+"\n" out_vectors += "/* "+test_name+" known test vectors */\n" out_vectors += "static int "+test_name+"_test_vectors_get_random(nn_t out, nn_src_t q)\n{\n" # k_buf MUST be exported padded to the length of q out_vectors += "\tconst u8 k_buf[] = "+bigint_to_C_array(k, getbytelen(curve.q)) out_vectors += "\tint ret, cmp;\n\tret = nn_init_from_buf(out, k_buf, sizeof(k_buf)); EG(ret, err);\n\tret = nn_cmp(out, q, &cmp); EG(ret, err);\n\tret = (cmp >= 0) ? -1 : 0;\nerr:\n\treturn ret;\n}\n" out_vectors += "static const u8 "+test_name+"_test_vectors_priv_key[] = \n"+bigint_to_C_array(keypair.privkey.x, getbytelen(keypair.privkey.x)) out_vectors += "static const u8 "+test_name+"_test_vectors_expected_sig[] = \n"+bigint_to_C_array(stringtoint(sig), len(sig)) out_vectors += "static const ec_test_case "+test_name+"_test_case = {\n" out_vectors += "\t.name = \""+test_name+"\",\n" out_vectors += "\t.ec_str_p = &"+curve.name+"_str_params,\n" out_vectors += "\t.priv_key = "+test_name+"_test_vectors_priv_key,\n" out_vectors += "\t.priv_key_len = sizeof("+test_name+"_test_vectors_priv_key),\n" out_vectors += "\t.nn_random = "+test_name+"_test_vectors_get_random,\n" out_vectors += "\t.hash_type = "+hashfunc_name+",\n" out_vectors += "\t.msg = \""+message+"\",\n" out_vectors += "\t.msglen = "+str(len(message))+",\n" out_vectors += "\t.sig_type = "+sig_alg_name+",\n" out_vectors += "\t.exp_sig = "+test_name+"_test_vectors_expected_sig,\n" out_vectors += "\t.exp_siglen = sizeof("+test_name+"_test_vectors_expected_sig),\n};\n" out_vectors += "#endif /* WITH_HASH_"+hashfunc_name+" */\n" out_vectors += "#endif /* WITH_CURVE_"+curve.name+" */\n" out_vectors += "#endif /* WITH_SIG_"+sig_alg_name+" */\n" if sig_alg_name == "ECRDSA": out_vectors += "#endif /* !USE_ISO14888_3_ECRDSA */\n" out_name = "" if sig_alg_name == "ECRDSA": out_name += "#ifndef USE_ISO14888_3_ECRDSA"+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_HASH_"+hashfunc_name.upper()+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_CURVE_"+curve.name.upper()+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_SIG_"+sig_alg_name.upper()+"/* For "+test_name+" */\n" out_name += "\t&"+test_name+"_test_case,\n" out_name += "#endif /* WITH_HASH_"+hashfunc_name+" for "+test_name+" */\n" out_name += "#endif /* WITH_CURVE_"+curve.name+" for "+test_name+" */\n" out_name += "#endif /* WITH_SIG_"+sig_alg_name+" for "+test_name+" */" if sig_alg_name == "ECRDSA": out_name += "\n#endif /* !USE_ISO14888_3_ECRDSA */"+"/* For "+test_name+" */" output_list.append((out_name, out_vectors)) # In the specific case of ECRDSA, we also generate an ISO/IEC compatible test vector if sig_alg_name == "ECRDSA": out_vectors = "" (sig, k) = sig_alg_sign(hashfunc, keypair, message, use_iso14888_divergence=True) # Check that everything is OK with a verify if sig_alg_verify(hashfunc, keypair, message, sig, use_iso14888_divergence=True) != True: raise Exception("Error during self test generation: sig verify failed! "+test_name+ " / msg="+message+" / sig="+binascii.hexlify(sig)+" / k="+hex(k)+" / privkey.x="+hex(keypair.privkey.x)) out_vectors += "#ifdef USE_ISO14888_3_ECRDSA\n" # Now generate the test vector out_vectors += "#ifdef WITH_HASH_"+hashfunc_name.upper()+"\n" out_vectors += "#ifdef WITH_CURVE_"+curve.name.upper()+"\n" out_vectors += "#ifdef WITH_SIG_"+sig_alg_name.upper()+"\n" out_vectors += "/* "+test_name+" known test vectors */\n" out_vectors += "static int "+test_name+"_test_vectors_get_random(nn_t out, nn_src_t q)\n{\n" # k_buf MUST be exported padded to the length of q out_vectors += "\tconst u8 k_buf[] = "+bigint_to_C_array(k, getbytelen(curve.q)) out_vectors += "\tint ret, cmp;\n\tret = nn_init_from_buf(out, k_buf, sizeof(k_buf)); EG(ret, err);\n\tret = nn_cmp(out, q, &cmp); EG(ret, err);\n\tret = (cmp >= 0) ? -1 : 0;\nerr:\n\treturn ret;\n}\n" out_vectors += "static const u8 "+test_name+"_test_vectors_priv_key[] = \n"+bigint_to_C_array(keypair.privkey.x, getbytelen(keypair.privkey.x)) out_vectors += "static const u8 "+test_name+"_test_vectors_expected_sig[] = \n"+bigint_to_C_array(stringtoint(sig), len(sig)) out_vectors += "static const ec_test_case "+test_name+"_test_case = {\n" out_vectors += "\t.name = \""+test_name+"\",\n" out_vectors += "\t.ec_str_p = &"+curve.name+"_str_params,\n" out_vectors += "\t.priv_key = "+test_name+"_test_vectors_priv_key,\n" out_vectors += "\t.priv_key_len = sizeof("+test_name+"_test_vectors_priv_key),\n" out_vectors += "\t.nn_random = "+test_name+"_test_vectors_get_random,\n" out_vectors += "\t.hash_type = "+hashfunc_name+",\n" out_vectors += "\t.msg = \""+message+"\",\n" out_vectors += "\t.msglen = "+str(len(message))+",\n" out_vectors += "\t.sig_type = "+sig_alg_name+",\n" out_vectors += "\t.exp_sig = "+test_name+"_test_vectors_expected_sig,\n" out_vectors += "\t.exp_siglen = sizeof("+test_name+"_test_vectors_expected_sig),\n};\n" out_vectors += "#endif /* WITH_HASH_"+hashfunc_name+" */\n" out_vectors += "#endif /* WITH_CURVE_"+curve.name+" */\n" out_vectors += "#endif /* WITH_SIG_"+sig_alg_name+" */\n" out_vectors += "#endif /* USE_ISO14888_3_ECRDSA */\n" out_name = "" out_name += "#ifdef USE_ISO14888_3_ECRDSA"+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_HASH_"+hashfunc_name.upper()+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_CURVE_"+curve.name.upper()+"/* For "+test_name+" */\n" out_name += "#ifdef WITH_SIG_"+sig_alg_name.upper()+"/* For "+test_name+" */\n" out_name += "\t&"+test_name+"_test_case,\n" out_name += "#endif /* WITH_HASH_"+hashfunc_name+" for "+test_name+" */\n" out_name += "#endif /* WITH_CURVE_"+curve.name+" for "+test_name+" */\n" out_name += "#endif /* WITH_SIG_"+sig_alg_name+" for "+test_name+" */\n" out_name += "#endif /* USE_ISO14888_3_ECRDSA */"+"/* For "+test_name+" */" output_list.append((out_name, out_vectors)) return output_list def gen_self_tests(curve, num): global curr_test curr_test = 0 total_gen_tests = len(all_hash_funcs) * len(all_sig_algs) vectors = [[ gen_self_test(curve, hashf, sign, verify, genkp, num, hash_name, sig_alg_name, total_gen_tests) for (hashf, hash_name) in all_hash_funcs ] for (sign, verify, genkp, sig_alg_name) in all_sig_algs ] return vectors ########################################################## ### ASN.1 stuff def parse_DER_extract_size(derbuf): # Extract the size if ord(derbuf[0]) & 0x80 != 0: encoding_len_bytes = ord(derbuf[0]) & ~0x80 # Skip base = 1 else: encoding_len_bytes = 1 base = 0 if len(derbuf) < encoding_len_bytes+1: return (False, 0, 0) else: length = stringtoint(derbuf[base:base+encoding_len_bytes]) if len(derbuf) < length+encoding_len_bytes: return (False, 0, 0) else: return (True, encoding_len_bytes+base, length) def extract_DER_object(derbuf, object_tag): # Check type if ord(derbuf[0]) != object_tag: # Not the type we expect ... return (False, 0, "") else: derbuf = derbuf[1:] # Extract the size (check, encoding_len, size) = parse_DER_extract_size(derbuf) if check == False: return (False, 0, "") else: if len(derbuf) < encoding_len + size: return (False, 0, "") else: return (True, size+encoding_len+1, derbuf[encoding_len:encoding_len+size]) def extract_DER_sequence(derbuf): return extract_DER_object(derbuf, 0x30) def extract_DER_integer(derbuf): return extract_DER_object(derbuf, 0x02) def extract_DER_octetstring(derbuf): return extract_DER_object(derbuf, 0x04) def extract_DER_bitstring(derbuf): return extract_DER_object(derbuf, 0x03) def extract_DER_oid(derbuf): return extract_DER_object(derbuf, 0x06) # See ECParameters sequence in RFC 3279 def parse_DER_ECParameters(derbuf): # XXX: this is a very ugly way of extracting the information # regarding an EC curve, but since the ASN.1 structure is quite # "static", this might be sufficient without embedding a full # ASN.1 parser ... # Default return (a, b, prime, order, cofactor, gx, gy) default_ret = (0, 0, 0, 0, 0, 0, 0) # Get ECParameters wrapping sequence (check, size_ECParameters, ECParameters) = extract_DER_sequence(derbuf) if check == False: return (False, default_ret) # Get integer (check, size_ECPVer, ECPVer) = extract_DER_integer(ECParameters) if check == False: return (False, default_ret) # Get sequence (check, size_FieldID, FieldID) = extract_DER_sequence(ECParameters[size_ECPVer:]) if check == False: return (False, default_ret) # Get OID (check, size_Oid, Oid) = extract_DER_oid(FieldID) if check == False: return (False, default_ret) # Does the OID correspond to a prime field? if(Oid != "\x2A\x86\x48\xCE\x3D\x01\x01"): print("DER parse error: only prime fields are supported ...") return (False, default_ret) # Get prime p of prime field (check, size_P, P) = extract_DER_integer(FieldID[size_Oid:]) if check == False: return (False, default_ret) # Get curve (sequence) (check, size_Curve, Curve) = extract_DER_sequence(ECParameters[size_ECPVer+size_FieldID:]) if check == False: return (False, default_ret) # Get A in curve (check, size_A, A) = extract_DER_octetstring(Curve) if check == False: return (False, default_ret) # Get B in curve (check, size_B, B) = extract_DER_octetstring(Curve[size_A:]) if check == False: return (False, default_ret) # Get ECPoint (check, size_ECPoint, ECPoint) = extract_DER_octetstring(ECParameters[size_ECPVer+size_FieldID+size_Curve:]) if check == False: return (False, default_ret) # Get Order (check, size_Order, Order) = extract_DER_integer(ECParameters[size_ECPVer+size_FieldID+size_Curve+size_ECPoint:]) if check == False: return (False, default_ret) # Get Cofactor (check, size_Cofactor, Cofactor) = extract_DER_integer(ECParameters[size_ECPVer+size_FieldID+size_Curve+size_ECPoint+size_Order:]) if check == False: return (False, default_ret) # If we end up here, everything is OK, we can extract all our elements prime = stringtoint(P) a = stringtoint(A) b = stringtoint(B) order = stringtoint(Order) cofactor = stringtoint(Cofactor) # Extract Gx and Gy, see X9.62-1998 if len(ECPoint) < 1: return (False, default_ret) ECPoint_type = ord(ECPoint[0]) if (ECPoint_type == 0x04) or (ECPoint_type == 0x06) or (ECPoint_type == 0x07): # Uncompressed and hybrid points if len(ECPoint[1:]) % 2 != 0: return (False, default_ret) ECPoint = ECPoint[1:] gx = stringtoint(ECPoint[:int(len(ECPoint)/2)]) gy = stringtoint(ECPoint[int(len(ECPoint)/2):]) elif (ECPoint_type == 0x02) or (ECPoint_type == 0x03): # Compressed point: uncompress it, see X9.62-1998 section 4.2.1 ECPoint = ECPoint[1:] gx = stringtoint(ECPoint) alpha = (pow(gx, 3, prime) + (a * gx) + b) % prime beta = mod_sqrt(alpha, prime) if (beta == None) or ((beta == 0) and (alpha != 0)): return (False, 0) if (beta & 0x1) == (ECPoint_type & 0x1): gy = beta else: gy = prime - beta else: print("DER parse error: hybrid points are unsupported!") return (False, default_ret) return (True, (a, b, prime, order, cofactor, gx, gy)) ########################################################## ### Text and format helpers def bigint_to_C_array(bint, size): """ Format a python big int to a C hex array """ hexstr = format(int(bint), 'x') # Left pad to the size! hexstr = ("0"*int((2*size)-len(hexstr)))+hexstr hexstr = ("0"*(len(hexstr) % 2))+hexstr out_str = "{\n" for i in range(0, len(hexstr) - 1, 2): if (i%16 == 0): if(i!=0): out_str += "\n" out_str += "\t" out_str += "0x"+hexstr[i:i+2]+", " out_str += "\n};\n" return out_str def check_in_file(fname, pat): # See if the pattern is in the file. with open(fname) as f: if not any(re.search(pat, line) for line in f): return False # pattern does not occur in file so we are done. else: return True def num_patterns_in_file(fname, pat): num_pat = 0 with open(fname) as f: for line in f: if re.search(pat, line): num_pat = num_pat+1 return num_pat def file_replace_pattern(fname, pat, s_after): # first, see if the pattern is even in the file. with open(fname) as f: if not any(re.search(pat, line) for line in f): return # pattern does not occur in file so we are done. # pattern is in the file, so perform replace operation. with open(fname) as f: out_fname = fname + ".tmp" out = open(out_fname, "w") for line in f: out.write(re.sub(pat, s_after, line)) out.close() os.rename(out_fname, fname) def file_remove_pattern(fname, pat): # first, see if the pattern is even in the file. with open(fname) as f: if not any(re.search(pat, line) for line in f): return # pattern does not occur in file so we are done. # pattern is in the file, so perform remove operation. with open(fname) as f: out_fname = fname + ".tmp" out = open(out_fname, "w") for line in f: if not re.search(pat, line): out.write(line) out.close() if os.path.exists(fname): remove_file(fname) os.rename(out_fname, fname) def remove_file(fname): # Remove file os.remove(fname) def remove_files_pattern(fpattern): [remove_file(x) for x in glob.glob(fpattern)] def buffer_remove_pattern(buff, pat): if is_python_2() == False: buff = buff.decode('latin-1') if re.search(pat, buff) == None: return (False, buff) # pattern does not occur in file so we are done. # Remove the pattern buff = re.sub(pat, "", buff) return (True, buff) def is_base64(s): s = ''.join([s.strip() for s in s.split("\n")]) try: enc = base64.b64encode(base64.b64decode(s)).strip() if type(enc) is bytes: return enc == s.encode('latin-1') else: return enc == s except TypeError: return False ### Curve helpers def export_curve_int(curvename, intname, bigint, size): if bigint == None: out = "static const u8 "+curvename+"_"+intname+"[] = {\n\t0x00,\n};\n" out += "TO_EC_STR_PARAM_FIXED_SIZE("+curvename+"_"+intname+", 0);\n\n" else: out = "static const u8 "+curvename+"_"+intname+"[] = "+bigint_to_C_array(bigint, size)+"\n" out += "TO_EC_STR_PARAM("+curvename+"_"+intname+");\n\n" return out def export_curve_string(curvename, stringname, stringvalue): out = "static const u8 "+curvename+"_"+stringname+"[] = \""+stringvalue+"\";\n" out += "TO_EC_STR_PARAM("+curvename+"_"+stringname+");\n\n" return out def export_curve_struct(curvename, paramname, paramnamestr): return "\t."+paramname+" = &"+curvename+"_"+paramnamestr+"_str_param, \n" def curve_params(name, prime, pbitlen, a, b, gx, gy, order, cofactor, oid, alpha_montgomery, gamma_montgomery, alpha_edwards): """ Take as input some elliptic curve parameters and generate the C parameters in a string """ bytesize = int(pbitlen / 8) if pbitlen % 8 != 0: bytesize += 1 # Compute the rounded word size for each word size if bytesize % 8 != 0: wordsbitsize64 = 8*((int(bytesize/8)+1)*8) else: wordsbitsize64 = 8*bytesize if bytesize % 4 != 0: wordsbitsize32 = 8*((int(bytesize/4)+1)*4) else: wordsbitsize32 = 8*bytesize if bytesize % 2 != 0: wordsbitsize16 = 8*((int(bytesize/2)+1)*2) else: wordsbitsize16 = 8*bytesize # Compute some parameters (r64, r_square64, mpinv64) = compute_monty_coef(prime, wordsbitsize64, 64) (r32, r_square32, mpinv32) = compute_monty_coef(prime, wordsbitsize32, 32) (r16, r_square16, mpinv16) = compute_monty_coef(prime, wordsbitsize16, 16) # Compute p_reciprocal for each word size (pshift64, primenorm64, p_reciprocal64) = compute_div_coef(prime, wordsbitsize64, 64) (pshift32, primenorm32, p_reciprocal32) = compute_div_coef(prime, wordsbitsize32, 32) (pshift16, primenorm16, p_reciprocal16) = compute_div_coef(prime, wordsbitsize16, 16) # Compute the number of points on the curve npoints = order * cofactor # Now output the parameters ec_params_string = "#include \n" ec_params_string += "#ifdef WITH_CURVE_"+name.upper()+"\n\n" ec_params_string += "#ifndef __EC_PARAMS_"+name.upper()+"_H__\n" ec_params_string += "#define __EC_PARAMS_"+name.upper()+"_H__\n" ec_params_string += "#include \n" ec_params_string += export_curve_int(name, "p", prime, bytesize) ec_params_string += "#define CURVE_"+name.upper()+"_P_BITLEN "+str(pbitlen)+"\n" ec_params_string += export_curve_int(name, "p_bitlen", pbitlen, getbytelen(pbitlen)) ec_params_string += "#if (WORD_BYTES == 8) /* 64-bit words */\n" ec_params_string += export_curve_int(name, "r", r64, getbytelen(r64)) ec_params_string += export_curve_int(name, "r_square", r_square64, getbytelen(r_square64)) ec_params_string += export_curve_int(name, "mpinv", mpinv64, getbytelen(mpinv64)) ec_params_string += export_curve_int(name, "p_shift", pshift64, getbytelen(pshift64)) ec_params_string += export_curve_int(name, "p_normalized", primenorm64, getbytelen(primenorm64)) ec_params_string += export_curve_int(name, "p_reciprocal", p_reciprocal64, getbytelen(p_reciprocal64)) ec_params_string += "#elif (WORD_BYTES == 4) /* 32-bit words */\n" ec_params_string += export_curve_int(name, "r", r32, getbytelen(r32)) ec_params_string += export_curve_int(name, "r_square", r_square32, getbytelen(r_square32)) ec_params_string += export_curve_int(name, "mpinv", mpinv32, getbytelen(mpinv32)) ec_params_string += export_curve_int(name, "p_shift", pshift32, getbytelen(pshift32)) ec_params_string += export_curve_int(name, "p_normalized", primenorm32, getbytelen(primenorm32)) ec_params_string += export_curve_int(name, "p_reciprocal", p_reciprocal32, getbytelen(p_reciprocal32)) ec_params_string += "#elif (WORD_BYTES == 2) /* 16-bit words */\n" ec_params_string += export_curve_int(name, "r", r16, getbytelen(r16)) ec_params_string += export_curve_int(name, "r_square", r_square16, getbytelen(r_square16)) ec_params_string += export_curve_int(name, "mpinv", mpinv16, getbytelen(mpinv16)) ec_params_string += export_curve_int(name, "p_shift", pshift16, getbytelen(pshift16)) ec_params_string += export_curve_int(name, "p_normalized", primenorm16, getbytelen(primenorm16)) ec_params_string += export_curve_int(name, "p_reciprocal", p_reciprocal16, getbytelen(p_reciprocal16)) ec_params_string += "#else /* unknown word size */\n" ec_params_string += "#error \"Unsupported word size\"\n" ec_params_string += "#endif\n\n" ec_params_string += export_curve_int(name, "a", a, bytesize) ec_params_string += export_curve_int(name, "b", b, bytesize) curve_order_bitlen = getbitlen(npoints) ec_params_string += "#define CURVE_"+name.upper()+"_CURVE_ORDER_BITLEN "+str(curve_order_bitlen)+"\n" ec_params_string += export_curve_int(name, "curve_order", npoints, getbytelen(npoints)) ec_params_string += export_curve_int(name, "gx", gx, bytesize) ec_params_string += export_curve_int(name, "gy", gy, bytesize) ec_params_string += export_curve_int(name, "gz", 0x01, bytesize) qbitlen = getbitlen(order) ec_params_string += export_curve_int(name, "gen_order", order, getbytelen(order)) ec_params_string += "#define CURVE_"+name.upper()+"_Q_BITLEN "+str(qbitlen)+"\n" ec_params_string += export_curve_int(name, "gen_order_bitlen", qbitlen, getbytelen(qbitlen)) ec_params_string += export_curve_int(name, "cofactor", cofactor, getbytelen(cofactor)) ec_params_string += export_curve_int(name, "alpha_montgomery", alpha_montgomery, getbytelen(alpha_montgomery)) ec_params_string += export_curve_int(name, "gamma_montgomery", gamma_montgomery, getbytelen(gamma_montgomery)) ec_params_string += export_curve_int(name, "alpha_edwards", alpha_edwards, getbytelen(alpha_edwards)) ec_params_string += export_curve_string(name, "name", name.upper()); if oid == None: oid = "" ec_params_string += export_curve_string(name, "oid", oid); ec_params_string += "static const ec_str_params "+name+"_str_params = {\n"+\ export_curve_struct(name, "p", "p") +\ export_curve_struct(name, "p_bitlen", "p_bitlen") +\ export_curve_struct(name, "r", "r") +\ export_curve_struct(name, "r_square", "r_square") +\ export_curve_struct(name, "mpinv", "mpinv") +\ export_curve_struct(name, "p_shift", "p_shift") +\ export_curve_struct(name, "p_normalized", "p_normalized") +\ export_curve_struct(name, "p_reciprocal", "p_reciprocal") +\ export_curve_struct(name, "a", "a") +\ export_curve_struct(name, "b", "b") +\ export_curve_struct(name, "curve_order", "curve_order") +\ export_curve_struct(name, "gx", "gx") +\ export_curve_struct(name, "gy", "gy") +\ export_curve_struct(name, "gz", "gz") +\ export_curve_struct(name, "gen_order", "gen_order") +\ export_curve_struct(name, "gen_order_bitlen", "gen_order_bitlen") +\ export_curve_struct(name, "cofactor", "cofactor") +\ export_curve_struct(name, "alpha_montgomery", "alpha_montgomery") +\ export_curve_struct(name, "gamma_montgomery", "gamma_montgomery") +\ export_curve_struct(name, "alpha_edwards", "alpha_edwards") +\ export_curve_struct(name, "oid", "oid") +\ export_curve_struct(name, "name", "name") ec_params_string += "};\n\n" ec_params_string += "/*\n"+\ " * Compute max bit length of all curves for p and q\n"+\ " */\n"+\ "#ifndef CURVES_MAX_P_BIT_LEN\n"+\ "#define CURVES_MAX_P_BIT_LEN 0\n"+\ "#endif\n"+\ "#if (CURVES_MAX_P_BIT_LEN < CURVE_"+name.upper()+"_P_BITLEN)\n"+\ "#undef CURVES_MAX_P_BIT_LEN\n"+\ "#define CURVES_MAX_P_BIT_LEN CURVE_"+name.upper()+"_P_BITLEN\n"+\ "#endif\n"+\ "#ifndef CURVES_MAX_Q_BIT_LEN\n"+\ "#define CURVES_MAX_Q_BIT_LEN 0\n"+\ "#endif\n"+\ "#if (CURVES_MAX_Q_BIT_LEN < CURVE_"+name.upper()+"_Q_BITLEN)\n"+\ "#undef CURVES_MAX_Q_BIT_LEN\n"+\ "#define CURVES_MAX_Q_BIT_LEN CURVE_"+name.upper()+"_Q_BITLEN\n"+\ "#endif\n"+\ "#ifndef CURVES_MAX_CURVE_ORDER_BIT_LEN\n"+\ "#define CURVES_MAX_CURVE_ORDER_BIT_LEN 0\n"+\ "#endif\n"+\ "#if (CURVES_MAX_CURVE_ORDER_BIT_LEN < CURVE_"+name.upper()+"_CURVE_ORDER_BITLEN)\n"+\ "#undef CURVES_MAX_CURVE_ORDER_BIT_LEN\n"+\ "#define CURVES_MAX_CURVE_ORDER_BIT_LEN CURVE_"+name.upper()+"_CURVE_ORDER_BITLEN\n"+\ "#endif\n\n" ec_params_string += "/*\n"+\ " * Compute and adapt max name and oid length\n"+\ " */\n"+\ "#ifndef MAX_CURVE_OID_LEN\n"+\ "#define MAX_CURVE_OID_LEN 0\n"+\ "#endif\n"+\ "#ifndef MAX_CURVE_NAME_LEN\n"+\ "#define MAX_CURVE_NAME_LEN 0\n"+\ "#endif\n"+\ "#if (MAX_CURVE_OID_LEN < "+str(len(oid)+1)+")\n"+\ "#undef MAX_CURVE_OID_LEN\n"+\ "#define MAX_CURVE_OID_LEN "+str(len(oid)+1)+"\n"+\ "#endif\n"+\ "#if (MAX_CURVE_NAME_LEN < "+str(len(name.upper())+1)+")\n"+\ "#undef MAX_CURVE_NAME_LEN\n"+\ "#define MAX_CURVE_NAME_LEN "+str(len(name.upper())+1)+"\n"+\ "#endif\n\n" ec_params_string += "#endif /* __EC_PARAMS_"+name.upper()+"_H__ */\n\n"+"#endif /* WITH_CURVE_"+name.upper()+" */\n" return ec_params_string def usage(): print("This script is intented to *statically* expand the ECC library with user defined curves.") print("By statically we mean that the source code of libecc is expanded with new curves parameters through") print("automatic code generation filling place holders in the existing code base of the library. Though the") print("choice of static code generation versus dynamic curves import (such as what OpenSSL does) might be") print("argued, this choice has been driven by simplicity and security design decisions: we want libecc to have") print("all its parameters (such as memory consumption) set at compile time and statically adapted to the curves.") print("Since libecc only supports curves over prime fields, the script can only add this kind of curves.") print("This script implements elliptic curves and ISO signature algorithms from scratch over Python's multi-precision") print("big numbers library. Addition and doubling over curves use naive formulas. Please DO NOT use the functions of this") print("script for production code: they are not securely implemented and are very inefficient. Their only purpose is to expand") print("libecc and produce test vectors.") print("") print("In order to add a curve, there are two ways:") print("Adding a user defined curve with explicit parameters:") print("-----------------------------------------------------") print(sys.argv[0]+" --name=\"YOURCURVENAME\" --prime=... --order=... --a=... --b=... --gx=... --gy=... --cofactor=... --oid=THEOID") print("\t> name: name of the curve in the form of a string") print("\t> prime: prime number representing the curve prime field") print("\t> order: prime number representing the generator order") print("\t> cofactor: cofactor of the curve") print("\t> a: 'a' coefficient of the short Weierstrass equation of the curve") print("\t> b: 'b' coefficient of the short Weierstrass equation of the curve") print("\t> gx: x coordinate of the generator G") print("\t> gy: y coordinate of the generator G") print("\t> oid: optional OID of the curve") print(" Notes:") print(" ******") print("\t1) These elements are verified to indeed satisfy the curve equation.") print("\t2) All the numbers can be given either in decimal or hexadecimal format with a prepending '0x'.") print("\t3) The script automatically generates all the necessary files for the curve to be included in the library." ) print("\tYou will find the new curve definition in the usual 'lib_ecc_config.h' file (one can activate it or not at compile time).") print("") print("Adding a user defined curve through RFC3279 ASN.1 parameters:") print("-------------------------------------------------------------") print(sys.argv[0]+" --name=\"YOURCURVENAME\" --ECfile=... --oid=THEOID") print("\t> ECfile: the DER or PEM encoded file containing the curve parameters (see RFC3279)") print(" Notes:") print("\tCurve parameters encoded in DER or PEM format can be generated with tools like OpenSSL (among others). As an illustrative example,") print("\tone can list all the supported curves under OpenSSL with:") print("\t $ openssl ecparam -list_curves") print("\tOnly the listed so called \"prime\" curves are supported. Then, one can extract an explicit curve representation in ASN.1") print("\tas defined in RFC3279, for example for BRAINPOOLP320R1:") print("\t $ openssl ecparam -param_enc explicit -outform DER -name brainpoolP320r1 -out brainpoolP320r1.der") print("") print("Removing user defined curves:") print("-----------------------------") print("\t*All the user defined curves can be removed with the --remove-all toggle.") print("\t*A specific named user define curve can be removed with the --remove toggle: in this case the --name option is used to ") print("\tlocate which named curve must be deleted.") print("") print("Test vectors:") print("-------------") print("\tTest vectors can be automatically generated and added to the library self tests when providing the --add-test-vectors=X toggle.") print("\tIn this case, X test vectors will be generated for *each* (curve, sign algorithm, hash algorithm) 3-uplet (beware of combinatorial") print("\tissues when X is big!). These tests are transparently added and compiled with the self tests.") return def get_int(instring): if len(instring) == 0: return 0 if len(instring) >= 2: if instring[:2] == "0x": return int(instring, 16) return int(instring) def parse_cmd_line(args): """ Get elliptic curve parameters from command line """ name = oid = prime = a = b = gx = gy = g = order = cofactor = ECfile = remove = remove_all = add_test_vectors = None alpha_montgomery = gamma_montgomery = alpha_edwards = None try: opts, args = getopt.getopt(sys.argv[1:], ":h", ["help", "remove", "remove-all", "name=", "prime=", "a=", "b=", "generator=", "gx=", "gy=", "order=", "cofactor=", "alpha_montgomery=","gamma_montgomery=", "alpha_edwards=", "ECfile=", "oid=", "add-test-vectors="]) except getopt.GetoptError as err: # print help information and exit: print(err) # will print something like "option -a not recognized" usage() return False for o, arg in opts: if o in ("-h", "--help"): usage() return True elif o in ("--name"): name = arg # Prepend the custom string before name to avoid any collision name = "user_defined_"+name # Replace any unwanted name char name = re.sub("\-", "_", name) elif o in ("--oid="): oid = arg elif o in ("--prime"): prime = get_int(arg.replace(' ', '')) elif o in ("--a"): a = get_int(arg.replace(' ', '')) elif o in ("--b"): b = get_int(arg.replace(' ', '')) elif o in ("--gx"): gx = get_int(arg.replace(' ', '')) elif o in ("--gy"): gy = get_int(arg.replace(' ', '')) elif o in ("--generator"): g = arg.replace(' ', '') elif o in ("--order"): order = get_int(arg.replace(' ', '')) elif o in ("--cofactor"): cofactor = get_int(arg.replace(' ', '')) elif o in ("--alpha_montgomery"): alpha_montgomery = get_int(arg.replace(' ', '')) elif o in ("--gamma_montgomery"): gamma_montgomery = get_int(arg.replace(' ', '')) elif o in ("--alpha_edwards"): alpha_edwards = get_int(arg.replace(' ', '')) elif o in ("--remove"): remove = True elif o in ("--remove-all"): remove_all = True elif o in ("--add-test-vectors"): add_test_vectors = get_int(arg.replace(' ', '')) elif o in ("--ECfile"): ECfile = arg else: print("unhandled option") usage() return False # File paths script_path = os.path.abspath(os.path.dirname(sys.argv[0])) + "/" ec_params_path = script_path + "../include/libecc/curves/user_defined/" curves_list_path = script_path + "../include/libecc/curves/" lib_ecc_types_path = script_path + "../include/libecc/" lib_ecc_config_path = script_path + "../include/libecc/" ec_self_tests_path = script_path + "../src/tests/" meson_options_path = script_path + "../" # If remove is True, we have been asked to remove already existing user defined curves if remove == True: if name == None: print("--remove option expects a curve name provided with --name") return False asked = "" while asked != "y" and asked != "n": asked = get_user_input("You asked to remove everything related to user defined "+name.replace("user_defined_", "")+" curve. Enter y to confirm, n to cancel [y/n]. ") if asked == "n": print("NOT removing curve "+name.replace("user_defined_", "")+" (cancelled).") return True # Remove any user defined stuff with given name print("Removing user defined curve "+name.replace("user_defined_", "")+" ...") if name == None: print("Error: you must provide a curve name with --remove") return False file_remove_pattern(curves_list_path + "curves_list.h", ".*"+name+".*") file_remove_pattern(curves_list_path + "curves_list.h", ".*"+name.upper()+".*") file_remove_pattern(lib_ecc_types_path + "lib_ecc_types.h", ".*"+name.upper()+".*") file_remove_pattern(lib_ecc_config_path + "lib_ecc_config.h", ".*"+name.upper()+".*") file_remove_pattern(ec_self_tests_path + "ec_self_tests_core.h", ".*"+name+".*") file_remove_pattern(ec_self_tests_path + "ec_self_tests_core.h", ".*"+name.upper()+".*") file_remove_pattern(meson_options_path + "meson.options", ".*"+name.lower()+".*") try: remove_file(ec_params_path + "ec_params_"+name+".h") except: print("Error: curve name "+name+" does not seem to be present in the sources!") return False try: remove_file(ec_self_tests_path + "ec_self_tests_core_"+name+".h") except: print("Warning: curve name "+name+" self tests do not seem to be present ...") return True return True if remove_all == True: asked = "" while asked != "y" and asked != "n": asked = get_user_input("You asked to remove everything related to ALL user defined curves. Enter y to confirm, n to cancel [y/n]. ") if asked == "n": print("NOT removing user defined curves (cancelled).") return True # Remove any user defined stuff with given name print("Removing ALL user defined curves ...") # Remove any user defined stuff (whatever name) file_remove_pattern(curves_list_path + "curves_list.h", ".*user_defined.*") file_remove_pattern(curves_list_path + "curves_list.h", ".*USER_DEFINED.*") file_remove_pattern(lib_ecc_types_path + "lib_ecc_types.h", ".*USER_DEFINED.*") file_remove_pattern(lib_ecc_config_path + "lib_ecc_config.h", ".*USER_DEFINED.*") file_remove_pattern(ec_self_tests_path + "ec_self_tests_core.h", ".*USER_DEFINED.*") file_remove_pattern(ec_self_tests_path + "ec_self_tests_core.h", ".*user_defined.*") file_remove_pattern(meson_options_path + "meson.options", ".*user_defined.*") remove_files_pattern(ec_params_path + "ec_params_user_defined_*.h") remove_files_pattern(ec_self_tests_path + "ec_self_tests_core_user_defined_*.h") return True # If a g is provided, split it in two gx and gy if g != None: if (len(g)/2)%2 == 0: gx = get_int(g[:len(g)/2]) gy = get_int(g[len(g)/2:]) else: # This is probably a generator encapsulated in a bit string if g[0:2] != "04": print("Error: provided generator g is not conforming!") return False else: g = g[2:] gx = get_int(g[:len(g)/2]) gy = get_int(g[len(g)/2:]) if ECfile != None: # ASN.1 DER input incompatible with other options if (prime != None) or (a != None) or (b != None) or (gx != None) or (gy != None) or (order != None) or (cofactor != None): print("Error: option ECfile incompatible with explicit (prime, a, b, gx, gy, order, cofactor) options!") return False # We need at least a name if (name == None): print("Error: option ECfile needs a curve name!") return False # Open the file try: buf = open(ECfile, 'rb').read() except: print("Error: cannot open ECfile file "+ECfile) return False # Check if we have a PEM or a DER file (check, derbuf) = buffer_remove_pattern(buf, "-----.*-----") if (check == True): # This a PEM file, proceed with base64 decoding if(is_base64(derbuf) == False): print("Error: error when decoding ECfile file "+ECfile+" (seems to be PEM, but failed to decode)") return False derbuf = base64.b64decode(derbuf) (check, (a, b, prime, order, cofactor, gx, gy)) = parse_DER_ECParameters(derbuf) if (check == False): print("Error: error when parsing ECfile file "+ECfile+" (malformed or unsupported ASN.1)") return False else: if (prime == None) or (a == None) or (b == None) or (gx == None) or (gy == None) or (order == None) or (cofactor == None) or (name == None): err_string = (prime == None)*"prime "+(a == None)*"a "+(b == None)*"b "+(gx == None)*"gx "+(gy == None)*"gy "+(order == None)*"order "+(cofactor == None)*"cofactor "+(name == None)*"name " print("Error: missing "+err_string+" in explicit curve definition (name, prime, a, b, gx, gy, order, cofactor)!") print("See the help with -h or --help") return False # Some sanity checks here # Check that prime is indeed a prime if is_probprime(prime) == False: print("Error: given prime is *NOT* prime!") return False if is_probprime(order) == False: print("Error: given order is *NOT* prime!") return False if (a > prime) or (b > prime) or (gx > prime) or (gy > prime): err_string = (a > prime)*"a "+(b > prime)*"b "+(gx > prime)*"gx "+(gy > prime)*"gy " print("Error: "+err_string+"is > prime") return False # Check that the provided generator is on the curve if pow(gy, 2, prime) != ((pow(gx, 3, prime) + (a*gx) + b) % prime): print("Error: the given parameters (prime, a, b, gx, gy) do not verify the elliptic curve equation!") return False # Check Montgomery and Edwards transfer coefficients if ((alpha_montgomery != None) and (gamma_montgomery == None)) or ((alpha_montgomery == None) and (gamma_montgomery != None)): print("Error: alpha_montgomery and gamma_montgomery must be both defined if used!") return False if (alpha_edwards != None): if (alpha_montgomery == None) or (gamma_montgomery == None): print("Error: alpha_edwards needs alpha_montgomery and gamma_montgomery to be both defined if used!") return False # Now that we have our parameters, call the function to get bitlen pbitlen = getbitlen(prime) ec_params = curve_params(name, prime, pbitlen, a, b, gx, gy, order, cofactor, oid, alpha_montgomery, gamma_montgomery, alpha_edwards) # Check if there is a name collision somewhere if os.path.exists(ec_params_path + "ec_params_"+name+".h") == True : print("Error: file %s already exists!" % (ec_params_path + "ec_params_"+name+".h")) return False if (check_in_file(curves_list_path + "curves_list.h", "ec_params_"+name+"_str_params") == True) or (check_in_file(curves_list_path + "curves_list.h", "WITH_CURVE_"+name.upper()+"\n") == True) or (check_in_file(lib_ecc_types_path + "lib_ecc_types.h", "WITH_CURVE_"+name.upper()+"\n") == True): print("Error: name %s already exists in files" % ("ec_params_"+name)) return False # Create a new file with the parameters if not os.path.exists(ec_params_path): # Create the "user_defined" folder if it does not exist os.mkdir(ec_params_path) f = open(ec_params_path + "ec_params_"+name+".h", 'w') f.write(ec_params) f.close() # Include the file in curves_list.h magic = "ADD curves header here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(curves_list_path + "curves_list.h", magic_re, "#include \n"+magic_back) # Add the curve mapping magic = "ADD curves mapping here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(curves_list_path + "curves_list.h", magic_re, "#ifdef WITH_CURVE_"+name.upper()+"\n\t{ .type = "+name.upper()+", .params = &"+name+"_str_params },\n#endif /* WITH_CURVE_"+name.upper()+" */\n"+magic_back) # Add the new curve type in the enum # First we get the number of already defined curves so that we increment the enum counter num_with_curve = num_patterns_in_file(lib_ecc_types_path + "lib_ecc_types.h", "#ifdef WITH_CURVE_") magic = "ADD curves type here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(lib_ecc_types_path + "lib_ecc_types.h", magic_re, "#ifdef WITH_CURVE_"+name.upper()+"\n\t"+name.upper()+" = "+str(num_with_curve+1)+",\n#endif /* WITH_CURVE_"+name.upper()+" */\n"+magic_back) # Add the new curve define in the config magic = "ADD curves define here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(lib_ecc_config_path + "lib_ecc_config.h", magic_re, "#define WITH_CURVE_"+name.upper()+"\n"+magic_back) # Add the new curve meson option in the meson.options file magic = "ADD curves meson option here" magic_re = "# " + magic magic_back = "# " + magic file_replace_pattern(meson_options_path + "meson.options", magic_re, "\t'"+name.lower()+"',\n"+magic_back) # Do we need to add some test vectors? if add_test_vectors != None: print("Test vectors generation asked: this can take some time! Please wait ...") # Create curve c = Curve(a, b, prime, order, cofactor, gx, gy, cofactor * order, name, oid) # Generate key pair for the algorithm vectors = gen_self_tests(c, add_test_vectors) # Iterate through all the tests f = open(ec_self_tests_path + "ec_self_tests_core_"+name+".h", 'w') for l in vectors: for v in l: for case in v: (case_name, case_vector) = case # Add the new test case magic = "ADD curve test case here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(ec_self_tests_path + "ec_self_tests_core.h", magic_re, case_name+"\n"+magic_back) # Create/Increment the header file f.write(case_vector) f.close() # Add the new test cases header magic = "ADD curve test vectors header here" magic_re = "\/\* "+magic+" \*\/" magic_back = "/* "+magic+" */" file_replace_pattern(ec_self_tests_path + "ec_self_tests_core.h", magic_re, "#include \"ec_self_tests_core_"+name+".h\"\n"+magic_back) return True #### Main if __name__ == "__main__": signal.signal(signal.SIGINT, handler) parse_cmd_line(sys.argv[1:])