// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file range_decoder.h /// \brief Range Decoder /// // Authors: Igor Pavlov // Lasse Collin // /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_DECODER_H #define LZMA_RANGE_DECODER_H #include "range_common.h" // Choose the range decoder variants to use using a bitmask. // If no bits are set, only the basic version is used. // If more than one version is selected for the same feature, // the last one on the list below is used. // // Bitwise-or of the following enable branchless C versions: // 0x01 normal bittrees // 0x02 fixed-sized reverse bittrees // 0x04 variable-sized reverse bittrees (not faster) // 0x08 matched literal (not faster) // // GCC & Clang compatible x86-64 inline assembly: // 0x010 normal bittrees // 0x020 fixed-sized reverse bittrees // 0x040 variable-sized reverse bittrees // 0x080 matched literal // 0x100 direct bits // // The default can be overridden at build time by defining // LZMA_RANGE_DECODER_CONFIG to the desired mask. // // 2024-02-22: Feedback from benchmarks: // - Brancless C (0x003) can be better than basic on x86-64 but often it's // slightly worse on other archs. Since asm is much better on x86-64, // branchless C is not used at all. // - With x86-64 asm, there are slight differences between GCC and Clang // and different processors. Overall 0x1F0 seems to be the best choice. #ifndef LZMA_RANGE_DECODER_CONFIG # if defined(__x86_64__) && !defined(__ILP32__) \ && !defined(__NVCOMPILER) \ && (defined(__GNUC__) || defined(__clang__)) # define LZMA_RANGE_DECODER_CONFIG 0x1F0 # else # define LZMA_RANGE_DECODER_CONFIG 0 # endif #endif // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. // This is useful for updating probability variables in branchless decoding: // // uint32_t decoded_bit = ...; // probability tmp = RC_BIT_MODEL_OFFSET; // tmp &= decoded_bit - 1; // prob -= (prob + tmp) >> RC_MOVE_BITS; #define RC_BIT_MODEL_OFFSET \ ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) typedef struct { uint32_t range; uint32_t code; uint32_t init_bytes_left; } lzma_range_decoder; /// Reads the first five bytes to initialize the range decoder. static inline lzma_ret rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size) { while (rc->init_bytes_left > 0) { if (*in_pos == in_size) return LZMA_OK; // The first byte is always 0x00. It could have been omitted // in LZMA2 but it wasn't, so one byte is wasted in every // LZMA2 chunk. if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) return LZMA_DATA_ERROR; rc->code = (rc->code << 8) | in[*in_pos]; ++*in_pos; --rc->init_bytes_left; } return LZMA_STREAM_END; } /// Makes local copies of range decoder and *in_pos variables. Doing this /// improves speed significantly. The range decoder macros expect also /// variables 'in' and 'in_size' to be defined. #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ lzma_range_decoder rc = range_decoder; \ const uint8_t *rc_in_ptr = in + (in_pos); \ const uint8_t *rc_in_end = in + in_size; \ const uint8_t *rc_in_fast_end \ = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ ? rc_in_ptr \ : rc_in_end - (fast_mode_in_required); \ (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ uint32_t rc_bound /// Evaluates to true if there is enough input remaining to use fast mode. #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) /// Stores the local copes back to the range decoder structure. #define rc_from_local(range_decoder, in_pos) \ do { \ range_decoder = rc; \ in_pos = (size_t)(rc_in_ptr - in); \ } while (0) /// Resets the range decoder structure. #define rc_reset(range_decoder) \ do { \ (range_decoder).range = UINT32_MAX; \ (range_decoder).code = 0; \ (range_decoder).init_bytes_left = 5; \ } while (0) /// When decoding has been properly finished, rc.code is always zero unless /// the input stream is corrupt. So checking this can catch some corrupt /// files especially if they don't have any other integrity check. #define rc_is_finished(range_decoder) \ ((range_decoder).code == 0) // Read the next input byte if needed. #define rc_normalize() \ do { \ if (rc.range < RC_TOP_VALUE) { \ rc.range <<= RC_SHIFT_BITS; \ rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ } \ } while (0) /// If more input is needed but there is /// no more input available, "goto out" is used to jump out of the main /// decoder loop. The "_safe" macros are used in the Resumable decoder /// mode in order to save the sequence to continue decoding from that /// point later. #define rc_normalize_safe(seq) \ do { \ if (rc.range < RC_TOP_VALUE) { \ if (rc_in_ptr == rc_in_end) { \ coder->sequence = seq; \ goto out; \ } \ rc.range <<= RC_SHIFT_BITS; \ rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ } \ } while (0) /// Start decoding a bit. This must be used together with rc_update_0() /// and rc_update_1(): /// /// rc_if_0(prob) { /// rc_update_0(prob); /// // Do something /// } else { /// rc_update_1(prob); /// // Do something else /// } /// #define rc_if_0(prob) \ rc_normalize(); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) #define rc_if_0_safe(prob, seq) \ rc_normalize_safe(seq); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 0. /// /// The x86-64 assembly uses the commented method but it seems that, /// at least on x86-64, the first version is slightly faster as C code. #define rc_update_0(prob) \ do { \ rc.range = rc_bound; \ prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ } while (0) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 1. #define rc_update_1(prob) \ do { \ rc.range -= rc_bound; \ rc.code -= rc_bound; \ prob -= (prob) >> RC_MOVE_BITS; \ } while (0) /// Decodes one bit and runs action0 or action1 depending on the decoded bit. /// This macro is used as the last step in bittree reverse decoders since /// those don't use "symbol" for anything else than indexing the probability /// arrays. #define rc_bit_last(prob, action0, action1) \ do { \ rc_if_0(prob) { \ rc_update_0(prob); \ action0; \ } else { \ rc_update_1(prob); \ action1; \ } \ } while (0) #define rc_bit_last_safe(prob, action0, action1, seq) \ do { \ rc_if_0_safe(prob, seq) { \ rc_update_0(prob); \ action0; \ } else { \ rc_update_1(prob); \ action1; \ } \ } while (0) /// Decodes one bit, updates "symbol", and runs action0 or action1 depending /// on the decoded bit. #define rc_bit(prob, action0, action1) \ rc_bit_last(prob, \ symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1); #define rc_bit_safe(prob, action0, action1, seq) \ rc_bit_last_safe(prob, \ symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1, \ seq); // Unroll fixed-sized bittree decoding. // // A compile-time constant in final_add can be used to get rid of the high bit // from symbol that is used for the array indexing (1U << bittree_bits). // final_add may also be used to add offset to the result (LZMA length // decoder does that). // // The reason to have final_add here is that in the asm code the addition // can be done for free: in x86-64 there is SBB instruction with -1 as // the immediate value, and final_add is combined with that value. #define rc_bittree_bit(prob) \ rc_bit(prob, , ) #define rc_bittree3(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) #define rc_bittree6(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) #define rc_bittree8(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) // Fixed-sized reverse bittree #define rc_bittree_rev4(probs) \ do { \ symbol = 0; \ rc_bit_last(probs[symbol + 1], , symbol += 1); \ rc_bit_last(probs[symbol + 2], , symbol += 2); \ rc_bit_last(probs[symbol + 4], , symbol += 4); \ rc_bit_last(probs[symbol + 8], , symbol += 8); \ } while (0) // Decode one bit from variable-sized reverse bittree. The loop is done // in the code that uses this macro. This could be changed if the assembly // version benefited from having the loop done in assembly but it didn't // seem so in early 2024. // // Also, if the loop was done here, the loop counter would likely be local // to the macro so that it wouldn't modify yet another input variable. // If a _safe version of a macro with a loop was done then a modifiable // input variable couldn't be avoided though. #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ rc_bit(probs[symbol], \ , \ dest += value_to_add_if_1); // Matched literal #define decode_with_match_bit \ t_match_byte <<= 1; \ t_match_bit = t_match_byte & t_offset; \ t_subcoder_index = t_offset + t_match_bit + symbol; \ rc_bit(probs[t_subcoder_index], \ t_offset &= ~t_match_bit, \ t_offset &= t_match_bit) #define rc_matched_literal(probs_base_var, match_byte) \ do { \ uint32_t t_match_byte = (match_byte); \ uint32_t t_match_bit; \ uint32_t t_subcoder_index; \ uint32_t t_offset = 0x100; \ symbol = 1; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ } while (0) /// Decode a bit without using a probability. // // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound // calculation to use an arithmetic right shift so there's no need to provide // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); #define rc_direct(dest, count_var) \ do { \ dest = (dest << 1) + 1; \ rc_normalize(); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ dest += rc_bound; \ rc.code += rc.range & rc_bound; \ } while (--count_var > 0) #define rc_direct_safe(dest, count_var, seq) \ do { \ rc_normalize_safe(seq); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ rc.code += rc.range & rc_bound; \ dest = (dest << 1) + (rc_bound + 1); \ } while (--count_var > 0) ////////////////// // Branchless C // ////////////////// /// Decode a bit using a branchless method. This reduces the number of /// mispredicted branches and thus can improve speed. #define rc_c_bit(prob, action_bit, action_neg) \ do { \ probability *p = &(prob); \ rc_normalize(); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ action_bit; /* action when rc_mask is 0 or 1 */ \ /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ rc_mask = 0U - rc_mask; \ rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ rc_bound ^= rc_mask; \ rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ rc.range += rc_bound; \ rc_bound &= rc_mask; \ rc.code += rc_bound; \ action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ rc_mask &= RC_BIT_MODEL_OFFSET; \ *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ } while (0) // Testing on x86-64 give an impression that only the normal bittrees and // the fixed-sized reverse bittrees are worth the branchless C code. // It should be tested on other archs for which there isn't assembly code // in this file. // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA // or RISC-V SH1ADD instructions. Compilers might infer it from // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but // the use of addition doesn't require such analysis from compilers. #if LZMA_RANGE_DECODER_CONFIG & 0x01 #undef rc_bittree_bit #define rc_bittree_bit(prob) \ rc_c_bit(prob, \ symbol = (symbol << 1) + rc_mask, \ ) #endif // LZMA_RANGE_DECODER_CONFIG & 0x01 #if LZMA_RANGE_DECODER_CONFIG & 0x02 #undef rc_bittree_rev4 #define rc_bittree_rev4(probs) \ do { \ symbol = 0; \ rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ } while (0) #endif // LZMA_RANGE_DECODER_CONFIG & 0x02 #if LZMA_RANGE_DECODER_CONFIG & 0x04 #undef rc_bit_add_if_1 #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ rc_c_bit(probs[symbol], \ symbol = (symbol << 1) + rc_mask, \ dest += (value_to_add_if_1) & rc_mask) #endif // LZMA_RANGE_DECODER_CONFIG & 0x04 #if LZMA_RANGE_DECODER_CONFIG & 0x08 #undef decode_with_match_bit #define decode_with_match_bit \ t_match_byte <<= 1; \ t_match_bit = t_match_byte & t_offset; \ t_subcoder_index = t_offset + t_match_bit + symbol; \ rc_c_bit(probs[t_subcoder_index], \ symbol = (symbol << 1) + rc_mask, \ t_offset &= ~t_match_bit ^ rc_mask) #endif // LZMA_RANGE_DECODER_CONFIG & 0x08 //////////// // x86-64 // //////////// #if LZMA_RANGE_DECODER_CONFIG & 0x1F0 // rc_asm_y and rc_asm_n are used as arguments to macros to control which // strings to include or omit. #define rc_asm_y(str) str #define rc_asm_n(str) // There are a few possible variations for normalization. // This is the smallest variant which is also used by LZMA SDK. // // - This has partial register write (the MOV from (%[in_ptr])). // // - INC saves one byte in code size over ADD. False dependency on // partial flags from INC shouldn't become a problem on any processor // because the instructions after normalization don't read the flags // until SUB which sets all flags. // #define rc_asm_normalize \ "cmp %[top_value], %[range]\n\t" \ "jae 1f\n\t" \ "shl %[shift_bits], %[code]\n\t" \ "mov (%[in_ptr]), %b[code]\n\t" \ "shl %[shift_bits], %[range]\n\t" \ "inc %[in_ptr]\n" \ "1:\n" // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... // // rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); // if (rc.code < rc_bound) // // ...but the bound is stored in "range": // // t0 = range; // range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); // t0 -= range; // t1 = code; // code -= range; // // The carry flag (CF) from the last subtraction holds the negation of // the decoded bit (if CF==0 then the decoded bit is 1). // The values in t0 and t1 are needed for rc_update_0(prob) and // rc_update_1(prob). If the bit is 0, rc_update_0(prob)... // // rc.range = rc_bound; // // ...has already been done but the "code -= range" has to be reverted using // the old value stored in t1. (Also, prob needs to be updated.) // // If the bit is 1, rc_update_1(prob)... // // rc.range -= rc_bound; // rc.code -= rc_bound; // // ...is already done for "code" but the value for "range" needs to be taken // from t0. (Also, prob needs to be updated here as well.) // // The assignments from t0 and t1 can be done in a branchless manner with CMOV // after the instructions from this macro. The CF from SUB tells which moves // are needed. #define rc_asm_calc(prob) \ "mov %[range], %[t0]\n\t" \ "shr %[bit_model_total_bits], %[range]\n\t" \ "imul %[" prob "], %[range]\n\t" \ "sub %[range], %[t0]\n\t" \ "mov %[code], %[t1]\n\t" \ "sub %[range], %[code]\n\t" // Also, prob needs to be updated: The update math depends on the decoded bit. // It can be expressed in a few slightly different ways but this is fairly // convenient here: // // prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; // // To do it in branchless way when the negation of the decoded bit is in CF, // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired // value can be picked with CMOV. The addition can be done using LEA without // affecting CF. // // (This prob update method is a tiny bit different from LZMA SDK 23.01. // In the LZMA SDK a single register is reserved solely for a constant to // be used with CMOV when updating prob. That is fine since there are enough // free registers to do so. The method used here uses one fewer register, // which is valuable with inline assembly.) // // * * * // // In bittree decoding, each (unrolled) loop iteration decodes one bit // and needs one prob variable. To make it faster, the prob variable of // the iteration N+1 is loaded during iteration N. There are two possible // prob variables to choose from for N+1. Both are loaded from memory and // the correct one is chosen with CMOV using the same CF as is used for // other things described above. // // This preloading/prefetching requires an extra register. To avoid // useless moves from "preloaded prob register" to "current prob register", // the macros swap between the two registers for odd and even iterations. // // * * * // // Finally, the decoded bit has to be stored in "symbol". Since the negation // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is // the same as "symbol += 1". // // The instructions for all things are intertwined for a few reasons: // - freeing temporary registers for new use // - not modifying CF too early // - instruction scheduling // // The first and last iterations can cheat a little. For example, // on the first iteration "symbol" is known to start from 1 so it // doesn't need to be read; it can even be immediately initialized // to 2 to prepare for the second iteration of the loop. // // * * * // // a = number of the current prob variable (0 or 1) // b = number of the next prob variable (1 or 0) // *_only = rc_asm_y or _n to include or exclude code marked with them #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ first_only( \ "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ "mov $2, %[symbol]\n\t" \ "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ ) \ middle_only( \ /* Note the scaling of 4 instead of 2: */ \ "movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ ) \ last_only( \ "add %[symbol], %[symbol]\n\t" \ ) \ \ rc_asm_normalize \ rc_asm_calc("prob" #a) \ \ "cmovae %[t0], %[range]\n\t" \ \ first_only( \ "movzw 6(%[probs_base]), %[t0]\n\t" \ "cmovae %[t0], %[prob" #b "]\n\t" \ ) \ middle_only( \ "movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ "cmovae %[t0], %[prob" #b "]\n\t" \ ) \ \ "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ "cmovb %[t1], %[code]\n\t" \ "mov %[symbol], %[t1]\n\t" \ "cmovae %[prob" #a "], %[t0]\n\t" \ \ first_only( \ "sbb $-1, %[symbol]\n\t" \ ) \ middle_only( \ "sbb $-1, %[symbol]\n\t" \ ) \ last_only( \ "sbb %[last_sbb], %[symbol]\n\t" \ ) \ \ "shr %[move_bits], %[t0]\n\t" \ "sub %[t0], %[prob" #a "]\n\t" \ /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" // NOTE: The order of variables in __asm__ can affect speed and code size. #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ do { \ uint32_t t0; \ uint32_t t1; \ uint32_t t_prob0; \ uint32_t t_prob1; \ \ __asm__( \ asm_str \ : \ [range] "+&r"(rc.range), \ [code] "+&r"(rc.code), \ [t0] "=&r"(t0), \ [t1] "=&r"(t1), \ [prob0] "=&r"(t_prob0), \ [prob1] "=&r"(t_prob1), \ [symbol] "=&r"(symbol), \ [in_ptr] "+&r"(rc_in_ptr) \ : \ [probs_base] "r"(probs_base_var), \ [last_sbb] "n"(-1 - (final_add)), \ [top_value] "n"(RC_TOP_VALUE), \ [shift_bits] "n"(RC_SHIFT_BITS), \ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ [move_bits] "n"(RC_MOVE_BITS) \ : \ "cc", "memory"); \ } while (0) #if LZMA_RANGE_DECODER_CONFIG & 0x010 #undef rc_bittree3 #define rc_bittree3(probs_base_var, final_add) \ rc_asm_bittree_n(probs_base_var, final_add, \ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ ) #undef rc_bittree6 #define rc_bittree6(probs_base_var, final_add) \ rc_asm_bittree_n(probs_base_var, final_add, \ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ ) #undef rc_bittree8 #define rc_bittree8(probs_base_var, final_add) \ rc_asm_bittree_n(probs_base_var, final_add, \ rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ ) #endif // LZMA_RANGE_DECODER_CONFIG & 0x010 // Fixed-sized reverse bittree // // This uses the indexing that constructs the final value in symbol directly. // add = 1, 2, 4, 8 // dcur = -, 4, 8, 16 // dnext0 = 4, 8, 16, - // dnext0 = 6, 12, 24, - #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ first_only, middle_only, last_only) \ first_only( \ "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ "xor %[symbol], %[symbol]\n\t" \ "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ ) \ middle_only( \ "movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \ "%[prob" #b "]\n\t" \ ) \ \ rc_asm_normalize \ rc_asm_calc("prob" #a) \ \ "cmovae %[t0], %[range]\n\t" \ \ first_only( \ "movzw 6(%[probs_base]), %[t0]\n\t" \ "cmovae %[t0], %[prob" #b "]\n\t" \ ) \ middle_only( \ "movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ "cmovae %[t0], %[prob" #b "]\n\t" \ ) \ \ "lea " #add "(%q[symbol]), %[t0]\n\t" \ "cmovb %[t1], %[code]\n\t" \ middle_only( \ "mov %[symbol], %[t1]\n\t" \ ) \ last_only( \ "mov %[symbol], %[t1]\n\t" \ ) \ "cmovae %[t0], %[symbol]\n\t" \ "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ "cmovae %[prob" #a "], %[t0]\n\t" \ \ "shr %[move_bits], %[t0]\n\t" \ "sub %[t0], %[prob" #a "]\n\t" \ first_only( \ "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ ) \ middle_only( \ "mov %w[prob" #a "], " \ #dcur "(%[probs_base], %q[t1], 2)\n\t" \ ) \ last_only( \ "mov %w[prob" #a "], " \ #dcur "(%[probs_base], %q[t1], 2)\n\t" \ ) #if LZMA_RANGE_DECODER_CONFIG & 0x020 #undef rc_bittree_rev4 #define rc_bittree_rev4(probs_base_var) \ rc_asm_bittree_n(probs_base_var, 4, \ rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ ) #endif // LZMA_RANGE_DECODER_CONFIG & 0x020 #if LZMA_RANGE_DECODER_CONFIG & 0x040 #undef rc_bit_add_if_1 #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ do { \ uint32_t t0; \ uint32_t t1; \ uint32_t t2 = (value_to_add_if_1); \ uint32_t t_prob; \ uint32_t t_index; \ \ __asm__( \ "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ "mov %[symbol], %[index]\n\t" \ \ "add %[dest], %[t2]\n\t" \ "add %[symbol], %[symbol]\n\t" \ \ rc_asm_normalize \ rc_asm_calc("prob") \ \ "cmovae %[t0], %[range]\n\t" \ "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ "cmovb %[t1], %[code]\n\t" \ "cmovae %[prob], %[t0]\n\t" \ \ "cmovae %[t2], %[dest]\n\t" \ "sbb $-1, %[symbol]\n\t" \ \ "sar %[move_bits], %[t0]\n\t" \ "sub %[t0], %[prob]\n\t" \ "mov %w[prob], (%[probs_base], %q[index], 2)" \ : \ [range] "+&r"(rc.range), \ [code] "+&r"(rc.code), \ [t0] "=&r"(t0), \ [t1] "=&r"(t1), \ [prob] "=&r"(t_prob), \ [index] "=&r"(t_index), \ [symbol] "+&r"(symbol), \ [t2] "+&r"(t2), \ [dest] "+&r"(dest_var), \ [in_ptr] "+&r"(rc_in_ptr) \ : \ [probs_base] "r"(probs_base_var), \ [top_value] "n"(RC_TOP_VALUE), \ [shift_bits] "n"(RC_SHIFT_BITS), \ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ [move_bits] "n"(RC_MOVE_BITS) \ : \ "cc", "memory"); \ } while (0) #endif // LZMA_RANGE_DECODER_CONFIG & 0x040 // Literal decoding uses a normal 8-bit bittree but literal with match byte // is more complex in picking the probability variable from the correct // subtree. This doesn't use preloading/prefetching of the next prob because // there are four choices instead of two. // // FIXME? The first iteration starts with symbol = 1 so it could be optimized // by a tiny amount. #define rc_asm_matched_literal(nonlast_only) \ "add %[offset], %[symbol]\n\t" \ "and %[offset], %[match_bit]\n\t" \ "add %[match_bit], %[symbol]\n\t" \ \ "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ \ "add %[symbol], %[symbol]\n\t" \ \ nonlast_only( \ "xor %[match_bit], %[offset]\n\t" \ "add %[match_byte], %[match_byte]\n\t" \ ) \ \ rc_asm_normalize \ rc_asm_calc("prob") \ \ "cmovae %[t0], %[range]\n\t" \ "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ "cmovb %[t1], %[code]\n\t" \ "mov %[symbol], %[t1]\n\t" \ "cmovae %[prob], %[t0]\n\t" \ \ nonlast_only( \ "cmovae %[match_bit], %[offset]\n\t" \ "mov %[match_byte], %[match_bit]\n\t" \ ) \ \ "sbb $-1, %[symbol]\n\t" \ \ "shr %[move_bits], %[t0]\n\t" \ /* Undo symbol += match_bit + offset: */ \ "and $0x1FF, %[symbol]\n\t" \ "sub %[t0], %[prob]\n\t" \ \ /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" #if LZMA_RANGE_DECODER_CONFIG & 0x080 #undef rc_matched_literal #define rc_matched_literal(probs_base_var, match_byte_value) \ do { \ uint32_t t0; \ uint32_t t1; \ uint32_t t_prob; \ uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ uint32_t t_match_bit = t_match_byte; \ uint32_t t_offset = 0x100; \ symbol = 1; \ \ __asm__( \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_y) \ rc_asm_matched_literal(rc_asm_n) \ : \ [range] "+&r"(rc.range), \ [code] "+&r"(rc.code), \ [t0] "=&r"(t0), \ [t1] "=&r"(t1), \ [prob] "=&r"(t_prob), \ [match_bit] "+&r"(t_match_bit), \ [symbol] "+&r"(symbol), \ [match_byte] "+&r"(t_match_byte), \ [offset] "+&r"(t_offset), \ [in_ptr] "+&r"(rc_in_ptr) \ : \ [probs_base] "r"(probs_base_var), \ [top_value] "n"(RC_TOP_VALUE), \ [shift_bits] "n"(RC_SHIFT_BITS), \ [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ [move_bits] "n"(RC_MOVE_BITS) \ : \ "cc", "memory"); \ } while (0) #endif // LZMA_RANGE_DECODER_CONFIG & 0x080 // Doing the loop in asm instead of C seems to help a little. #if LZMA_RANGE_DECODER_CONFIG & 0x100 #undef rc_direct #define rc_direct(dest_var, count_var) \ do { \ uint32_t t0; \ uint32_t t1; \ \ __asm__( \ "2:\n\t" \ "add %[dest], %[dest]\n\t" \ "lea 1(%q[dest]), %[t1]\n\t" \ \ rc_asm_normalize \ \ "shr $1, %[range]\n\t" \ "mov %[code], %[t0]\n\t" \ "sub %[range], %[code]\n\t" \ "cmovns %[t1], %[dest]\n\t" \ "cmovs %[t0], %[code]\n\t" \ "dec %[count]\n\t" \ "jnz 2b\n\t" \ : \ [range] "+&r"(rc.range), \ [code] "+&r"(rc.code), \ [t0] "=&r"(t0), \ [t1] "=&r"(t1), \ [dest] "+&r"(dest_var), \ [count] "+&r"(count_var), \ [in_ptr] "+&r"(rc_in_ptr) \ : \ [top_value] "n"(RC_TOP_VALUE), \ [shift_bits] "n"(RC_SHIFT_BITS) \ : \ "cc", "memory"); \ } while (0) #endif // LZMA_RANGE_DECODER_CONFIG & 0x100 #endif // x86_64 #endif