/* * TLSv1 common routines * Copyright (c) 2006-2014, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "crypto/md5.h" #include "crypto/sha1.h" #include "crypto/sha256.h" #include "x509v3.h" #include "tlsv1_common.h" /* * TODO: * RFC 2246 Section 9: Mandatory to implement TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA * Add support for commonly used cipher suites; don't bother with exportable * suites. */ static const struct tls_cipher_suite tls_cipher_suites[] = { { TLS_NULL_WITH_NULL_NULL, TLS_KEY_X_NULL, TLS_CIPHER_NULL, TLS_HASH_NULL }, { TLS_RSA_WITH_RC4_128_MD5, TLS_KEY_X_RSA, TLS_CIPHER_RC4_128, TLS_HASH_MD5 }, { TLS_RSA_WITH_RC4_128_SHA, TLS_KEY_X_RSA, TLS_CIPHER_RC4_128, TLS_HASH_SHA }, { TLS_RSA_WITH_DES_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_DES_CBC, TLS_HASH_SHA }, { TLS_RSA_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA }, { TLS_DHE_RSA_WITH_DES_CBC_SHA, TLS_KEY_X_DHE_RSA, TLS_CIPHER_DES_CBC, TLS_HASH_SHA}, { TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_DHE_RSA, TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA }, { TLS_DH_anon_WITH_RC4_128_MD5, TLS_KEY_X_DH_anon, TLS_CIPHER_RC4_128, TLS_HASH_MD5 }, { TLS_DH_anon_WITH_DES_CBC_SHA, TLS_KEY_X_DH_anon, TLS_CIPHER_DES_CBC, TLS_HASH_SHA }, { TLS_DH_anon_WITH_3DES_EDE_CBC_SHA, TLS_KEY_X_DH_anon, TLS_CIPHER_3DES_EDE_CBC, TLS_HASH_SHA }, { TLS_RSA_WITH_AES_128_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA }, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_KEY_X_DHE_RSA, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA }, { TLS_DH_anon_WITH_AES_128_CBC_SHA, TLS_KEY_X_DH_anon, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA }, { TLS_RSA_WITH_AES_256_CBC_SHA, TLS_KEY_X_RSA, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA }, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_KEY_X_DHE_RSA, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA }, { TLS_DH_anon_WITH_AES_256_CBC_SHA, TLS_KEY_X_DH_anon, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA }, { TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_KEY_X_RSA, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 }, { TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_KEY_X_RSA, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 }, { TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_KEY_X_DHE_RSA, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 }, { TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, TLS_KEY_X_DHE_RSA, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 }, { TLS_DH_anon_WITH_AES_128_CBC_SHA256, TLS_KEY_X_DH_anon, TLS_CIPHER_AES_128_CBC, TLS_HASH_SHA256 }, { TLS_DH_anon_WITH_AES_256_CBC_SHA256, TLS_KEY_X_DH_anon, TLS_CIPHER_AES_256_CBC, TLS_HASH_SHA256 } }; #define NUM_TLS_CIPHER_SUITES ARRAY_SIZE(tls_cipher_suites) static const struct tls_cipher_data tls_ciphers[] = { { TLS_CIPHER_NULL, TLS_CIPHER_STREAM, 0, 0, 0, CRYPTO_CIPHER_NULL }, { TLS_CIPHER_IDEA_CBC, TLS_CIPHER_BLOCK, 16, 16, 8, CRYPTO_CIPHER_NULL }, { TLS_CIPHER_RC2_CBC_40, TLS_CIPHER_BLOCK, 5, 16, 0, CRYPTO_CIPHER_ALG_RC2 }, { TLS_CIPHER_RC4_40, TLS_CIPHER_STREAM, 5, 16, 0, CRYPTO_CIPHER_ALG_RC4 }, { TLS_CIPHER_RC4_128, TLS_CIPHER_STREAM, 16, 16, 0, CRYPTO_CIPHER_ALG_RC4 }, { TLS_CIPHER_DES40_CBC, TLS_CIPHER_BLOCK, 5, 8, 8, CRYPTO_CIPHER_ALG_DES }, { TLS_CIPHER_DES_CBC, TLS_CIPHER_BLOCK, 8, 8, 8, CRYPTO_CIPHER_ALG_DES }, { TLS_CIPHER_3DES_EDE_CBC, TLS_CIPHER_BLOCK, 24, 24, 8, CRYPTO_CIPHER_ALG_3DES }, { TLS_CIPHER_AES_128_CBC, TLS_CIPHER_BLOCK, 16, 16, 16, CRYPTO_CIPHER_ALG_AES }, { TLS_CIPHER_AES_256_CBC, TLS_CIPHER_BLOCK, 32, 32, 16, CRYPTO_CIPHER_ALG_AES } }; #define NUM_TLS_CIPHER_DATA ARRAY_SIZE(tls_ciphers) /** * tls_get_cipher_suite - Get TLS cipher suite * @suite: Cipher suite identifier * Returns: Pointer to the cipher data or %NULL if not found */ const struct tls_cipher_suite * tls_get_cipher_suite(u16 suite) { size_t i; for (i = 0; i < NUM_TLS_CIPHER_SUITES; i++) if (tls_cipher_suites[i].suite == suite) return &tls_cipher_suites[i]; return NULL; } const struct tls_cipher_data * tls_get_cipher_data(tls_cipher cipher) { size_t i; for (i = 0; i < NUM_TLS_CIPHER_DATA; i++) if (tls_ciphers[i].cipher == cipher) return &tls_ciphers[i]; return NULL; } int tls_server_key_exchange_allowed(tls_cipher cipher) { const struct tls_cipher_suite *suite; /* RFC 2246, Section 7.4.3 */ suite = tls_get_cipher_suite(cipher); if (suite == NULL) return 0; switch (suite->key_exchange) { case TLS_KEY_X_DHE_DSS: case TLS_KEY_X_DHE_DSS_EXPORT: case TLS_KEY_X_DHE_RSA: case TLS_KEY_X_DHE_RSA_EXPORT: case TLS_KEY_X_DH_anon_EXPORT: case TLS_KEY_X_DH_anon: return 1; case TLS_KEY_X_RSA_EXPORT: return 1 /* FIX: public key len > 512 bits */; default: return 0; } } /** * tls_parse_cert - Parse DER encoded X.509 certificate and get public key * @buf: ASN.1 DER encoded certificate * @len: Length of the buffer * @pk: Buffer for returning the allocated public key * Returns: 0 on success, -1 on failure * * This functions parses an ASN.1 DER encoded X.509 certificate and retrieves * the public key from it. The caller is responsible for freeing the public key * by calling crypto_public_key_free(). */ int tls_parse_cert(const u8 *buf, size_t len, struct crypto_public_key **pk) { struct x509_certificate *cert; wpa_hexdump(MSG_MSGDUMP, "TLSv1: Parse ASN.1 DER certificate", buf, len); *pk = crypto_public_key_from_cert(buf, len); if (*pk) return 0; cert = x509_certificate_parse(buf, len); if (cert == NULL) { wpa_printf(MSG_DEBUG, "TLSv1: Failed to parse X.509 " "certificate"); return -1; } /* TODO * verify key usage (must allow encryption) * * All certificate profiles, key and cryptographic formats are * defined by the IETF PKIX working group [PKIX]. When a key * usage extension is present, the digitalSignature bit must be * set for the key to be eligible for signing, as described * above, and the keyEncipherment bit must be present to allow * encryption, as described above. The keyAgreement bit must be * set on Diffie-Hellman certificates. (PKIX: RFC 3280) */ *pk = crypto_public_key_import(cert->public_key, cert->public_key_len); x509_certificate_free(cert); if (*pk == NULL) { wpa_printf(MSG_ERROR, "TLSv1: Failed to import " "server public key"); return -1; } return 0; } int tls_verify_hash_init(struct tls_verify_hash *verify) { tls_verify_hash_free(verify); verify->md5_client = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0); verify->md5_server = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0); verify->md5_cert = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0); verify->sha1_client = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0); verify->sha1_server = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0); verify->sha1_cert = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0); if (verify->md5_client == NULL || verify->md5_server == NULL || verify->md5_cert == NULL || verify->sha1_client == NULL || verify->sha1_server == NULL || verify->sha1_cert == NULL) { tls_verify_hash_free(verify); return -1; } #ifdef CONFIG_TLSV12 verify->sha256_client = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL, 0); verify->sha256_server = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL, 0); verify->sha256_cert = crypto_hash_init(CRYPTO_HASH_ALG_SHA256, NULL, 0); if (verify->sha256_client == NULL || verify->sha256_server == NULL || verify->sha256_cert == NULL) { tls_verify_hash_free(verify); return -1; } #endif /* CONFIG_TLSV12 */ return 0; } void tls_verify_hash_add(struct tls_verify_hash *verify, const u8 *buf, size_t len) { if (verify->md5_client && verify->sha1_client) { crypto_hash_update(verify->md5_client, buf, len); crypto_hash_update(verify->sha1_client, buf, len); } if (verify->md5_server && verify->sha1_server) { crypto_hash_update(verify->md5_server, buf, len); crypto_hash_update(verify->sha1_server, buf, len); } if (verify->md5_cert && verify->sha1_cert) { crypto_hash_update(verify->md5_cert, buf, len); crypto_hash_update(verify->sha1_cert, buf, len); } #ifdef CONFIG_TLSV12 if (verify->sha256_client) crypto_hash_update(verify->sha256_client, buf, len); if (verify->sha256_server) crypto_hash_update(verify->sha256_server, buf, len); if (verify->sha256_cert) crypto_hash_update(verify->sha256_cert, buf, len); #endif /* CONFIG_TLSV12 */ } void tls_verify_hash_free(struct tls_verify_hash *verify) { crypto_hash_finish(verify->md5_client, NULL, NULL); crypto_hash_finish(verify->md5_server, NULL, NULL); crypto_hash_finish(verify->md5_cert, NULL, NULL); crypto_hash_finish(verify->sha1_client, NULL, NULL); crypto_hash_finish(verify->sha1_server, NULL, NULL); crypto_hash_finish(verify->sha1_cert, NULL, NULL); verify->md5_client = NULL; verify->md5_server = NULL; verify->md5_cert = NULL; verify->sha1_client = NULL; verify->sha1_server = NULL; verify->sha1_cert = NULL; #ifdef CONFIG_TLSV12 crypto_hash_finish(verify->sha256_client, NULL, NULL); crypto_hash_finish(verify->sha256_server, NULL, NULL); crypto_hash_finish(verify->sha256_cert, NULL, NULL); verify->sha256_client = NULL; verify->sha256_server = NULL; verify->sha256_cert = NULL; #endif /* CONFIG_TLSV12 */ } int tls_version_ok(u16 ver) { if (ver == TLS_VERSION_1) return 1; #ifdef CONFIG_TLSV11 if (ver == TLS_VERSION_1_1) return 1; #endif /* CONFIG_TLSV11 */ #ifdef CONFIG_TLSV12 if (ver == TLS_VERSION_1_2) return 1; #endif /* CONFIG_TLSV12 */ return 0; } const char * tls_version_str(u16 ver) { switch (ver) { case TLS_VERSION_1: return "1.0"; case TLS_VERSION_1_1: return "1.1"; case TLS_VERSION_1_2: return "1.2"; } return "?"; } int tls_prf(u16 ver, const u8 *secret, size_t secret_len, const char *label, const u8 *seed, size_t seed_len, u8 *out, size_t outlen) { #ifdef CONFIG_TLSV12 if (ver >= TLS_VERSION_1_2) { tls_prf_sha256(secret, secret_len, label, seed, seed_len, out, outlen); return 0; } #endif /* CONFIG_TLSV12 */ return tls_prf_sha1_md5(secret, secret_len, label, seed, seed_len, out, outlen); } #ifdef CONFIG_TLSV12 int tlsv12_key_x_server_params_hash(u16 tls_version, u8 hash_alg, const u8 *client_random, const u8 *server_random, const u8 *server_params, size_t server_params_len, u8 *hash) { size_t hlen; struct crypto_hash *ctx; enum crypto_hash_alg alg; switch (hash_alg) { case TLS_HASH_ALG_SHA256: alg = CRYPTO_HASH_ALG_SHA256; hlen = SHA256_MAC_LEN; break; case TLS_HASH_ALG_SHA384: alg = CRYPTO_HASH_ALG_SHA384; hlen = 48; break; case TLS_HASH_ALG_SHA512: alg = CRYPTO_HASH_ALG_SHA512; hlen = 64; break; default: return -1; } ctx = crypto_hash_init(alg, NULL, 0); if (ctx == NULL) return -1; crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_params, server_params_len); if (crypto_hash_finish(ctx, hash, &hlen) < 0) return -1; return hlen; } #endif /* CONFIG_TLSV12 */ int tls_key_x_server_params_hash(u16 tls_version, const u8 *client_random, const u8 *server_random, const u8 *server_params, size_t server_params_len, u8 *hash, size_t hsz) { u8 *hpos; size_t hlen; struct crypto_hash *ctx; hpos = hash; ctx = crypto_hash_init(CRYPTO_HASH_ALG_MD5, NULL, 0); if (ctx == NULL) return -1; crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_params, server_params_len); hlen = MD5_MAC_LEN; if (hsz < hlen) return -1; if (crypto_hash_finish(ctx, hash, &hlen) < 0) return -1; hpos += hlen; ctx = crypto_hash_init(CRYPTO_HASH_ALG_SHA1, NULL, 0); if (ctx == NULL) return -1; crypto_hash_update(ctx, client_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_random, TLS_RANDOM_LEN); crypto_hash_update(ctx, server_params, server_params_len); hlen = hsz - hlen; if (crypto_hash_finish(ctx, hpos, &hlen) < 0) return -1; hpos += hlen; return hpos - hash; } int tls_verify_signature(u16 tls_version, struct crypto_public_key *pk, const u8 *data, size_t data_len, const u8 *pos, size_t len, u8 *alert) { u8 *buf; const u8 *end = pos + len; const u8 *decrypted; u16 slen; size_t buflen; if (end - pos < 2) { *alert = TLS_ALERT_DECODE_ERROR; return -1; } slen = WPA_GET_BE16(pos); pos += 2; if (end - pos < slen) { *alert = TLS_ALERT_DECODE_ERROR; return -1; } if (end - pos > slen) { wpa_hexdump(MSG_MSGDUMP, "Additional data after Signature", pos + slen, end - pos - slen); end = pos + slen; } wpa_hexdump(MSG_MSGDUMP, "TLSv1: Signature", pos, end - pos); if (pk == NULL) { wpa_printf(MSG_DEBUG, "TLSv1: No public key to verify signature"); *alert = TLS_ALERT_INTERNAL_ERROR; return -1; } buflen = end - pos; buf = os_malloc(end - pos); if (buf == NULL) { *alert = TLS_ALERT_INTERNAL_ERROR; return -1; } if (crypto_public_key_decrypt_pkcs1(pk, pos, end - pos, buf, &buflen) < 0) { wpa_printf(MSG_DEBUG, "TLSv1: Failed to decrypt signature"); os_free(buf); *alert = TLS_ALERT_DECRYPT_ERROR; return -1; } decrypted = buf; wpa_hexdump_key(MSG_MSGDUMP, "TLSv1: Decrypted Signature", decrypted, buflen); #ifdef CONFIG_TLSV12 if (tls_version >= TLS_VERSION_1_2) { /* * RFC 3447, A.2.4 RSASSA-PKCS1-v1_5 * * DigestInfo ::= SEQUENCE { * digestAlgorithm DigestAlgorithm, * digest OCTET STRING * } * * SHA-256 OID: sha256WithRSAEncryption ::= {pkcs-1 11} * * DER encoded DigestInfo for SHA256 per RFC 3447: * 30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || * H */ if (buflen >= 19 + 32 && os_memcmp(buf, "\x30\x31\x30\x0d\x06\x09\x60\x86\x48\x01" "\x65\x03\x04\x02\x01\x05\x00\x04\x20", 19) == 0) { wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithm = SHA-256"); decrypted = buf + 19; buflen -= 19; } else if (buflen >= 19 + 48 && os_memcmp(buf, "\x30\x41\x30\x0d\x06\x09\x60\x86\x48\x01" "\x65\x03\x04\x02\x02\x05\x00\x04\x30", 19) == 0) { wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithm = SHA-384"); decrypted = buf + 19; buflen -= 19; } else if (buflen >= 19 + 64 && os_memcmp(buf, "\x30\x51\x30\x0d\x06\x09\x60\x86\x48\x01" "\x65\x03\x04\x02\x03\x05\x00\x04\x40", 19) == 0) { wpa_printf(MSG_DEBUG, "TLSv1.2: DigestAlgorithm = SHA-512"); decrypted = buf + 19; buflen -= 19; } else { wpa_printf(MSG_DEBUG, "TLSv1.2: Unrecognized DigestInfo"); os_free(buf); *alert = TLS_ALERT_DECRYPT_ERROR; return -1; } } #endif /* CONFIG_TLSV12 */ if (buflen != data_len || os_memcmp_const(decrypted, data, data_len) != 0) { wpa_printf(MSG_DEBUG, "TLSv1: Invalid Signature in CertificateVerify - did not match calculated hash"); os_free(buf); *alert = TLS_ALERT_DECRYPT_ERROR; return -1; } os_free(buf); return 0; }