/* * Shared Dragonfly functionality * Copyright (c) 2012-2016, Jouni Malinen * Copyright (c) 2019, The Linux Foundation * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/const_time.h" #include "crypto/crypto.h" #include "dragonfly.h" int dragonfly_suitable_group(int group, int ecc_only) { /* Enforce REVmd rules on which SAE groups are suitable for production * purposes: FFC groups whose prime is >= 3072 bits and ECC groups * defined over a prime field whose prime is >= 256 bits. Furthermore, * ECC groups defined over a characteristic 2 finite field and ECC * groups with a co-factor greater than 1 are not suitable. Disable * groups that use Brainpool curves as well for now since they leak more * timing information due to the prime not being close to a power of * two. */ return group == 19 || group == 20 || group == 21 || (!ecc_only && (group == 15 || group == 16 || group == 17 || group == 18)); } unsigned int dragonfly_min_pwe_loop_iter(int group) { if (group == 22 || group == 23 || group == 24) { /* FFC groups for which pwd-value is likely to be >= p * frequently */ return 40; } if (group == 1 || group == 2 || group == 5 || group == 14 || group == 15 || group == 16 || group == 17 || group == 18) { /* FFC groups that have prime that is close to a power of two */ return 1; } /* Default to 40 (this covers most ECC groups) */ return 40; } int dragonfly_get_random_qr_qnr(const struct crypto_bignum *prime, struct crypto_bignum **qr, struct crypto_bignum **qnr) { *qr = *qnr = NULL; while (!(*qr) || !(*qnr)) { struct crypto_bignum *tmp; int res; tmp = crypto_bignum_init(); if (!tmp || crypto_bignum_rand(tmp, prime) < 0) { crypto_bignum_deinit(tmp, 0); break; } res = crypto_bignum_legendre(tmp, prime); if (res == 1 && !(*qr)) { *qr = tmp; } else if (res == -1 && !(*qnr)) { *qnr = tmp; } else { crypto_bignum_deinit(tmp, 0); if (res == -2) break; } } if (*qr && *qnr) return 0; crypto_bignum_deinit(*qr, 0); crypto_bignum_deinit(*qnr, 0); *qr = *qnr = NULL; return -1; } static struct crypto_bignum * dragonfly_get_rand_1_to_p_1(const struct crypto_bignum *prime) { struct crypto_bignum *tmp, *pm1, *one; tmp = crypto_bignum_init(); pm1 = crypto_bignum_init(); one = crypto_bignum_init_set((const u8 *) "\x01", 1); if (!tmp || !pm1 || !one || crypto_bignum_sub(prime, one, pm1) < 0 || crypto_bignum_rand(tmp, pm1) < 0 || crypto_bignum_add(tmp, one, tmp) < 0) { crypto_bignum_deinit(tmp, 0); tmp = NULL; } crypto_bignum_deinit(pm1, 0); crypto_bignum_deinit(one, 0); return tmp; } int dragonfly_is_quadratic_residue_blind(struct crypto_ec *ec, const u8 *qr, const u8 *qnr, const struct crypto_bignum *val) { struct crypto_bignum *r, *num, *qr_or_qnr = NULL; int check, res = -1; u8 qr_or_qnr_bin[DRAGONFLY_MAX_ECC_PRIME_LEN]; const struct crypto_bignum *prime; size_t prime_len; unsigned int mask; prime = crypto_ec_get_prime(ec); prime_len = crypto_ec_prime_len(ec); /* * Use a blinding technique to mask val while determining whether it is * a quadratic residue modulo p to avoid leaking timing information * while determining the Legendre symbol. * * v = val * r = a random number between 1 and p-1, inclusive * num = (v * r * r) modulo p */ r = dragonfly_get_rand_1_to_p_1(prime); if (!r) return -1; num = crypto_bignum_init(); if (!num || crypto_bignum_mulmod(val, r, prime, num) < 0 || crypto_bignum_mulmod(num, r, prime, num) < 0) goto fail; /* * Need to minimize differences in handling different cases, so try to * avoid branches and timing differences. * * If r is odd: * num = (num * qr) module p * LGR(num, p) = 1 ==> quadratic residue * else: * num = (num * qnr) module p * LGR(num, p) = -1 ==> quadratic residue * * mask is set to !odd(r) */ mask = const_time_is_zero(crypto_bignum_is_odd(r)); const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin); qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len); if (!qr_or_qnr || crypto_bignum_mulmod(num, qr_or_qnr, prime, num) < 0) goto fail; /* branchless version of check = odd(r) ? 1 : -1, */ check = const_time_select_int(mask, -1, 1); /* Determine the Legendre symbol on the masked value */ res = crypto_bignum_legendre(num, prime); if (res == -2) { res = -1; goto fail; } /* branchless version of res = res == check * (res is -1, 0, or 1; check is -1 or 1) */ mask = const_time_eq(res, check); res = const_time_select_int(mask, 1, 0); fail: crypto_bignum_deinit(num, 1); crypto_bignum_deinit(r, 1); crypto_bignum_deinit(qr_or_qnr, 1); return res; } static int dragonfly_get_rand_2_to_r_1(struct crypto_bignum *val, const struct crypto_bignum *order) { return crypto_bignum_rand(val, order) == 0 && !crypto_bignum_is_zero(val) && !crypto_bignum_is_one(val); } int dragonfly_generate_scalar(const struct crypto_bignum *order, struct crypto_bignum *_rand, struct crypto_bignum *_mask, struct crypto_bignum *scalar) { int count; /* Select two random values rand,mask such that 1 < rand,mask < r and * rand + mask mod r > 1. */ for (count = 0; count < 100; count++) { if (dragonfly_get_rand_2_to_r_1(_rand, order) && dragonfly_get_rand_2_to_r_1(_mask, order) && crypto_bignum_add(_rand, _mask, scalar) == 0 && crypto_bignum_mod(scalar, order, scalar) == 0 && !crypto_bignum_is_zero(scalar) && !crypto_bignum_is_one(scalar)) return 0; } /* This should not be reachable in practice if the random number * generation is working. */ wpa_printf(MSG_INFO, "dragonfly: Unable to get randomness for own scalar"); return -1; } /* res = sqrt(val) */ int dragonfly_sqrt(struct crypto_ec *ec, const struct crypto_bignum *val, struct crypto_bignum *res) { const struct crypto_bignum *prime; struct crypto_bignum *tmp, *one; int ret = 0; u8 prime_bin[DRAGONFLY_MAX_ECC_PRIME_LEN]; size_t prime_len; /* For prime p such that p = 3 mod 4, sqrt(w) = w^((p+1)/4) mod p */ prime = crypto_ec_get_prime(ec); prime_len = crypto_ec_prime_len(ec); tmp = crypto_bignum_init(); one = crypto_bignum_init_uint(1); if (crypto_bignum_to_bin(prime, prime_bin, sizeof(prime_bin), prime_len) < 0 || (prime_bin[prime_len - 1] & 0x03) != 3 || !tmp || !one || /* tmp = (p+1)/4 */ crypto_bignum_add(prime, one, tmp) < 0 || crypto_bignum_rshift(tmp, 2, tmp) < 0 || /* res = sqrt(val) */ crypto_bignum_exptmod(val, tmp, prime, res) < 0) ret = -1; crypto_bignum_deinit(tmp, 0); crypto_bignum_deinit(one, 0); return ret; }